

PROFESSIONAL ANGULARJS

INTRODUCTION . xxv

CHAPTER 1 Building a Simple AngularJS Application . 1

CHAPTER 2 Intelligent Workflow and Build Tools . 57

CHAPTER 3 Architecture . 95

CHAPTER 4 Data Binding . 131

CHAPTER 5 Directives . 157

CHAPTER 6 Templates, Location, and Routing . 185

CHAPTER 7 Services, Factories, and Providers . 217

CHAPTER 8 Server Communication . 243

CHAPTER 9 Testing and Debugging AngularJS Applications 277

CHAPTER 10 Moving On . 315

APPENDIX Resources . 345

INDEX . 347

PROFESSIONAL

AngularJS

PROFESSIONAL

AngularJS

Valeri Karpov
Diego Netto

Professional AngularJS

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-83207-3

ISBN: 978-1-118-83209-7 (ebk)

ISBN: 978-1-118-83208-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014951014

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

For my father, the elder Valeri Karpov,

who taught me to never settle for “good enough.”

—Valeri Karpov

For my mother, Liliana, who showed me how to find

happiness by living each day like it might be your last.

—Diego Netto

ABOUT THE AUTHORS

VALERI KARPOV is a NodeJS Engineer at MongoDB, where he focuses on maintaining the popular
Mongoose ODM and numerous other MongoDB-related NodeJS modules. In addition, he’s a
Hacker in Residence at BookaLokal, a blogger for StrongLoop, and the person who gave the MEAN
stack its name. He has been running production AngularJS apps since AngularJS v0.9.4 in 2010.
Most recently, he used AngularJS to build out BookaLokal’s mobile website and a web client for
MongoDB’s internal continuous integration framework.

DIEGO NETTO is a software consultant and open source evangelist. He wears the many hats of a
full stack engineer and entrepreneur. Owner of a development shop operating out of Los Angeles
and Dallas, Diego creates web and mobile applications for both startups and enterprise companies.
Maintainer of the IonicFramework Yeoman generator, he has most recently used AngularJS and
the IonicFramework to build the Prop mobile app for www.aboatapp.com, and is using Famo.us/
Angular to build the mobile app for www.modelrevolt.com.

http://www.aboatapp.com
http://www.modelrevolt.com

ABOUT THE TECHNICAL EDITOR

STÉPHANE BÉGAUDEAU graduated from the Faculty of Sciences and Technology of Nantes and
is currently working as a web technology specialist and Eclipse modeling consultant at Obeo
in France. He has contributed to several open source projects in the Eclipse Foundation, and he
is the leader of Acceleo. He also worked on Dart Designer, an open source tooling for the Dart
programming language.

PROJECT EDITOR
Kelly Talbot

TECHNICAL EDITOR
Stéphane Bégaudeau

PRODUCTION EDITOR
Christine O’Connor

COPY EDITOR
Karen Gill

MANAGER OF CONTENT DEVELOPMENT
& ASSEMBLY
Mary Beth Wakefield

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY &
STRATEGY DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Carrasco

INDEXER
Johnna VanHoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE
iStock .com/Manuel Faba Ortega

CREDITS

ACKNOWLEDGMENTS

SOCRATES WROTE THAT “Education is the kindling of a flame, not the filling of a vessel.” In that
vein, I’m thankful that I have had teachers and mentors who made programming my lifelong passion
rather than just a career. In particular, I’d like to thank Professors Kernighan and Tarjan from
Princeton University; and Dr. Nevard, Dr. Sankaran, Mr. Scarpone, and Mr. Nodarse from the
Bergen County Academies. In addition, I’d like to thank Misko Hevery, my mentor when I interned
at Google and original author of AngularJS, who taught me more about software engineering in
12 weeks than I had learned in my life leading up to that summer.

—Valeri Karpov

TO QUOTE THE SUCCESSFUL ENTREPRENEUR FELIX DENNIS, “Anyone not busy learning is
busy dying.” This is a prudent reminder, especially in the constantly evolving field of software
engineering, that in order to remain relevant and sustain success we must commit to a lifelong
pursuit of knowledge. I would like to thank Professors Tatar and Ribbens from Virginia Tech for
enlightening me to this realization. I also want to thank Addy Osmani for helping me discover the
importance of intelligent tooling and for inspiring me to contribute to the open source community.
Special thanks to my friend and co-author Valeri Karpov for getting me involved with AngularJS
during such an early stage.

—Diego Netto

CONTENTS

INTRODUCTION xxv

ChapTEr 1: BUILDING a SIMpLE aNGULarJS appLICaTION 1

What You Are Building 1
What You Will Learn 3
Step 1: Scaffolding Your Project with Yeoman 4

Installing Yeoman 4
Scaffolding Your Project 5
Exploring the Application 6
Cleaning Up 8

Step 2: Creating Watchlists 9
The Application Module 9

Installing Module Dependencies 10
Bootstrapping the Application 11

The Watchlist Service 11
The Watchlist‐Panel Directive 13

Basic Form Validation 16
Using the Directive 18

Step 3: Configuring Client‐Side Routing 19
The Angular ngRoute Module 19
Adding New Routes 20
Using the Routes 21
Template Views 22

Step 4: Creating a Navigation Bar 23
Updating the HTML 23
Creating MainCtrl 25

Step 5: Adding Stocks 26
Creating the CompanyService 27
Creating the AddStock Modal 27
Updating the WatchlistService 29
Implementing WatchlistCtrl 30
Modifying the Watchlist View 31

Step 6: Integrating with Yahoo Finance 32
Creating the QuoteService 33
Invoking Services from the Console 35

xviii

CONTENTS

Step 7: Creating the Stock Table 36
Creating the StkStockTable Directive 36
Creating the StkStockRow Directive 37
Creating the Stock Table Template 39
Updating the Watchlist View 40

Step 8: Inline Form Editing 40
Creating the Contenteditable Directive 41
Updating the StkStockTable Template 43

Step 9: Formatting Currency 44
Creating the StkSignColor Directive 44
Updating the StockTable Template 44

Step 10: Animating Price Changes 46
Creating the StkSignFade Directive 46
Updating the StockTable Template 48

Step 11: Creating the Dashboard 49
Updating the Dashboard Controller 49
Updating the Dashboard View 52

Production Deployment 53
Conclusion 55

ChapTEr 2: INTELLIGENT WOrKFLOW aND BUILD TOOLS 57

What Can Tooling Do for Me? 57
What Is Bower? 58

Getting Started with Bower 58
Searching for Packages 58
Installing Packages 58
Versioning Dependencies 59

What Is Grunt? 60
Getting Started with Grunt 60
Installing Plug-Ins 62
Directory Structure 62
The Gruntfile 63
Configuring Tasks and Targets 64

The Connect Task 64
The Less Task 65
The JSHint Task 66
The Watch Task 68
The Default Task 69

Creating a Custom Task 69

xix

CONTENTS

What Is Gulp? 73
Getting Started with Gulp 73
Installing Plug-Ins 73
The Gulpfile 73
Creating Tasks 74

The Connect Task 74
The Less Task 75
The JSHint Task 77
The Watch Task 77
The Default Task 78

Arguments and Asynchronous Behavior 79
Gulp, Grunt, and Make 82

Automation Using Make 82
When to Use Make 84
When to Use Grunt 84
When to Use Gulp 84

What Is Yeoman? 84
Getting Started with Yeoman 85
Scaffolding a New Project 85
Exploring Plug-Ins and Tasks 85

load-grunt-tasks 86
time-grunt 86
grunt-newer 86
grunt-contrib-watch 86
grunt-contrib-connect 87
grunt-contrib-jshint 87
grunt-contrib-clean 87
grunt-autoprefixer 87
grunt-wiredep 88
grunt-contrib-compass 88
grunt-filerev 88
grunt-usemin 88
grunt-contrib-imagemin 89
grunt-svgmin 89
grunt-contrib-htmlmin 89
grunt-ng-annotate 90
grunt-google-cdn 90
grunt-contrib-copy 90
grunt-concurrent 90
grunt-karma 91

xx

CONTENTS

Alias Tasks and Workflow 91
serve 91
test 91
build 92
default 92

Modifications 92
Subgenerators 92
Popular Generators 93

angular-fullstack 93
jhipster 93
ionic 94

Conclusion 94

ChapTEr 3: arChITECTUrE 95

Why Is Architecture Important? 95
Controllers, Services, and Directives 96

Controllers 96
Scope Inheritance 98
Event Transmission 99
The ModelService Paradigm 102

Services 104
Services Depending on Other Services 104
The event‐emitter Module 105

Directives 107
Exposing API Using Controllers 108

Conclusion 109
Organizing Your Code with Modules 109
Directory Structure 113

Small Projects 114
Medium Projects 115
Large Projects 117

Module Loaders 119
RequireJS 119
Browserify 122

Best Practices for Structuring User Authentication 127
Services: Loading from and Storing Data to the Server 127
Controllers: Exposing an API to HTML 128
Directives: Interfacing with the DOM 128

Conclusion 129

xxi

CONTENTS

ChapTEr 4: DaTa BINDING 131

What Is Data Binding? 131
What Data Binding Can Do for You 134
Scoping Out AngularJS Scopes 136

Scope Inheritance 137
$watch 140
$apply 141
$digest 141

Performance Considerations 142
An ngRepeat Gone Wrong 143

Filters and Data‐Binding Gotchas 145
Use Case 1: Rules for Converting Objects to Strings 146
Use Case 2: Wrappers for Global Functions 150
Use Case 3: Manipulating Arrays 152

Conclusion 155

ChapTEr 5: DIrECTIVES 157

What Is a Directive? 157
Understanding Directives 158
An 80/20 Understanding of Directives 159

Writing Your Own Render‐Only Directive 160
Writing Your Own Event Handler Directive 162
Writing Your Own Two‐Way Directive 165
Beyond the Simple Design Patterns 167

A Deeper Understanding of Directives 167
Directive Composition Using Templates 167
Creating Separate Scopes for Directives 169

The First Way of Using the scope Setting 170
The Second Way of Using the scope Setting 171

The restrict and replace Settings 176
Moving On 179

Changing Directive Templates at Runtime 179
Transclusion 179

Using the transclude: true Setting 179
Using the transclude: ‘element’ Setting 182

The compile Setting, or compile Versus link 183
Conclusion 184

xxii

CONTENTS

ChapTEr 6: TEMpLaTES, LOCaTION, aND rOUTING 185

Part I: Templates 187
Templating with ngInclude 188
ngInclude and Performance 191
Including Templates with script Tags 191
The $templateCache Service 193
Next Steps: Templates and Data Binding 194

Part II: The $location Service 196
What’s in a URL? 196
Introducing $location 197
Tracking Page State with $location 198
Next Steps: Routing and SPAs 200

Part III: Routing 200
Using the ngRoute Module 202
The $routeProvider Provider 203
The $routeParams Service 205
Navigation in Your SPA 205
Search Engines and SPAs 207
Setting Up Prerender on the Server 207
The Google AJAX Crawling Spec 209
Configuring AngularJS for Search Engines 210
Search Engine Integration in Action 210
Introduction to Animations 211
The ngAnimate Module in Action 213

Conclusion 215

ChapTEr 7: SErVICES, FaCTOrIES, aND prOVIDErS 217

A Brief Overview of Dependency Injection 218
The $injector Service 219
Function Annotations 220

Building Your Own Services 221
The factory() Function 222
The service() Function 224
The provider() Function 228

Common Use Cases for Services 232
Building a $user Service 233
Building the $stockPrices Service 234

Utilizing Built‐In Providers 236
Custom Interpolation Delimiters 236
Whitelisting Links with $compileProvider 237

xxiii

CONTENTS

Global Expression Properties with $rootScopeProvider 240
Conclusion 241

ChapTEr 8: SErVEr COMMUNICaTION 243

Why Will I Learn? 243
Introduction to Promises 244
Services for HTTP Requests 246

$http 247
Setting the HTTP Request Body 248
JSONP and Cross Site Scripting (XSS) 249
HTTP Configuration Objects 249
Setting Default HTTP Headers 250
Using HTTP Interceptors 251

The $resource Service 259
Consuming the Twitter REST API 262
Scaffolding a REST API with StrongLoop LoopBack 264

Building a Simple API Using LoopBack 265
Creating a New Application 265
Creating a LoopBack Model 266
The API Explorer 266
Generating Resources with Loopback AngularJS SDK 267

Using Web Sockets with AngularJS 270
Using Firebase with AngularJS 273
Conclusion 275

ChapTEr 9: TESTING aND DEBUGGING
aNGULarJS appLICaTIONS 277

AngularJS Testing Philosophy 277
The Testing Pyramid 279

Unit Testing in AngularJS 281
The Mocha Testing Framework 281
Unit Testing in the Browser with Karma 285
Browser Testing in the Cloud with Sauce 288
Evaluating the Unit Testing Options 292

DOM Integration Tests 292
A Guide to $httpBackend 293
The Page You’ll Be Testing 297
DOM Integration Tests with ng‐scenario 298
DOM Integration Testing with Protractor 304
Evaluating ng‐scenario and Protractor 309

xxiv

CONTENTS

Debugging AngularJS Apps 309
The debug Module 309
Debugging Using Chrome DevTools 311

Launching Developer Tools 312
Inspecting the State of the DOM 312
Using the Console Tab 312
Setting Breakpoints in the Sources Tab 313
Debugging Network Performance 314

Conclusion 314

ChapTEr 10: MOVING ON 315

Using Angular‐UI Bootstrap 316
Modals 316
Datepicker 320
Timepicker 321
Custom Templates 321

Hybrid Mobile Apps with the Ionic Framework 325
Setting Up Ionic, Cordova, and the Android SDK 326
Using AngularJS in Your Ionic App 327
Yeoman Workflow and Building for Production 329

Icons, Splash Screens, and Cordova Hooks 330
Integrating Open Source JavaScript with AngularJS 331

Dates and Time Zones with Moment 331
Schema Validation and Deep Objects with Mongoose 335

AngularJS and ECMAScript 6 341
Using yield for Asynchronous Calls 342

Conclusion 343

appENDIx: rESOUrCES 345

INDEX 347

INTRODUCTION

IT’S AN EXCITING TIME to be a JavaScript developer. Between the meteoric rise of server-side
JavaScript’s open source community (100,000 packages on the NodeJS package manager as of
October 2014—twice as many as in December 2013), the popularity of next-generation client-side
frameworks like AngularJS, and the growing number of companies that build web tools based on
full-stack JavaScript, JavaScript language skills are in high demand. Modern tools allow you to
build sophisticated browser-based clients, highly concurrent servers, and even hybrid native mobile
applications using a single language. AngularJS is quickly becoming the leading next-generation
client-side web framework, enabling individuals, small teams, and large corporations to build and
test phenomenally sophisticated browser-based applications.

WHAT IS ANGULARJS?

Within the rapidly growing JavaScript community, AngularJS burst onto the scene when it released
version 1.0 in June 2012. Although a relatively new framework, its powerful features and elegant tools
for structuring applications have made it the front-end framework of choice for many developers.
AngularJS was originally developed at Google by testing engineer Misko Hevery, who found that
existing tools, like jQuery, made it difficult to structure browser user interfaces (UIs) that needed
to display large amounts of sophisticated data. Google now has a dedicated team developing and
maintaining AngularJS and related tools. AngularJS also powers some active Google applications,
ranging from the DoubleClick Digital Marketing Platform to the YouTube app on the PlayStation 3.
AngularJS’s popularity is growing rapidly: As of October 2014, it powers 143 of the Quantcast Top
10k websites and is rapidly outpacing its closest rivals, KnockoutJS, ReactJS, and EmberJS.

What makes AngularJS so special? One particularly pithy expression borrowed from the
https://angularjs.org/ website describes AngularJS as enabling you to “write less code, go
have beer sooner.” The heart of AngularJS is a concept called two-way data binding, which enables
you to bind Hypertext Markup Language (HTML) and cascading style sheets (CSS) to the state of
a JavaScript variable. Whenever the variable changes, AngularJS updates all HTML and CSS that
references that JavaScript variable. For instance, in the following code:

<div ng-show="shouldShow">Hello</div>

If the shouldShow variable is changed to false, AngularJS automatically hides the div element for
you. There is nothing special about the shouldShow variable: AngularJS doesn’t require you to wrap
your variables in special types; the shouldShow variable can be a plain old JavaScript Boolean value.

Although two-way data binding is the basis for what makes AngularJS so useful, it’s only the tip
of the iceberg. AngularJS provides an elegant framework for organizing your client-side JavaScript
in a way to maximize reusability and testability. In addition, AngularJS has a rich set of testing
tools, such as Karma, protractor, and ngScenario (see Chapter 9), which are optimized for use
with AngularJS. AngularJS’s focus on testable structures and rich testing tools makes it a natural

https://angularjs.org/

xxvi

INTRODUCTION

choice for mission-critical client-side JavaScript. Not only does it enable you to write sophisticated
applications fast, it supplies tools and structure that make testing your application easy. As a matter
of fact, Google’s DoubleClick team cited AngularJS’s “full testing story” as one of its six biggest
reasons for porting its digital marketing platform to AngularJS. Here is a brief overview of some of
the concepts that make AngularJS special.

Two-Way Data Binding
In many older client-side JavaScript libraries, like jQuery and Backbone, you are expected to
manipulate the Document Object Model (DOM) yourself. In other words, if you want to change the
HTML contents of a div element, you need to write imperative JavaScript. For example:

$('div').html('Hello, world!');

AngularJS inverts this paradigm and makes your HTML the definitive source for how your data is
displayed. The primary purpose of two-way data binding is to bind an HTML or CSS property (for
instance, the HTML contents or background color of a div element) to the value of a JavaScript
variable. When the value of the JavaScript variable changes, the HTML or CSS property is updated
to match. The opposite is also true: If the user types in an input field, the value of the bound
JavaScript variable is updated to match what the user typed. For instance, the following HTML
greets whoever’s name is typed in the input field. You can find this example in this chapter’s sample
code as data _ binding.html: Simply right-click on the file and open it in your browser—no web
server or other dependencies required!

<input type="text" ng-model="user" placeholder="Your Name">
<h3>Hello, {{user}}!</h3>

No JavaScript is necessary! The ngModel directive and the {{}} shorthand syntax do all the work.
There is limited benefit to using AngularJS in this simple example, but, as you’ll see when you build
a real application in Chapter 1, data binding greatly simplifies your JavaScript. It’s not uncommon
to see 800 lines of jQuery spaghetti code reduced to 40 lines of clean DOM-independent AngularJS
code thanks to data binding.

Scopes in the DOM
DOM scopes are another powerful feature of AngularJS. As you might have guessed, there is no free
lunch with data binding; code complexity has to go somewhere. However, AngularJS allows you
to create scopes in the DOM that behave similarly to scopes in JavaScript and other programming
languages. This permits you to break your HTML and JavaScript into independent and reusable
pieces. For instance, here’s the same greeting example from earlier, but with two separate scopes:
one for greeting in English, the other in Spanish:

 <div ng-controller="HelloController">
 <input type="text" ng-model="user" placeholder="Your Name">
 <h3>Hello, {{user}}!</h3>
 </div>

xxvii

INTRODUCTION

 <hr>
 <div ng-controller="HelloController">
 <input type="text" ng-model="user" placeholder="Su Nombre">
 <h3>Hola, {{user}}!</h3>
 </div>

 <script type="text/javascript"
 src="angular.js">
 </script>
 <script type="text/javascript">
 function HelloController($scope) {}
 </script>

The ngController directive is one way to create a new scope, enabling you to reuse the same code
for two different purposes. Chapter 4 includes a thorough overview of two-way data binding and a
discussion of internal implementation details.

Directives
Directives are a powerful tool for grouping HTML and JavaScript functionality into one easily
reusable bundle. AngularJS has numerous built-in directives, like the ngController and ngModel
directives you saw earlier, that enable you to access sophisticated JavaScript functionality from your
HTML. You can write your own custom directives as well. In particular, AngularJS allows you to
associate HTML with a directive, so you can use directives as a way of reusing HTML as well as a
way of tying certain behavior into two-way data binding. Writing custom directives is beyond the
scope of this introduction, but Chapter 5 includes a thorough discussion of the subject.

Templates
On top of two-way data binding, AngularJS lets you swap out entire portions of the page based on the
state of a JavaScript variable. The ngInclude directive enables you to conditionally include templates,
pieces of AngularJS-infused HTML, in the page based on the JavaScript state. The following example
demonstrates a page with a div that contains different HTML based on the value of the myTemplate
variable. You can find this example in templates.html in this chapter’s sample code:

 <div ng-controller="TemplateController">
 <div ng-include="myTemplate">
 </div>

 <a ng-click="myTemplate = 'template1';"
 style="cursor: pointer"
 ng-class="{'selected': myTemplate === 'template1' }">
 Display Template 1

 <a ng-click="myTemplate = 'template2';"
 style="cursor: pointer"
 ng-class="{'selected': myTemplate === 'template2' }">
 Display Template 2

xxviii

INTRODUCTION

 </div>

 <script type="text/javascript"
 src="angular.js">
 </script>
 <script type="text/javascript">
 function TemplateController($scope) {
 $scope.myTemplate = 'template1';
 }
 </script>
 <script type="text/ng-template" id="template1">
 <h1>This is Template 1</h1>
 </script>
 <script type="text/ng-template" id="template2">
 <h1>This is Template 2</h1>
 </script>

Chapter 6 includes a thorough discussion of AngularJS templates, including how to use them to
structure single-page applications.

Testing and Workflow
Providing a framework for writing unit-testable code has been a core AngularJS goal from its first
release. AngularJS includes an elegant and sophisticated dependency injector, and all AngularJS
components (controllers, directives, services, and filters) are constructed using the dependency
injector. This ensures that your code’s dependencies are easy to stub out as necessary for your
tests. Furthermore, the AngularJS team has developed numerous powerful testing tools, such as the
Karma test runner and the protractor and ngScenario integration testing frameworks. These bring
the sophisticated multibrowser testing infrastructure that was previously only feasible for large
companies into the hands of the individual developer.

In addition, AngularJS’s architecture and testing tools interface nicely with various open source
JavaScript build and workflow tools, such as Gulp and Grunt. With these tools, you can execute
your tests seamlessly, tie in tools like code coverage and linting into your test execution, and even
scaffold entirely new applications from scratch. Core AngularJS is just a library, but the testing
and workflow tools surrounding it make the AngularJS ecosystem as a whole an innovative new
paradigm for building browser-based clients. Chapter 9 includes a more detailed discussion of
the AngularJS testing ecosystem and the different types of testing strategies you can use for your
AngularJS applications.

WHEN NOT TO USE ANGULARJS

Like any library, AngularJS is a perfect fit for some applications and a not-so-good fit for others. In
the next section, you learn about several use cases in which AngularJS is a perfect fit. In this section,
you learn about a few use cases in which AngularJS is not such a good fit and learn about some of
AngularJS’s limitations.

