

ffi rst.indd i 19/08/2015 3:20 PM

PATTERNS, PRINCIPLES, AND PRACTICES
OF DOMAIN-DRIVEN DESIGN

INTRODUCTION . XXXV

 ▸ PART I THE PRINCIPLES AND PRACTICES OF
DOMAIN‐DRIVEN DESIGN

CHAPTER 1 What Is Domain‐Driven Design? . 3

CHAPTER 2 Distilling the Problem Domain . 15

CHAPTER 3 Focusing on the Core Domain . 31

CHAPTER 4 Model‐Driven Design . 41

CHAPTER 5 Domain Model Implementation Patterns . 59

CHAPTER 6 Maintaining the Integrity of Domain Models with

Bounded Contexts . 73

CHAPTER 7 Context Mapping . 91

CHAPTER 8 Application Architecture . 105

CHAPTER 9 Common Problems for Teams Starting Out with

Domain‐Driven Design . 121

CHAPTER 10 Applying the Principles, Practices, and Patterns of DDD 131

 ▸ PART II STRATEGIC PATTERNS: COMMUNICATING
BETWEEN BOUNDED CONTEXTS

CHAPTER 11 Introduction to Bounded Context Integration 151

CHAPTER 12 Integrating via Messaging . 181

CHAPTER 13 Integrating via HTTP with RPC and REST . 245

 ▸ PART III TACTICAL PATTERNS: CREATING EFFECTIVE
DOMAIN MODELS

CHAPTER 14 Introducing the Domain Modeling Building Blocks 309

CHAPTER 15 Value Objects . 329

CHAPTER 16 Entities . 361

Continues

ffirst.indd iffirst.indd i 8/26/2015 8:33:49 PM8/26/2015 8:33:49 PM

fffi rst.indd ii 19/08/2015 3:20 PM

CHAPTER 17 Domain Services . 389

CHAPTER 18 Domain Events . 405

CHAPTER 19 Aggregates . 427

CHAPTER 20 Factories . 469

CHAPTER 21 Repositories . 479

CHAPTER 22 Event Sourcing . 595

 ▸ PART IV DESIGN PATTERNS FOR EFFECTIVE APPLICATIONS

CHAPTER 23 Architecting Application User Interfaces . 645

CHAPTER 24 CQRS: An Architecture of a Bounded Context 669

CHAPTER 25 Commands: Application Service Patterns for

Processing Business Use Cases . 687

CHAPTER 26 Queries: Domain Reporting . 713

INDEX . 737

ffirst.indd iiffirst.indd ii 8/26/2015 8:33:49 PM8/26/2015 8:33:49 PM

ffi rst.indd iii 19/08/2015 3:20 PMM

Patterns, Principles, and
Practices of Domain-Driven Design

ffirst.indd iiiffirst.indd iii 8/26/2015 8:33:49 PM8/26/2015 8:33:49 PM

ffirst.indd ivffirst.indd iv 8/26/2015 8:33:49 PM8/26/2015 8:33:49 PM

ffi rst.indd v 19/08/2015 3:20 PM

Patterns, Principles, and
Practices of Domain-Driven Design

Scott Millett

Nick Tune

ffirst.indd vffirst.indd v 8/26/2015 8:33:49 PM8/26/2015 8:33:49 PM

ffi rst.indd vi 19/08/2015 3:20 PM

Patterns, Principles, and Practices of Domain-Driven Design

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-71470-6
ISBN: 978-1-118-71465-2 (ebk)
ISBN: 978-1-118-71469-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014951018

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

ffirst.indd viffirst.indd vi 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

ffi rst.indd vii 19/08/2015 3:20 PM

For my darling buds, Primrose and Albert.

—Scott Millett

ffirst.indd viiffirst.indd vii 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

fffi rst.indd viii 19/08/2015 3:20 PM
ffirst.indd viiiffirst.indd viii 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

ffi rst.indd ix 19/08/2015 3:20 PMM

ABOUT THE AUTHOR

SCOTT MILLETT is the Director of IT for Iglu.com and has been working with .NET since version
1.0. He was awarded the ASP.NET MVP in 2010 and 2011. He is also the author of Professional
ASP.NET Design Patterns and Professional Enterprise .NET. If you would like to contact Scott
about DDD or working at Iglu, feel free to write to him at scott@elbandit.co.uk, by giving him a
tweet @ScottMillett, or becoming friends via https://www.linkedin.com/in/scottmillett.

ABOUT THE CONTRIBUTING AUTHOR

NICK TUNE is passionate about solving business problems, building ambitious products, and
constantly learning. Being a software developer really is his dream job. His career highlight so far
was working at 7digital, where he was part of self-organizing, business-focused teams that deployed
to production up to 25 times per day. His future ambitions are to work on exciting new products,
with passionate people, and continually become a more complete problem solver.

You can learn more about Nick and his views on software development, software delivery, and his
favorite technologies on his website (www.ntcoding.co.uk) and Twitter (@ntcoding).

ABOUT THE TECHNICAL EDITOR

ANTONY DENYER works as a developer, consultant, and coach and has been developing software
professionally since 2004. He has worked on various projects that have effectively used DDD
concepts and practices. More recently, he has been advocating the use of CQRS and REST in
the majority of his projects. You can reach him via e-mail at antonydenyer.co.uk, and he tweets
from @tonydenyer.

ffirst.indd ixffirst.indd ix 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

mailto:scott@elbandit.co.uk
http://www.ntcoding.co.uk
mailto:scott@elbandit.co.uk
https://www.linkedin.com/in/scottmillett
http://www.ntcoding.co.uk

fffi rst.indd x 19/08/2015 3:20 PM
ffirst.indd xffirst.indd x 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

ffi rst.indd xi 19/08/2015 3:20 PMM

PROJECT EDITOR
Rosemarie Graham

TECHNICAL EDITOR
Antony Denyer

PRODUCTION EDITOR
Christine O’Connor

COPY EDITOR
Karen Gill

MANAGER OF CONTENT DEVELOPMENT
AND ASSEMBLY
Mary Beth Wakefi eld

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY &
STRATEGY DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Jenn Bennett, Word One

INDEXER
Johnna VanHoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE
@iStockphoto.com/andynwt

CREDITS

ffirst.indd xiffirst.indd xi 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

mailto:@iStockphoto.com/andynwt

fffi rst.indd xii 19/08/2015 3:20 PM
ffirst.indd xiiffirst.indd xii 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

ffi rst.indd xiii 19/08/2015 3:20 PMM

ACKNOWLEDGMENTS

FIRSTLY I WOULD LIKE to give a massive thanks to Nick Tune for agreeing to help me out with this
project and contributing greatly to many of the chapters. I would also like to thank Rosemarie
Graham, Jim Minatel, and all those at Wrox who have helped to create this book. Thanks as well
to Antony Denyer who did a sterling job as the technical editor. Lastly, many thanks to Isabel Mack
for the grammar pointers and early feedback of the Leanpub draft.

ffirst.indd xiiiffirst.indd xiii 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

ffi rst.indd xiv 19/08/2015 3:20 PM
ffirst.indd xivffirst.indd xiv 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

CONTENTS

INTRODUCTION	 xxxv

Part I: �THE PRINCIPLES AND PRACTICES OF
DOMAIN‐DRIVEN DESIGN

Chapter 1: WHAT IS DOMAIN‐DRIVEN DESIGN?	 3

The Challenges of Creating Software for Complex
Problem Domains	 4

Code Created Without a Common Language	 4
A Lack of Organization	 5
The Ball of Mud Pattern Stifles Development	 5
A Lack of Focus on the Problem Domain	 6

How the Patterns of Domain‐Driven Design
Manage Complexity	 6

The Strategic Patterns of DDD	 6
Distilling the Problem Domain to Reveal
What Is Important	 7
Creating a Model to Solve Domain Problems	 7
Using a Shared Language to Enable Modeling
Collaboration	 7
Isolate Models from Ambiguity and Corruption	 8
Understanding the Relationships between Contexts	 9

The Tactical Patterns of DDD	 9
The Problem Space and the Solution Space	 9

The Practices and Principles of Domain‐Driven Design	 11
Focusing on the Core Domain	 11
Learning through Collaboration	 11
Creating Models through Exploration and Experimentation	 11
Communication	 11
Understanding the Applicability of a Model	 12
Constantly Evolving the Model	 12

Popular Misconceptions of Domain‐Driven Design	 12
Tactical Patterns Are Key to DDD	 12
DDD Is a Framework	 13
DDD Is a Silver Bullet	 13

The Salient Points	 13

xvi

CONTENTS

Chapter 2: DISTILLING THE PROBLEM DOMAIN 	 15

Knowledge Crunching and Collaboration	 15
Reaching a Shared Understanding through a
Shared Language	 16
The Importance of Domain Knowledge	 17
The Role of Business Analysts	 17
An Ongoing Process	 17

Gaining Domain Insight with Domain Experts	 18
Domain Experts vs Stakeholders	 18
Deeper Understanding for the Business	 19
Engaging with Your Domain Experts	 19

Patterns for Effective Knowledge Crunching	 19
Focus on the Most Interesting Conversations	 19
Start from the Use Cases	 20
Ask Powerful Questions	 20
Sketching	 20
Class Responsibility Collaboration Cards	 21
Defer the Naming of Concepts in Your Model	 21
Behavior‐Driven Development	 22
Rapid Prototyping	 23
Look at Paper‐Based Systems	 24

Look For Existing Models	 24
Understanding Intent	 24
Event Storming	 25
Impact Mapping	 25
Understanding the Business Model	 27
Deliberate Discovery	 28
Model Exploration Whirlpool	 29

The Salient Points	 29

Chapter 3: FOCUSING ON THE CORE DOMAIN	 31

Why Decompose a Problem Domain?	 31
How to Capture the Essence of the Problem	 32

Look Beyond Requirements	 32
Capture the Domain Vision for a Shared Understanding
of What Is Core	 32

How to Focus on the Core Problem	 33
Distilling a Problem Domain	 34
Core Domains	 35

xvii

CONTENTS

Treat Your Core Domain as a Product Rather than a Project	 36
Generic Domains	 37
Supporting Domains	 37

How Subdomains Shape a Solution	 37
Not All Parts of a System will be Well Designed	 37

Focus on Clean Boundaries over Perfect Models	 38
The Core Domain Doesn’t Always Have to Be Perfect
the First Time	 39
Build Subdomains for Replacement Rather than Reuse	 39

What if You Have no Core Domain?	 39
The Salient Points	 40

Chapter 4: MODEL‐DRIVEN DESIGN 	 41

What Is a Domain Model?	 42
The Domain versus the Domain Model	 42
The Analysis Model	 43
The Code Model	 43
The Code Model Is the Primary Expression
of the Domain Model	 44

Model‐Driven Design	 44
The Challenges with Upfront Design	 44
Team Modeling	 45

Using a Ubiquitous Language to Bind the Analysis
to the Code Model	 47

A Language Will Outlive Your Software	 47
The Language of the Business	 48
Translation between the Developers and the Business	 48

Collaborating on a Ubiquitous Language	 48
Carving Out a Language by Working with Concrete Examples	 49
Teach Your Domain Experts to Focus on the Problem
and Not Jump to a Solution	 50
Best Practices for Shaping the Language	 51

How to Create Effective Domain Models	 52
Don’t Let the Truth Get in the Way of a Good Model	 52
Model Only What Is Relevant	 54
Domain Models Are Temporarily Useful	 54
Be Explicit with Terminology	 54
Limit Your Abstractions	 54

Focus Your Code at the Right Level of Abstraction	 55
Abstract Behavior Not Implementations	 55

xviii

CONTENTS

Implement the Model in Code Early and Often	 56
Don’t Stop at the First Good Idea	 56

When to Apply Model‐Driven Design	 56
If It’s Not Worth the Effort Don’t Try and Model It	 56
Focus on the Core Domain	 57

The Salient Points	 57

Chapter 5: DOMAIN MODEL IMPLEMENTATION PATTERNS	 59

The Domain Layer	 60
Domain Model Implementation Patterns	 60

Domain Model	 62
Transaction Script	 65
Table Module	 67
Active Record	 67
Anemic Domain Model	 67
Anemic Domain Model and Functional Programming	 68

The Salient Points	 71

Chapter 6: �MAINTAINING THE INTEGRITY OF DOMAIN
MODELS WITH BOUNDED CONTEXTS	 73

The Challenges of a Single Model	 74
A Model Can Grow in Complexity	 74
Multiple Teams Working on a Single Model	 74
Ambiguity in the Language of the Model	 75
The Applicability of a Domain Concept	 76
Integration with Legacy Code or Third Party Code	 78
Your Domain Model Is not Your Enterprise Model	 79

Use Bounded Contexts to Divide and Conquer a
Large Model	 79

Defining a Model’s Boundary	 82
Define Boundaries around Language	 82
Align to Business Capabilities	 83
Create Contexts around Teams	 83
Try to Retain Some Communication between Teams	 84
Context Game	 85

The Difference between a Subdomain and a
Bounded Context	 85

Implementing Bounded Contexts	 85
The Salient Points	 89

xix

CONTENTS

Chapter 7: CONTEXT MAPPING 	 91

A Reality Map	 92
The Technical Reality	 92
The Organizational Reality	 93
Mapping a Relevant Reality	 94
X Marks the Spot of the Core Domain	 94

Recognising the Relationships between
Bounded Contexts	 95

Anticorruption Layer	 95
Shared Kernel	 96
Open Host Service	 97
Separate Ways	 97
Partnership	 98
An Upstream/Downstream Relationship	 98

Customer‐Supplier	 99
Conformist	 100

Communicating the Context Map	 100
The Strategic Importance of Context Maps	 101

Retaining Integrity	 101
The Basis for a Plan of Attack	 101
Understanding Ownership and Responsibility	 101
Revealing Areas of Confusion in Business Work Flow	 102
Identifying Nontechnical Obstacles	 102
Encourages Good Communication	 102
Helps On‐Board New Starters	 102

The Salient Points	 103

Chapter 8: APPLICATION ARCHITECTURE	 105

Application Architecture	 105
Separating the Concerns of Your Application	 106
Abstraction from the Complexities of the Domain	 106
A Layered Architecture	 106
Dependency Inversion	 107
The Domain Layer	 107
The Application Service Layer	 108
The Infrastructural Layers	 108
Communication Across Layers	 108
Testing in Isolation	 109
Don’t Share Data Schema between Bounded Contexts	 109

xx

CONTENTS

Application Architectures versus Architectures for
Bounded Contexts	 111

Application Services	 112
Application Logic versus Domain Logic	 114
Defining and Exposing Capabilities	 114
Business Use Case Coordination	 115
Application Services Represent Use Cases, Not Create,
Read, Update, and Delete	 115
Domain Layer As an Implementation Detail	 115
Domain Reporting	 116
Read Models versus Transactional Models	 116

Application Clients	 117
The Salient Points	 120

Chapter 9: �COMMON PROBLEMS FOR TEAMS STARTING
OUT WITH DOMAIN‐DRIVEN DESIGN	 121

Overemphasizing the Importance of Tactical Patterns	 122
Using the Same Architecture for All Bounded Contexts	 122
Striving for Tactical Pattern Perfection	 122
Mistaking the Building Blocks for the Value of DDD	 123
Focusing on Code Rather Than the Principles of DDD	 123

Missing the Real Value of DDD: Collaboration,
Communication, and Context	 124

Producing a Big Ball of Mud Due to Underestimating
the Importance of Context	 124
Causing Ambiguity and Misinterpretations by
Failing to Create a UL	 125
Designing Technical‐Focused Solutions Due
to a Lack of Collaboration	 125

Spending Too Much Time on What’s Not Important	 126
Making Simple Problems Complex	 126

Applying DDD Principles to a Trivial Domain with
Little Business Expectation	 126
Disregarding CRUD as an Antipattern	 127
Using the Domain Model Pattern for Every Bounded Context	 127
Ask Yourself: Is It Worth This Extra Complexity?	 127

Underestimating the Cost of Applying DDD	 127
Trying to Succeed Without a Motivated and Focused Team	 128
Attempting Collaboration When a Domain Expert Is Not
Behind the Project	 128
Learning in a Noniterative Development Methodology	 128

xxi

CONTENTS

Applying DDD to Every Problem	 129
Sacrificing Pragmatism for Needless Purity	 129
Wasted Effort by Seeking Validation	 129
Always Striving for Beautiful Code	 130
DDD Is About Providing Value	 130

The Salient Points	 130

Chapter 10: �APPLYING THE PRINCIPLES, PRACTICES,
AND PATTERNS OF DDD	 131

Selling DDD	 132
Educating Your Team	 132
Speaking to Your Business	 132

Applying the Principles of DDD	 133
Understand the Vision	 133
Capture the Required Behaviors	 134

Distilling the Problem Space	 134
Focus on What Is Important	 134

Understand the Reality of the Landscape	 135
Modeling a Solution	 135

All Problems Are Not Created Equal	 136
Engaging with an Expert	 136
Select a Behavior and Model Around a Concrete Scenario	 137
Collaborate with the Domain Expert on the Most
Interesting Parts	 137
Evolve UL to Remove Ambiguity	 138
Throw Away Your First Model, and Your Second	 138
Implement the Model in Code	 139
Creating a Domain Model	 139
Keep the Solution Simple and Your Code Boring	 139
Carve Out an Area of Safety	 140
Integrate the Model Early and Often	 140
Nontechnical Refactoring	 140
Decompose Your Solution Space	 140
Rinse and Repeat	 141

Exploration and Experimentation	 142
Challenge Your Assumptions	 142
Modeling Is a Continuous Activity	 142
There Are No Wrong Models	 142
Supple Code Aids Discovery	 143

Making the Implicit Explicit	 143

xxii

CONTENTS

Tackling Ambiguity	 144
Give Things a Name	 145

A Problem Solver First, A Technologist Second	 146
Don’t Solve All the Problems	 146

How Do I Know That I Am Doing It Right?	 146
Good Is Good Enough	 147
Practice, Practice, Practice	 147

The Salient Points	 147

Part II: �STRATEGIC PATTERNS: COMMUNICATING BETWEEN
BOUNDED CONTEXTS

Chapter 11: �INTRODUCTION TO BOUNDED
CONTEXT INTEGRATION	 151

How to Integrate Bounded Contexts	 152
Bounded Contexts Are Autonomous	 153
The Challenges of Integrating Bounded Contexts
at the Code Level	 153

Multiple Bounded Contexts Exist within a Solution	 153
Namespaces or Projects to Keep Bounded Contexts Separate	 154
Integrating via the Database	 155
Multiple Teams Working in a Single Codebase	 156
Models Blur	 156

Use Physical Boundaries to Enforce Clean Models	 157
Integrating with Legacy Systems	 158

Bubble Context	 158
Autonomous Bubble Context	 158
Exposing Legacy Systems as Services	 160

Integrating Distributed Bounded Contexts	 161
Integration Strategies for Distributed Bounded Contexts	 161
Database Integration	 162
Flat File Integration	 163
RPC	 164
Messaging	 165
REST	 165

The Challenges of DDD with Distributed Systems	 165
The Problem with RPC	 166

RPC Is Harder to Make Resilient	 167
RPC Costs More to Scale	 167
RPC Involves Tight Coupling	 168

xxiii

CONTENTS

Distributed Transactions Hurt Scalability and Reliability	 169
Bounded Contexts Don’t Have to Be Consistent with Each Other	 169
Eventual Consistency	 169

Event‐Driven Reactive DDD	 170
Demonstrating the Resilience and Scalability of Reactive Solutions	 171
Challenges and Trade‐Offs of Asynchronous Messaging	 173
Is RPC Still Relevant?	 173

SOA and Reactive DDD	 174
View Your Bounded Contexts as SOA Services	 175

Decompose Bounded Contexts into Business Components	 175
Decompose Business Components into Components	 176

Going Even Further with Micro Service Architecture	 178
The Salient Points	 180

Chapter 12: INTEGRATING VIA MESSAGING	 181

Messaging Fundamentals	 182
Message Bus	 182
Reliable Messaging	 184
Store‐and‐Forward	 184
Commands and Events	 185
Eventual Consistency	 186

Building an E‐Commerce Application with NServiceBus	 186
Designing the System	 187

Domain‐Driven Design	 187
Containers Diagrams	 188
Evolutionary Architecture	 191

Sending Commands from a Web Application	 192
Creating a Web Application to Send Messages with NServiceBus	 192
Sending Commands	 197

Handling Commands and Publishing Events	 200
Creating an NServiceBus Server to Handle Commands	 200
Configuring the Solution for Testing and Debugging	 201
Publishing Events	 204
Subscribing to Events	 206

Making External HTTP Calls Reliable with Messaging Gateways	 208
Messaging Gateways Improve Fault Tolerance	 208
Implementing a Messaging Gateway	 209
Controlling Message Retries	 212

Eventual Consistency in Practice	 215
Dealing with Inconsistency	 215

xxiv

CONTENTS

Rolling Forward into New States	 215
Bounded Contexts Store All the Data They Need Locally	 216

Storage Is Cheap—Keep a Local Copy	 217
Common Data Duplication Concerns	 223

Pulling It All Together in the UI	 224
Business Components Need Their Own APIs	 225
Be Wary of Server‐Side Orchestration	 226
UI Composition with AJAX Data	 226
UI Composition with AJAX HTML	 226
Sharing Your APIs with the Outside World	 227

Maintaining a Messaging Application	 227
Message Versioning	 228

Backward‐Compatible Message Versioning	 228
Handling Versioning with NServiceBus’s Polymorphic Handlers	 229

Monitoring and Scaling	 233
Monitoring Errors	 233
Monitoring SLAs	 234
Scaling Out	 235

Integrating a Bounded Context with Mass Transit	 235
Messaging Bridge	 236
Mass Transit	 236

Installing and Configuring Mass Transit	 236
Declaring Messages for Use by Mass Transit	 238
Creating a Message Handler	 239
Subscribing to Events	 239
Linking the Systems with a Messaging Bridge	 240
Publishing Events	 242
Testing It Out	 243
Where to Learn More about Mass Transit	 243

The Salient Points	 243

Chapter 13: INTEGRATING VIA HTTP WITH RPC AND REST 	 245

Why Prefer HTTP?	 247
No Platform Coupling	 247
Everyone Understands HTTP	 247
Lots of Mature Tooling and Libraries	 247
Dogfooding Your APIs	 247

RPC	 248
Implementing RPC over HTTP	 248

SOAP	 249

xxv

CONTENTS

Plain XML or JSON: The Modern Approach to RPC	 259
Choosing a Flavor of RPC	 263

REST	 264
Demystifying REST	 264

Resources	 264
Hypermedia	 265
Statelessness	 265
REST Fully Embraces HTTP	 266
What REST Is Not	 267

REST for Bounded Context Integration	 268
Designing for REST	 268
Building Event‐Driven REST Systems with ASP.NET Web API	 273

Maintaining REST Applications	 303
Versioning	 303
Monitoring and Metrics	 303

Drawbacks with REST for Bounded Context Integration	 304
Less Fault Tolerance Out of the Box	 304
Eventual Consistency	 304

The Salient Points	 305

Part III: �TACTICAL PATTERNS: CREATING EFFECTIVE
DOMAIN MODELS

Chapter 14: �INTRODUCING THE DOMAIN MODELING
BUILDING BLOCKS	 309

Tactical Patterns	 310
Patterns to Model Your Domain	 310

Entities	 310
Value Objects	 314
Domain Services	 317
Modules	 318

Lifecycle Patterns	 318
Aggregates	 318
Factories	 322
Repositories	 323

Emerging Patterns	 324
Domain Events	 324
Event Sourcing	 326

The Salient Points	 327

xxvi

CONTENTS

Chapter 15: VALUE OBJECTS	 329

When to Use a Value Object	 330
Representing a Descriptive, Identity‐Less Concept	 330
Enhancing Explicitness	 331

Defining Characteristics	 333
Identity‐Less	 333
Attribute‐Based Equality	 333
Behavior‐Rich	 337
Cohesive	 337
Immutable	 337
Combinable	 339
Self‐Validating	 341
Testable	 344

Common Modeling Patterns	 345
Static Factory Methods	 345
Micro Types (Also Known as Tiny Types)	 347
Collection Aversion	 349

Persistence	 351
NoSQL	 352
SQL	 353

Flat Denormalization	 353
Normalizing into Separate Tables	 357

The Salient Points	 359

Chapter 16: ENTITIES	 361

Understanding Entities	 362
Domain Concepts with Identity and Continuity	 362
Context‐Dependent	 363

Implementing Entities	 363
Assigning Identifiers	 363

Natural Keys	 363
Arbitrarily Generated IDs	 364
Datastore‐Generated IDs	 368

Pushing Behavior into Value Objects and Domain Services	 369
Validating and Enforcing Invariants	 371
Focusing on Behavior, Not Data	 374
Avoiding the “Model the Real‐World” Fallacy	 377
Designing for Distribution	 378

Common Entity Modeling Principles and Patterns	 380

xxvii

CONTENTS

Implementing Validation and Invariants with Specifications	 380
Avoid the State Pattern; Use Explicit Modeling	 382
Avoiding Getters and Setters with the Memento Pattern	 385
Favor Hidden‐Side‐Effect‐Free Functions	 386

The Salient Points	 388

Chapter 17: DOMAIN SERVICES 	 389

Understanding Domain Services	 390
When to Use a Domain Service	 390

Encapsulating Business Policies and Processes	 390
Representing Contracts	 394

Anatomy of a Domain Service	 395
Avoiding Anemic Domain Models	 395
Contrasting with Application Services	 396

Utilizing Domain Services	 397
In the Service Layer	 397
In the Domain	 398

Manually Wiring Up	 399
Using Dependency Injection	 400
Using a Service Locator	 400
Applying Double Dispatch	 401
Decoupling with Domain Events	 402
Should Entities Even Know About Domain Services?	 403

The Salient Points	 403

Chapter 18: DOMAIN EVENTS	 405

Essence of the Domain Events Pattern	 406
Important Domain Occurrences That Have Already Happened	 406
Reacting to Events	 407
Optional Asynchrony	 407
Internal vs External Events	 408

Event Handling Actions	 409
Invoke Domain Logic	 409
Invoke Application Logic	 410

Domain Events’ Implementation Patterns	 410
Use the .Net Framework’s Events Model	 410
Use an In‐Memory Bus	 412
Udi Dahan’s Static DomainEvents Class	 415

Handling Threading Issues	 417

xxviii

CONTENTS

Avoid a Static Class by Using Method Injection	 418
Return Domain Events	 419
Use an IoC Container as an Event Dispatcher	 421

Testing Domain Events	 422
Unit Testing	 422
Application Service Layer Testing	 424

The Salient Points	 425

Chapter 19: AGGREGATES	 427

Managing Complex Object Graphs	 428
Favoring a Single Traversal Direction	 428
Qualifying Associations	 430
Preferring IDs Over Object References	 431

Aggregates	 434
Design Around Domain Invariants	 435
Higher Level of Domain Abstraction	 435
Consistency Boundaries	 435

Transactional Consistency Internally	 436
Eventual Consistency Externally	 439
Special Cases	 440

Favor Smaller Aggregates	 441
Large Aggregates Can Degrade Performance	 441
Large Aggregates Are More Susceptible to Concurrency Conflicts	 442
Large Aggregates May Not Scale Well	 442

Defining Aggregate Boundaries	 442
eBidder: The Online Auction Case Study	 443
Aligning with Invariants	 444
Aligning with Transactions and Consistency	 446
Ignoring User Interface Influences	 448
Avoiding Dumb Collections and Containers	 448
Don’t Focus on HAS‐A Relationships	 449
Refactoring to Aggregates	 449
Satisfying Business Use Cases—Not Real Life	 449

Implementing Aggregates	 450
Selecting an Aggregate Root	 450

Exposing Behavioral Interfaces	 452
Protecting Internal State	 453
Allowing Only Roots to Have Global Identity	 454

Referencing Other Aggregates	 454

