

ffi rst.indd i 19/08/2015 3:20 PM

PATTERNS, PRINCIPLES, AND PRACTICES
OF DOMAIN-DRIVEN DESIGN

INTRODUCTION . XXXV

 ▸ PART I THE PRINCIPLES AND PRACTICES OF
DOMAIN‐DRIVEN DESIGN

CHAPTER 1 What Is Domain‐Driven Design? . 3

CHAPTER 2 Distilling the Problem Domain . 15

CHAPTER 3 Focusing on the Core Domain . 31

CHAPTER 4 Model‐Driven Design . 41

CHAPTER 5 Domain Model Implementation Patterns . 59

CHAPTER 6 Maintaining the Integrity of Domain Models with

Bounded Contexts . 73

CHAPTER 7 Context Mapping . 91

CHAPTER 8 Application Architecture . 105

CHAPTER 9 Common Problems for Teams Starting Out with

Domain‐Driven Design . 121

CHAPTER 10 Applying the Principles, Practices, and Patterns of DDD 131

 ▸ PART II STRATEGIC PATTERNS: COMMUNICATING
BETWEEN BOUNDED CONTEXTS

CHAPTER 11 Introduction to Bounded Context Integration 151

CHAPTER 12 Integrating via Messaging . 181

CHAPTER 13 Integrating via HTTP with RPC and REST . 245

 ▸ PART III TACTICAL PATTERNS: CREATING EFFECTIVE
DOMAIN MODELS

CHAPTER 14 Introducing the Domain Modeling Building Blocks 309

CHAPTER 15 Value Objects . 329

CHAPTER 16 Entities . 361

Continues

ffirst.indd iffirst.indd i 8/26/2015 8:33:49 PM8/26/2015 8:33:49 PM

fffi rst.indd ii 19/08/2015 3:20 PM

CHAPTER 17 Domain Services . 389

CHAPTER 18 Domain Events . 405

CHAPTER 19 Aggregates . 427

CHAPTER 20 Factories . 469

CHAPTER 21 Repositories . 479

CHAPTER 22 Event Sourcing . 595

 ▸ PART IV DESIGN PATTERNS FOR EFFECTIVE APPLICATIONS

CHAPTER 23 Architecting Application User Interfaces . 645

CHAPTER 24 CQRS: An Architecture of a Bounded Context 669

CHAPTER 25 Commands: Application Service Patterns for

Processing Business Use Cases . 687

CHAPTER 26 Queries: Domain Reporting . 713

INDEX . 737

ffirst.indd iiffirst.indd ii 8/26/2015 8:33:49 PM8/26/2015 8:33:49 PM

ffi rst.indd iii 19/08/2015 3:20 PMM

Patterns, Principles, and
Practices of Domain-Driven Design

ffirst.indd iiiffirst.indd iii 8/26/2015 8:33:49 PM8/26/2015 8:33:49 PM

ffirst.indd ivffirst.indd iv 8/26/2015 8:33:49 PM8/26/2015 8:33:49 PM

ffi rst.indd v 19/08/2015 3:20 PM

Patterns, Principles, and
Practices of Domain-Driven Design

Scott Millett

Nick Tune

ffirst.indd vffirst.indd v 8/26/2015 8:33:49 PM8/26/2015 8:33:49 PM

ffi rst.indd vi 19/08/2015 3:20 PM

Patterns, Principles, and Practices of Domain-Driven Design

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-71470-6
ISBN: 978-1-118-71465-2 (ebk)
ISBN: 978-1-118-71469-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014951018

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

ffirst.indd viffirst.indd vi 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

ffi rst.indd vii 19/08/2015 3:20 PM

For my darling buds, Primrose and Albert.

—Scott Millett

ffirst.indd viiffirst.indd vii 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

fffi rst.indd viii 19/08/2015 3:20 PM
ffirst.indd viiiffirst.indd viii 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

ffi rst.indd ix 19/08/2015 3:20 PMM

ABOUT THE AUTHOR

SCOTT MILLETT is the Director of IT for Iglu.com and has been working with .NET since version
1.0. He was awarded the ASP.NET MVP in 2010 and 2011. He is also the author of Professional
ASP.NET Design Patterns and Professional Enterprise .NET. If you would like to contact Scott
about DDD or working at Iglu, feel free to write to him at scott@elbandit.co.uk, by giving him a
tweet @ScottMillett, or becoming friends via https://www.linkedin.com/in/scottmillett.

ABOUT THE CONTRIBUTING AUTHOR

NICK TUNE is passionate about solving business problems, building ambitious products, and
constantly learning. Being a software developer really is his dream job. His career highlight so far
was working at 7digital, where he was part of self-organizing, business-focused teams that deployed
to production up to 25 times per day. His future ambitions are to work on exciting new products,
with passionate people, and continually become a more complete problem solver.

You can learn more about Nick and his views on software development, software delivery, and his
favorite technologies on his website (www.ntcoding.co.uk) and Twitter (@ntcoding).

ABOUT THE TECHNICAL EDITOR

ANTONY DENYER works as a developer, consultant, and coach and has been developing software
professionally since 2004. He has worked on various projects that have effectively used DDD
concepts and practices. More recently, he has been advocating the use of CQRS and REST in
the majority of his projects. You can reach him via e-mail at antonydenyer.co.uk, and he tweets
from @tonydenyer.

ffirst.indd ixffirst.indd ix 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

mailto:scott@elbandit.co.uk
http://www.ntcoding.co.uk
mailto:scott@elbandit.co.uk
https://www.linkedin.com/in/scottmillett
http://www.ntcoding.co.uk

fffi rst.indd x 19/08/2015 3:20 PM
ffirst.indd xffirst.indd x 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

ffi rst.indd xi 19/08/2015 3:20 PMM

PROJECT EDITOR
Rosemarie Graham

TECHNICAL EDITOR
Antony Denyer

PRODUCTION EDITOR
Christine O’Connor

COPY EDITOR
Karen Gill

MANAGER OF CONTENT DEVELOPMENT
AND ASSEMBLY
Mary Beth Wakefi eld

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY &
STRATEGY DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Jenn Bennett, Word One

INDEXER
Johnna VanHoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE
@iStockphoto.com/andynwt

CREDITS

ffirst.indd xiffirst.indd xi 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

mailto:@iStockphoto.com/andynwt

fffi rst.indd xii 19/08/2015 3:20 PM
ffirst.indd xiiffirst.indd xii 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

ffi rst.indd xiii 19/08/2015 3:20 PMM

ACKNOWLEDGMENTS

FIRSTLY I WOULD LIKE to give a massive thanks to Nick Tune for agreeing to help me out with this
project and contributing greatly to many of the chapters. I would also like to thank Rosemarie
Graham, Jim Minatel, and all those at Wrox who have helped to create this book. Thanks as well
to Antony Denyer who did a sterling job as the technical editor. Lastly, many thanks to Isabel Mack
for the grammar pointers and early feedback of the Leanpub draft.

ffirst.indd xiiiffirst.indd xiii 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

ffi rst.indd xiv 19/08/2015 3:20 PM
ffirst.indd xivffirst.indd xiv 8/26/2015 8:33:50 PM8/26/2015 8:33:50 PM

CONTENTS

INTRODUCTION xxxv

ParT I: THE PrINCIPLES aND PraCTICES OF
DOMaIN‐DrIVEN DESIGN

CHaPTEr 1: WHaT IS DOMaIN‐DrIVEN DESIGN? 3

The Challenges of Creating Software for Complex
Problem Domains 4

Code Created Without a Common Language 4
A Lack of Organization 5
The Ball of Mud Pattern Stifles Development 5
A Lack of Focus on the Problem Domain 6

How the Patterns of Domain‐Driven Design
Manage Complexity 6

The Strategic Patterns of DDD 6
Distilling the Problem Domain to Reveal
What Is Important 7
Creating a Model to Solve Domain Problems 7
Using a Shared Language to Enable Modeling
Collaboration 7
Isolate Models from Ambiguity and Corruption 8
Understanding the Relationships between Contexts 9

The Tactical Patterns of DDD 9
The Problem Space and the Solution Space 9

The Practices and Principles of Domain‐Driven Design 11
Focusing on the Core Domain 11
Learning through Collaboration 11
Creating Models through Exploration and Experimentation 11
Communication 11
Understanding the Applicability of a Model 12
Constantly Evolving the Model 12

Popular Misconceptions of Domain‐Driven Design 12
Tactical Patterns Are Key to DDD 12
DDD Is a Framework 13
DDD Is a Silver Bullet 13

The Salient Points 13

xvi

CONTENTS

CHaPTEr 2: DISTILLING THE PrOBLEM DOMaIN 15

Knowledge Crunching and Collaboration 15
Reaching a Shared Understanding through a
Shared Language 16
The Importance of Domain Knowledge 17
The Role of Business Analysts 17
An Ongoing Process 17

Gaining Domain Insight with Domain Experts 18
Domain Experts vs Stakeholders 18
Deeper Understanding for the Business 19
Engaging with Your Domain Experts 19

Patterns for Effective Knowledge Crunching 19
Focus on the Most Interesting Conversations 19
Start from the Use Cases 20
Ask Powerful Questions 20
Sketching 20
Class Responsibility Collaboration Cards 21
Defer the Naming of Concepts in Your Model 21
Behavior‐Driven Development 22
Rapid Prototyping 23
Look at Paper‐Based Systems 24

Look For Existing Models 24
Understanding Intent 24
Event Storming 25
Impact Mapping 25
Understanding the Business Model 27
Deliberate Discovery 28
Model Exploration Whirlpool 29

The Salient Points 29

CHaPTEr 3: FOCUSING ON THE COrE DOMaIN 31

Why Decompose a Problem Domain? 31
How to Capture the Essence of the Problem 32

Look Beyond Requirements 32
Capture the Domain Vision for a Shared Understanding
of What Is Core 32

How to Focus on the Core Problem 33
Distilling a Problem Domain 34
Core Domains 35

xvii

CONTENTS

Treat Your Core Domain as a Product Rather than a Project 36
Generic Domains 37
Supporting Domains 37

How Subdomains Shape a Solution 37
Not All Parts of a System will be Well Designed 37

Focus on Clean Boundaries over Perfect Models 38
The Core Domain Doesn’t Always Have to Be Perfect
the First Time 39
Build Subdomains for Replacement Rather than Reuse 39

What if You Have no Core Domain? 39
The Salient Points 40

CHaPTEr 4: MODEL‐DrIVEN DESIGN 41

What Is a Domain Model? 42
The Domain versus the Domain Model 42
The Analysis Model 43
The Code Model 43
The Code Model Is the Primary Expression
of the Domain Model 44

Model‐Driven Design 44
The Challenges with Upfront Design 44
Team Modeling 45

Using a Ubiquitous Language to Bind the Analysis
to the Code Model 47

A Language Will Outlive Your Software 47
The Language of the Business 48
Translation between the Developers and the Business 48

Collaborating on a Ubiquitous Language 48
Carving Out a Language by Working with Concrete Examples 49
Teach Your Domain Experts to Focus on the Problem
and Not Jump to a Solution 50
Best Practices for Shaping the Language 51

How to Create Effective Domain Models 52
Don’t Let the Truth Get in the Way of a Good Model 52
Model Only What Is Relevant 54
Domain Models Are Temporarily Useful 54
Be Explicit with Terminology 54
Limit Your Abstractions 54

Focus Your Code at the Right Level of Abstraction 55
Abstract Behavior Not Implementations 55

xviii

CONTENTS

Implement the Model in Code Early and Often 56
Don’t Stop at the First Good Idea 56

When to Apply Model‐Driven Design 56
If It’s Not Worth the Effort Don’t Try and Model It 56
Focus on the Core Domain 57

The Salient Points 57

CHaPTEr 5: DOMaIN MODEL IMPLEMENTaTION PaTTErNS 59

The Domain Layer 60
Domain Model Implementation Patterns 60

Domain Model 62
Transaction Script 65
Table Module 67
Active Record 67
Anemic Domain Model 67
Anemic Domain Model and Functional Programming 68

The Salient Points 71

CHaPTEr 6: MaINTaINING THE INTEGrITY OF DOMaIN
MODELS WITH BOUNDED CONTEXTS 73

The Challenges of a Single Model 74
A Model Can Grow in Complexity 74
Multiple Teams Working on a Single Model 74
Ambiguity in the Language of the Model 75
The Applicability of a Domain Concept 76
Integration with Legacy Code or Third Party Code 78
Your Domain Model Is not Your Enterprise Model 79

Use Bounded Contexts to Divide and Conquer a
Large Model 79

Defining a Model’s Boundary 82
Define Boundaries around Language 82
Align to Business Capabilities 83
Create Contexts around Teams 83
Try to Retain Some Communication between Teams 84
Context Game 85

The Difference between a Subdomain and a
Bounded Context 85

Implementing Bounded Contexts 85
The Salient Points 89

xix

CONTENTS

CHaPTEr 7: CONTEXT MaPPING 91

A Reality Map 92
The Technical Reality 92
The Organizational Reality 93
Mapping a Relevant Reality 94
X Marks the Spot of the Core Domain 94

Recognising the Relationships between
Bounded Contexts 95

Anticorruption Layer 95
Shared Kernel 96
Open Host Service 97
Separate Ways 97
Partnership 98
An Upstream/Downstream Relationship 98

Customer‐Supplier 99
Conformist 100

Communicating the Context Map 100
The Strategic Importance of Context Maps 101

Retaining Integrity 101
The Basis for a Plan of Attack 101
Understanding Ownership and Responsibility 101
Revealing Areas of Confusion in Business Work Flow 102
Identifying Nontechnical Obstacles 102
Encourages Good Communication 102
Helps On‐Board New Starters 102

The Salient Points 103

CHaPTEr 8: aPPLICaTION arCHITECTUrE 105

Application Architecture 105
Separating the Concerns of Your Application 106
Abstraction from the Complexities of the Domain 106
A Layered Architecture 106
Dependency Inversion 107
The Domain Layer 107
The Application Service Layer 108
The Infrastructural Layers 108
Communication Across Layers 108
Testing in Isolation 109
Don’t Share Data Schema between Bounded Contexts 109

xx

CONTENTS

Application Architectures versus Architectures for
Bounded Contexts 111

Application Services 112
Application Logic versus Domain Logic 114
Defining and Exposing Capabilities 114
Business Use Case Coordination 115
Application Services Represent Use Cases, Not Create,
Read, Update, and Delete 115
Domain Layer As an Implementation Detail 115
Domain Reporting 116
Read Models versus Transactional Models 116

Application Clients 117
The Salient Points 120

CHaPTEr 9: COMMON PrOBLEMS FOr TEaMS STarTING
OUT WITH DOMaIN‐DrIVEN DESIGN 121

Overemphasizing the Importance of Tactical Patterns 122
Using the Same Architecture for All Bounded Contexts 122
Striving for Tactical Pattern Perfection 122
Mistaking the Building Blocks for the Value of DDD 123
Focusing on Code Rather Than the Principles of DDD 123

Missing the Real Value of DDD: Collaboration,
Communication, and Context 124

Producing a Big Ball of Mud Due to Underestimating
the Importance of Context 124
Causing Ambiguity and Misinterpretations by
Failing to Create a UL 125
Designing Technical‐Focused Solutions Due
to a Lack of Collaboration 125

Spending Too Much Time on What’s Not Important 126
Making Simple Problems Complex 126

Applying DDD Principles to a Trivial Domain with
Little Business Expectation 126
Disregarding CRUD as an Antipattern 127
Using the Domain Model Pattern for Every Bounded Context 127
Ask Yourself: Is It Worth This Extra Complexity? 127

Underestimating the Cost of Applying DDD 127
Trying to Succeed Without a Motivated and Focused Team 128
Attempting Collaboration When a Domain Expert Is Not
Behind the Project 128
Learning in a Noniterative Development Methodology 128

xxi

CONTENTS

Applying DDD to Every Problem 129
Sacrificing Pragmatism for Needless Purity 129
Wasted Effort by Seeking Validation 129
Always Striving for Beautiful Code 130
DDD Is About Providing Value 130

The Salient Points 130

CHaPTEr 10: aPPLYING THE PrINCIPLES, PraCTICES,
aND PaTTErNS OF DDD 131

Selling DDD 132
Educating Your Team 132
Speaking to Your Business 132

Applying the Principles of DDD 133
Understand the Vision 133
Capture the Required Behaviors 134

Distilling the Problem Space 134
Focus on What Is Important 134

Understand the Reality of the Landscape 135
Modeling a Solution 135

All Problems Are Not Created Equal 136
Engaging with an Expert 136
Select a Behavior and Model Around a Concrete Scenario 137
Collaborate with the Domain Expert on the Most
Interesting Parts 137
Evolve UL to Remove Ambiguity 138
Throw Away Your First Model, and Your Second 138
Implement the Model in Code 139
Creating a Domain Model 139
Keep the Solution Simple and Your Code Boring 139
Carve Out an Area of Safety 140
Integrate the Model Early and Often 140
Nontechnical Refactoring 140
Decompose Your Solution Space 140
Rinse and Repeat 141

Exploration and Experimentation 142
Challenge Your Assumptions 142
Modeling Is a Continuous Activity 142
There Are No Wrong Models 142
Supple Code Aids Discovery 143

Making the Implicit Explicit 143

xxii

CONTENTS

Tackling Ambiguity 144
Give Things a Name 145

A Problem Solver First, A Technologist Second 146
Don’t Solve All the Problems 146

How Do I Know That I Am Doing It Right? 146
Good Is Good Enough 147
Practice, Practice, Practice 147

The Salient Points 147

ParT II: STraTEGIC PaTTErNS: COMMUNICaTING BETWEEN
BOUNDED CONTEXTS

CHaPTEr 11: INTrODUCTION TO BOUNDED
CONTEXT INTEGraTION 151

How to Integrate Bounded Contexts 152
Bounded Contexts Are Autonomous 153
The Challenges of Integrating Bounded Contexts
at the Code Level 153

Multiple Bounded Contexts Exist within a Solution 153
Namespaces or Projects to Keep Bounded Contexts Separate 154
Integrating via the Database 155
Multiple Teams Working in a Single Codebase 156
Models Blur 156

Use Physical Boundaries to Enforce Clean Models 157
Integrating with Legacy Systems 158

Bubble Context 158
Autonomous Bubble Context 158
Exposing Legacy Systems as Services 160

Integrating Distributed Bounded Contexts 161
Integration Strategies for Distributed Bounded Contexts 161
Database Integration 162
Flat File Integration 163
RPC 164
Messaging 165
REST 165

The Challenges of DDD with Distributed Systems 165
The Problem with RPC 166

RPC Is Harder to Make Resilient 167
RPC Costs More to Scale 167
RPC Involves Tight Coupling 168

xxiii

CONTENTS

Distributed Transactions Hurt Scalability and Reliability 169
Bounded Contexts Don’t Have to Be Consistent with Each Other 169
Eventual Consistency 169

Event‐Driven Reactive DDD 170
Demonstrating the Resilience and Scalability of Reactive Solutions 171
Challenges and Trade‐Offs of Asynchronous Messaging 173
Is RPC Still Relevant? 173

SOA and Reactive DDD 174
View Your Bounded Contexts as SOA Services 175

Decompose Bounded Contexts into Business Components 175
Decompose Business Components into Components 176

Going Even Further with Micro Service Architecture 178
The Salient Points 180

CHaPTEr 12: INTEGraTING VIa MESSaGING 181

Messaging Fundamentals 182
Message Bus 182
Reliable Messaging 184
Store‐and‐Forward 184
Commands and Events 185
Eventual Consistency 186

Building an E‐Commerce Application with NServiceBus 186
Designing the System 187

Domain‐Driven Design 187
Containers Diagrams 188
Evolutionary Architecture 191

Sending Commands from a Web Application 192
Creating a Web Application to Send Messages with NServiceBus 192
Sending Commands 197

Handling Commands and Publishing Events 200
Creating an NServiceBus Server to Handle Commands 200
Configuring the Solution for Testing and Debugging 201
Publishing Events 204
Subscribing to Events 206

Making External HTTP Calls Reliable with Messaging Gateways 208
Messaging Gateways Improve Fault Tolerance 208
Implementing a Messaging Gateway 209
Controlling Message Retries 212

Eventual Consistency in Practice 215
Dealing with Inconsistency 215

xxiv

CONTENTS

Rolling Forward into New States 215
Bounded Contexts Store All the Data They Need Locally 216

Storage Is Cheap—Keep a Local Copy 217
Common Data Duplication Concerns 223

Pulling It All Together in the UI 224
Business Components Need Their Own APIs 225
Be Wary of Server‐Side Orchestration 226
UI Composition with AJAX Data 226
UI Composition with AJAX HTML 226
Sharing Your APIs with the Outside World 227

Maintaining a Messaging Application 227
Message Versioning 228

Backward‐Compatible Message Versioning 228
Handling Versioning with NServiceBus’s Polymorphic Handlers 229

Monitoring and Scaling 233
Monitoring Errors 233
Monitoring SLAs 234
Scaling Out 235

Integrating a Bounded Context with Mass Transit 235
Messaging Bridge 236
Mass Transit 236

Installing and Configuring Mass Transit 236
Declaring Messages for Use by Mass Transit 238
Creating a Message Handler 239
Subscribing to Events 239
Linking the Systems with a Messaging Bridge 240
Publishing Events 242
Testing It Out 243
Where to Learn More about Mass Transit 243

The Salient Points 243

CHaPTEr 13: INTEGraTING VIa HTTP WITH rPC aND rEST 245

Why Prefer HTTP? 247
No Platform Coupling 247
Everyone Understands HTTP 247
Lots of Mature Tooling and Libraries 247
Dogfooding Your APIs 247

RPC 248
Implementing RPC over HTTP 248

SOAP 249

xxv

CONTENTS

Plain XML or JSON: The Modern Approach to RPC 259
Choosing a Flavor of RPC 263

REST 264
Demystifying REST 264

Resources 264
Hypermedia 265
Statelessness 265
REST Fully Embraces HTTP 266
What REST Is Not 267

REST for Bounded Context Integration 268
Designing for REST 268
Building Event‐Driven REST Systems with ASP.NET Web API 273

Maintaining REST Applications 303
Versioning 303
Monitoring and Metrics 303

Drawbacks with REST for Bounded Context Integration 304
Less Fault Tolerance Out of the Box 304
Eventual Consistency 304

The Salient Points 305

ParT III: TaCTICaL PaTTErNS: CrEaTING EFFECTIVE
DOMaIN MODELS

CHaPTEr 14: INTrODUCING THE DOMaIN MODELING
BUILDING BLOCKS 309

Tactical Patterns 310
Patterns to Model Your Domain 310

Entities 310
Value Objects 314
Domain Services 317
Modules 318

Lifecycle Patterns 318
Aggregates 318
Factories 322
Repositories 323

Emerging Patterns 324
Domain Events 324
Event Sourcing 326

The Salient Points 327

xxvi

CONTENTS

CHaPTEr 15: VaLUE OBJECTS 329

When to Use a Value Object 330
Representing a Descriptive, Identity‐Less Concept 330
Enhancing Explicitness 331

Defining Characteristics 333
Identity‐Less 333
Attribute‐Based Equality 333
Behavior‐Rich 337
Cohesive 337
Immutable 337
Combinable 339
Self‐Validating 341
Testable 344

Common Modeling Patterns 345
Static Factory Methods 345
Micro Types (Also Known as Tiny Types) 347
Collection Aversion 349

Persistence 351
NoSQL 352
SQL 353

Flat Denormalization 353
Normalizing into Separate Tables 357

The Salient Points 359

CHaPTEr 16: ENTITIES 361

Understanding Entities 362
Domain Concepts with Identity and Continuity 362
Context‐Dependent 363

Implementing Entities 363
Assigning Identifiers 363

Natural Keys 363
Arbitrarily Generated IDs 364
Datastore‐Generated IDs 368

Pushing Behavior into Value Objects and Domain Services 369
Validating and Enforcing Invariants 371
Focusing on Behavior, Not Data 374
Avoiding the “Model the Real‐World” Fallacy 377
Designing for Distribution 378

Common Entity Modeling Principles and Patterns 380

xxvii

CONTENTS

Implementing Validation and Invariants with Specifications 380
Avoid the State Pattern; Use Explicit Modeling 382
Avoiding Getters and Setters with the Memento Pattern 385
Favor Hidden‐Side‐Effect‐Free Functions 386

The Salient Points 388

CHaPTEr 17: DOMaIN SErVICES 389

Understanding Domain Services 390
When to Use a Domain Service 390

Encapsulating Business Policies and Processes 390
Representing Contracts 394

Anatomy of a Domain Service 395
Avoiding Anemic Domain Models 395
Contrasting with Application Services 396

Utilizing Domain Services 397
In the Service Layer 397
In the Domain 398

Manually Wiring Up 399
Using Dependency Injection 400
Using a Service Locator 400
Applying Double Dispatch 401
Decoupling with Domain Events 402
Should Entities Even Know About Domain Services? 403

The Salient Points 403

CHaPTEr 18: DOMaIN EVENTS 405

Essence of the Domain Events Pattern 406
Important Domain Occurrences That Have Already Happened 406
Reacting to Events 407
Optional Asynchrony 407
Internal vs External Events 408

Event Handling Actions 409
Invoke Domain Logic 409
Invoke Application Logic 410

Domain Events’ Implementation Patterns 410
Use the .Net Framework’s Events Model 410
Use an In‐Memory Bus 412
Udi Dahan’s Static DomainEvents Class 415

Handling Threading Issues 417

xxviii

CONTENTS

Avoid a Static Class by Using Method Injection 418
Return Domain Events 419
Use an IoC Container as an Event Dispatcher 421

Testing Domain Events 422
Unit Testing 422
Application Service Layer Testing 424

The Salient Points 425

CHaPTEr 19: aGGrEGaTES 427

Managing Complex Object Graphs 428
Favoring a Single Traversal Direction 428
Qualifying Associations 430
Preferring IDs Over Object References 431

Aggregates 434
Design Around Domain Invariants 435
Higher Level of Domain Abstraction 435
Consistency Boundaries 435

Transactional Consistency Internally 436
Eventual Consistency Externally 439
Special Cases 440

Favor Smaller Aggregates 441
Large Aggregates Can Degrade Performance 441
Large Aggregates Are More Susceptible to Concurrency Conflicts 442
Large Aggregates May Not Scale Well 442

Defining Aggregate Boundaries 442
eBidder: The Online Auction Case Study 443
Aligning with Invariants 444
Aligning with Transactions and Consistency 446
Ignoring User Interface Influences 448
Avoiding Dumb Collections and Containers 448
Don’t Focus on HAS‐A Relationships 449
Refactoring to Aggregates 449
Satisfying Business Use Cases—Not Real Life 449

Implementing Aggregates 450
Selecting an Aggregate Root 450

Exposing Behavioral Interfaces 452
Protecting Internal State 453
Allowing Only Roots to Have Global Identity 454

Referencing Other Aggregates 454

