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INTRODUCTION 

IT’S AN EXCITING TIME  to be a JavaScript developer. Between the meteoric rise of server-side 
JavaScript’s open source community (100,000 packages on the NodeJS package manager as of 
October 2014—twice as many as in December 2013), the popularity of next-generation client-side 
frameworks like AngularJS, and the growing number of companies that build web tools based on 
full-stack JavaScript, JavaScript language skills are in high demand. Modern tools allow you to 
build sophisticated browser-based clients, highly concurrent servers, and even hybrid native mobile 
applications using a single language. AngularJS is quickly becoming the leading next-generation 
client-side web framework, enabling individuals, small teams, and large corporations to build and 
test phenomenally sophisticated browser-based applications.

WHAT IS ANGULARJS?

Within the rapidly growing JavaScript community, AngularJS burst onto the scene when it released 
version 1.0 in June 2012. Although a relatively new framework, its powerful features and elegant tools 
for structuring applications have made it the front-end framework of choice for many developers. 
AngularJS was originally developed at Google by testing engineer Misko Hevery, who found that 
existing tools, like jQuery, made it difficult to structure browser user interfaces (UIs) that needed 
to display large amounts of sophisticated data. Google now has a dedicated team developing and 
maintaining AngularJS and related tools. AngularJS also powers some active Google applications, 
ranging from the DoubleClick Digital Marketing Platform to the YouTube app on the PlayStation 3. 
AngularJS’s popularity is growing rapidly: As of October 2014, it powers 143 of the Quantcast Top 
10k websites and is rapidly outpacing its closest rivals, KnockoutJS, ReactJS, and EmberJS.

What makes AngularJS so special? One particularly pithy expression borrowed from the  
https://angularjs.org/ website describes AngularJS as enabling you to “write less code, go 
have beer sooner.” The heart of AngularJS is a concept called two-way data binding, which enables 
you to bind Hypertext Markup Language (HTML) and cascading style sheets (CSS) to the state of 
a JavaScript variable. Whenever the variable changes, AngularJS updates all HTML and CSS that 
references that JavaScript variable. For instance, in the following code:

<div ng-show="shouldShow">Hello</div>

If the shouldShow variable is changed to false, AngularJS automatically hides the div element for 
you. There is nothing special about the shouldShow variable: AngularJS doesn’t require you to wrap 
your variables in special types; the shouldShow variable can be a plain old JavaScript Boolean value.

Although two-way data binding is the basis for what makes AngularJS so useful, it’s only the tip 
of the iceberg. AngularJS provides an elegant framework for organizing your client-side JavaScript 
in a way to maximize reusability and testability. In addition, AngularJS has a rich set of testing 
tools, such as Karma, protractor, and ngScenario (see Chapter 9), which are optimized for use 
with AngularJS. AngularJS’s focus on testable structures and rich testing tools makes it a natural 

https://angularjs.org/
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choice for mission-critical client-side JavaScript. Not only does it enable you to write sophisticated 
applications fast, it supplies tools and structure that make testing your application easy. As a matter 
of fact, Google’s DoubleClick team cited AngularJS’s “full testing story” as one of its six biggest 
reasons for porting its digital marketing platform to AngularJS. Here is a brief overview of some of 
the concepts that make AngularJS special.

Two-Way Data Binding
In many older client-side JavaScript libraries, like jQuery and Backbone, you are expected to 
manipulate the Document Object Model (DOM) yourself. In other words, if you want to change the 
HTML contents of a div element, you need to write imperative JavaScript. For example:

$('div').html('Hello, world!');

AngularJS inverts this paradigm and makes your HTML the definitive source for how your data is 
displayed. The primary purpose of two-way data binding is to bind an HTML or CSS property (for 
instance, the HTML contents or background color of a div element) to the value of a JavaScript 
variable. When the value of the JavaScript variable changes, the HTML or CSS property is updated 
to match. The opposite is also true: If the user types in an input field, the value of the bound 
JavaScript variable is updated to match what the user typed. For instance, the following HTML 
greets whoever’s name is typed in the input field. You can find this example in this chapter’s sample 
code as data _ binding.html: Simply right-click on the file and open it in your browser—no web 
server or other dependencies required!

<input type="text" ng-model="user" placeholder="Your Name">
<h3>Hello, {{user}}!</h3>

No JavaScript is necessary! The ngModel directive and the {{}} shorthand syntax do all the work. 
There is limited benefit to using AngularJS in this simple example, but, as you’ll see when you build 
a real application in Chapter 1, data binding greatly simplifies your JavaScript. It’s not uncommon 
to see 800 lines of jQuery spaghetti code reduced to 40 lines of clean DOM-independent AngularJS 
code thanks to data binding.

Scopes in the DOM
DOM scopes are another powerful feature of AngularJS. As you might have guessed, there is no free 
lunch with data binding; code complexity has to go somewhere. However, AngularJS allows you 
to create scopes in the DOM that behave similarly to scopes in JavaScript and other programming 
languages. This permits you to break your HTML and JavaScript into independent and reusable 
pieces. For instance, here’s the same greeting example from earlier, but with two separate scopes: 
one for greeting in English, the other in Spanish:

    <div ng-controller="HelloController">
      <input type="text" ng-model="user" placeholder="Your Name">
      <h3>Hello, {{user}}!</h3>
    </div>
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    <hr>
    <div ng-controller="HelloController">
      <input type="text" ng-model="user" placeholder="Su Nombre">
      <h3>Hola, {{user}}!</h3>
    </div>

    <script type="text/javascript"
            src="angular.js">
    </script>
    <script type="text/javascript">
      function HelloController($scope) {}
    </script>

The ngController directive is one way to create a new scope, enabling you to reuse the same code 
for two different purposes. Chapter 4 includes a thorough overview of two-way data binding and a 
discussion of internal implementation details.

Directives
Directives are a powerful tool for grouping HTML and JavaScript functionality into one easily 
reusable bundle. AngularJS has numerous built-in directives, like the ngController and ngModel 
directives you saw earlier, that enable you to access sophisticated JavaScript functionality from your 
HTML. You can write your own custom directives as well. In particular, AngularJS allows you to 
associate HTML with a directive, so you can use directives as a way of reusing HTML as well as a 
way of tying certain behavior into two-way data binding. Writing custom directives is beyond the 
scope of this introduction, but Chapter 5 includes a thorough discussion of the subject.

Templates
On top of two-way data binding, AngularJS lets you swap out entire portions of the page based on the 
state of a JavaScript variable. The ngInclude directive enables you to conditionally include templates, 
pieces of AngularJS-infused HTML, in the page based on the JavaScript state. The following example 
demonstrates a page with a div that contains different HTML based on the value of the myTemplate 
variable. You can find this example in templates.html in this chapter’s sample code:

    <div ng-controller="TemplateController">
      <div ng-include="myTemplate">
      </div>
      <br>
      <a  ng-click="myTemplate = 'template1';"
          style="cursor: pointer"
          ng-class="{'selected': myTemplate === 'template1' }">
        Display Template 1
      </a>
      <a  ng-click="myTemplate = 'template2';"
          style="cursor: pointer"
          ng-class="{'selected': myTemplate === 'template2' }">
        Display Template 2
      </a>
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    </div>

    <script type="text/javascript"
            src="angular.js">
    </script>
    <script type="text/javascript">
      function TemplateController($scope) {
        $scope.myTemplate = 'template1';
      }
    </script>
    <script type="text/ng-template" id="template1">
      <h1>This is Template 1</h1>
    </script>
    <script type="text/ng-template" id="template2">
      <h1>This is Template 2</h1>
    </script>

Chapter 6 includes a thorough discussion of AngularJS templates, including how to use them to 
structure single-page applications.

Testing and Workflow
Providing a framework for writing unit-testable code has been a core AngularJS goal from its first 
release. AngularJS includes an elegant and sophisticated dependency injector, and all AngularJS 
components (controllers, directives, services, and filters) are constructed using the dependency 
injector. This ensures that your code’s dependencies are easy to stub out as necessary for your 
tests. Furthermore, the AngularJS team has developed numerous powerful testing tools, such as the 
Karma test runner and the protractor and ngScenario integration testing frameworks. These bring 
the sophisticated multibrowser testing infrastructure that was previously only feasible for large 
companies into the hands of the individual developer.

In addition, AngularJS’s architecture and testing tools interface nicely with various open source 
JavaScript build and workflow tools, such as Gulp and Grunt. With these tools, you can execute 
your tests seamlessly, tie in tools like code coverage and linting into your test execution, and even 
scaffold entirely new applications from scratch. Core AngularJS is just a library, but the testing 
and workflow tools surrounding it make the AngularJS ecosystem as a whole an innovative new 
paradigm for building browser-based clients. Chapter 9 includes a more detailed discussion of 
the AngularJS testing ecosystem and the different types of testing strategies you can use for your 
AngularJS applications.

WHEN NOT TO USE ANGULARJS

Like any library, AngularJS is a perfect fit for some applications and a not-so-good fit for others. In 
the next section, you learn about several use cases in which AngularJS is a perfect fit. In this section, 
you learn about a few use cases in which AngularJS is not such a good fit and learn about some of 
AngularJS’s limitations.


