

PROFESSIONAL ANGULARJS

INTRODUCTION. . xxv

CHAPTER 1	 Building a Simple AngularJS Application . . 1

CHAPTER 2	 Intelligent Workflow and Build Tools . . 57

CHAPTER 3	 Architecture. . 95

CHAPTER 4	 Data Binding. . 131

CHAPTER 5	 Directives. . 157

CHAPTER 6	 Templates, Location, and Routing. . 185

CHAPTER 7	 �Services, Factories, and Providers . . 217

CHAPTER 8	 Server Communication . . 243

CHAPTER 9	 Testing and Debugging AngularJS Applications 277

CHAPTER 10	 Moving On. . 315

APPENDIX	 Resources. . 345

INDEX. . 347

PROFESSIONAL

AngularJS

PROFESSIONAL

AngularJS

Valeri Karpov
Diego Netto

Professional AngularJS

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-83207-3

ISBN: 978-1-118-83209-7 (ebk)

ISBN: 978-1-118-83208-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014951014

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

For my father, the elder Valeri Karpov,

who taught me to never settle for “good enough.”

—Valeri Karpov

For my mother, Liliana, who showed me how to find

happiness by living each day like it might be your last.

—Diego Netto

ABOUT THE AUTHORS

VALERI KARPOV  is a NodeJS Engineer at MongoDB, where he focuses on maintaining the popular
Mongoose ODM and numerous other MongoDB-related NodeJS modules. In addition, he’s a
Hacker in Residence at BookaLokal, a blogger for StrongLoop, and the person who gave the MEAN
stack its name. He has been running production AngularJS apps since AngularJS v0.9.4 in 2010.
Most recently, he used AngularJS to build out BookaLokal’s mobile website and a web client for
MongoDB’s internal continuous integration framework.

DIEGO NETTO  is a software consultant and open source evangelist. He wears the many hats of a
full stack engineer and entrepreneur. Owner of a development shop operating out of Los Angeles
and Dallas, Diego creates web and mobile applications for both startups and enterprise companies.
Maintainer of the IonicFramework Yeoman generator, he has most recently used AngularJS and
the IonicFramework to build the Prop mobile app for www.aboatapp.com, and is using Famo.us/
Angular to build the mobile app for www.modelrevolt.com.

http://www.aboatapp.com
http://www.modelrevolt.com

ABOUT THE TECHNICAL EDITOR

STÉPHANE BÉGAUDEAU  graduated from the Faculty of Sciences and Technology of Nantes and
is currently working as a web technology specialist and Eclipse modeling consultant at Obeo
in France. He has contributed to several open source projects in the Eclipse Foundation, and he
is the leader of Acceleo. He also worked on Dart Designer, an open source tooling for the Dart
programming language.

PROJECT EDITOR
Kelly Talbot

TECHNICAL EDITOR
Stéphane Bégaudeau

PRODUCTION EDITOR
Christine O’Connor

COPY EDITOR
Karen Gill

MANAGER OF CONTENT DEVELOPMENT
& ASSEMBLY
Mary Beth Wakefield

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY &
STRATEGY DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Carrasco

INDEXER
Johnna VanHoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE
iStock.com/Manuel Faba Ortega

CREDITS

ACKNOWLEDGMENTS

SOCRATES WROTE THAT  “Education is the kindling of a flame, not the filling of a vessel.” In that
vein, I’m thankful that I have had teachers and mentors who made programming my lifelong passion
rather than just a career. In particular, I’d like to thank Professors Kernighan and Tarjan from
Princeton University; and Dr. Nevard, Dr. Sankaran, Mr. Scarpone, and Mr. Nodarse from the
Bergen County Academies. In addition, I’d like to thank Misko Hevery, my mentor when I interned
at Google and original author of AngularJS, who taught me more about software engineering in
12 weeks than I had learned in my life leading up to that summer.

—Valeri Karpov

TO QUOTE THE SUCCESSFUL ENTREPRENEUR FELIX DENNIS,  “Anyone not busy learning is
busy dying.” This is a prudent reminder, especially in the constantly evolving field of software
engineering, that in order to remain relevant and sustain success we must commit to a lifelong
pursuit of knowledge. I would like to thank Professors Tatar and Ribbens from Virginia Tech for
enlightening me to this realization. I also want to thank Addy Osmani for helping me discover the
importance of intelligent tooling and for inspiring me to contribute to the open source community.
Special thanks to my friend and co-author Valeri Karpov for getting me involved with AngularJS
during such an early stage.

—Diego Netto

CONTENTS

INTRODUCTION	 xxv

Chapter 1: BUILDING A SIMPLE ANGULARJS APPLICATION 	 1

What You Are Building	 1
What You Will Learn	 3
Step 1: Scaffolding Your Project with Yeoman	 4

Installing Yeoman	 4
Scaffolding Your Project	 5
Exploring the Application	 6
Cleaning Up	 8

Step 2: Creating Watchlists	 9
The Application Module	 9

Installing Module Dependencies	 10
Bootstrapping the Application	 11

The Watchlist Service	 11
The Watchlist‐Panel Directive	 13

Basic Form Validation	 16
Using the Directive	 18

Step 3: Configuring Client‐Side Routing	 19
The Angular ngRoute Module	 19
Adding New Routes	 20
Using the Routes	 21
Template Views	 22

Step 4: Creating a Navigation Bar	 23
Updating the HTML	 23
Creating MainCtrl	 25

Step 5: Adding Stocks	 26
Creating the CompanyService	 27
Creating the AddStock Modal	 27
Updating the WatchlistService	 29
Implementing WatchlistCtrl	 30
Modifying the Watchlist View	 31

Step 6: Integrating with Yahoo Finance	 32
Creating the QuoteService	 33
Invoking Services from the Console	 35

xviii

CONTENTS

Step 7: Creating the Stock Table	 36
Creating the StkStockTable Directive	 36
Creating the StkStockRow Directive	 37
Creating the Stock Table Template	 39
Updating the Watchlist View	 40

Step 8: Inline Form Editing	 40
Creating the Contenteditable Directive	 41
Updating the StkStockTable Template	 43

Step 9: Formatting Currency	 44
Creating the StkSignColor Directive	 44
Updating the StockTable Template	 44

Step 10: Animating Price Changes	 46
Creating the StkSignFade Directive	 46
Updating the StockTable Template	 48

Step 11: Creating the Dashboard	 49
Updating the Dashboard Controller	 49
Updating the Dashboard View	 52

Production Deployment	 53
Conclusion	 55

Chapter 2: INTELLIGENT WORKFLOW AND BUILD TOOLS 	 57

What Can Tooling Do for Me?	 57
What Is Bower?	 58

Getting Started with Bower	 58
Searching for Packages	 58
Installing Packages	 58
Versioning Dependencies	 59

What Is Grunt?	 60
Getting Started with Grunt	 60
Installing Plug-Ins	 62
Directory Structure	 62
The Gruntfile	 63
Configuring Tasks and Targets	 64

The Connect Task	 64
The Less Task	 65
The JSHint Task	 66
The Watch Task	 68
The Default Task	 69

Creating a Custom Task	 69

xix

CONTENTS

What Is Gulp?	 73
Getting Started with Gulp	 73
Installing Plug-Ins	 73
The Gulpfile	 73
Creating Tasks	 74

The Connect Task	 74
The Less Task	 75
The JSHint Task	 77
The Watch Task	 77
The Default Task	 78

Arguments and Asynchronous Behavior	 79
Gulp, Grunt, and Make	 82

Automation Using Make	 82
When to Use Make	 84
When to Use Grunt	 84
When to Use Gulp	 84

What Is Yeoman?	 84
Getting Started with Yeoman	 85
Scaffolding a New Project	 85
Exploring Plug-Ins and Tasks	 85

load-grunt-tasks	 86
time-grunt	 86
grunt-newer	 86
grunt-contrib-watch	 86
grunt-contrib-connect	 87
grunt-contrib-jshint	 87
grunt-contrib-clean	 87
grunt-autoprefixer	 87
grunt-wiredep	 88
grunt-contrib-compass	 88
grunt-filerev	 88
grunt-usemin	 88
grunt-contrib-imagemin	 89
grunt-svgmin	 89
grunt-contrib-htmlmin	 89
grunt-ng-annotate	 90
grunt-google-cdn	 90
grunt-contrib-copy	 90
grunt-concurrent	 90
grunt-karma	 91

xx

CONTENTS

Alias Tasks and Workflow	 91
serve	 91
test	 91
build	 92
default	 92

Modifications	 92
Subgenerators	 92
Popular Generators	 93

angular-fullstack	 93
jhipster	 93
ionic	 94

Conclusion	 94

Chapter 3: ARCHITECTURE	 95

Why Is Architecture Important?	 95
Controllers, Services, and Directives	 96

Controllers	 96
Scope Inheritance	 98
Event Transmission	 99
The ModelService Paradigm	 102

Services	 104
Services Depending on Other Services	 104
The event‐emitter Module	 105

Directives	 107
Exposing API Using Controllers	 108

Conclusion	 109
Organizing Your Code with Modules	 109
Directory Structure	 113

Small Projects	 114
Medium Projects	 115
Large Projects	 117

Module Loaders	 119
RequireJS	 119
Browserify	 122

Best Practices for Structuring User Authentication	 127
Services: Loading from and Storing Data to the Server	 127
Controllers: Exposing an API to HTML	 128
Directives: Interfacing with the DOM	 128

Conclusion	 129

xxi

CONTENTS

Chapter 4: DATA BINDING	 131

What Is Data Binding?	 131
What Data Binding Can Do for You	 134
Scoping Out AngularJS Scopes	 136

Scope Inheritance	 137
$watch	 140
$apply	 141
$digest	 141

Performance Considerations	 142
An ngRepeat Gone Wrong	 143

Filters and Data‐Binding Gotchas	 145
Use Case 1: Rules for Converting Objects to Strings	 146
Use Case 2: Wrappers for Global Functions	 150
Use Case 3: Manipulating Arrays	 152

Conclusion	 155

Chapter 5: DIRECTIVES	 157

What Is a Directive?	 157
Understanding Directives	 158
An 80/20 Understanding of Directives	 159

Writing Your Own Render‐Only Directive	 160
Writing Your Own Event Handler Directive	 162
Writing Your Own Two‐Way Directive	 165
Beyond the Simple Design Patterns	 167

A Deeper Understanding of Directives	 167
Directive Composition Using Templates	 167
Creating Separate Scopes for Directives	 169

The First Way of Using the scope Setting	 170
The Second Way of Using the scope Setting	 171

The restrict and replace Settings	 176
Moving On	 179

Changing Directive Templates at Runtime	 179
Transclusion	 179

Using the transclude: true Setting	 179
Using the transclude: ‘element’ Setting	 182

The compile Setting, or compile Versus link	 183
Conclusion	 184

xxii

CONTENTS

Chapter 6: TEMPLATES, LOCATION, AND ROUTING 	 185

Part I: Templates	 187
Templating with ngInclude	 188
ngInclude and Performance	 191
Including Templates with script Tags	 191
The $templateCache Service	 193
Next Steps: Templates and Data Binding	 194

Part II: The $location Service	 196
What’s in a URL?	 196
Introducing $location	 197
Tracking Page State with $location	 198
Next Steps: Routing and SPAs	 200

Part III: Routing	 200
Using the ngRoute Module	 202
The $routeProvider Provider	 203
The $routeParams Service	 205
Navigation in Your SPA	 205
Search Engines and SPAs	 207
Setting Up Prerender on the Server	 207
The Google AJAX Crawling Spec	 209
Configuring AngularJS for Search Engines	 210
Search Engine Integration in Action	 210
Introduction to Animations	 211
The ngAnimate Module in Action	 213

Conclusion	 215

Chapter 7: SERVICES, FACTORIES, AND PROVIDERS	 217

A Brief Overview of Dependency Injection	 218
The $injector Service	 219
Function Annotations	 220

Building Your Own Services	 221
The factory() Function	 222
The service() Function	 224
The provider() Function	 228

Common Use Cases for Services	 232
Building a $user Service	 233
Building the $stockPrices Service	 234

Utilizing Built‐In Providers	 236
Custom Interpolation Delimiters	 236
Whitelisting Links with $compileProvider	 237

xxiii

CONTENTS

Global Expression Properties with $rootScopeProvider	 240
Conclusion	 241

Chapter 8: SERVER COMMUNICATION	 243

Why Will I Learn?	 243
Introduction to Promises	 244
Services for HTTP Requests	 246

$http	 247
Setting the HTTP Request Body	 248
JSONP and Cross Site Scripting (XSS)	 249
HTTP Configuration Objects	 249
Setting Default HTTP Headers	 250
Using HTTP Interceptors	 251

The $resource Service	 259
Consuming the Twitter REST API	 262
Scaffolding a REST API with StrongLoop LoopBack	 264

Building a Simple API Using LoopBack	 265
Creating a New Application	 265
Creating a LoopBack Model	 266
The API Explorer	 266
Generating Resources with Loopback AngularJS SDK	 267

Using Web Sockets with AngularJS	 270
Using Firebase with AngularJS	 273
Conclusion	 275

Chapter 9: �TESTING AND DEBUGGING
ANGULARJS APPLICATIONS	 277

AngularJS Testing Philosophy	 277
The Testing Pyramid	 279

Unit Testing in AngularJS	 281
The Mocha Testing Framework	 281
Unit Testing in the Browser with Karma	 285
Browser Testing in the Cloud with Sauce	 288
Evaluating the Unit Testing Options	 292

DOM Integration Tests	 292
A Guide to $httpBackend	 293
The Page You’ll Be Testing	 297
DOM Integration Tests with ng‐scenario	 298
DOM Integration Testing with Protractor	 304
Evaluating ng‐scenario and Protractor	 309

xxiv

CONTENTS

Debugging AngularJS Apps	 309
The debug Module	 309
Debugging Using Chrome DevTools	 311

Launching Developer Tools	 312
Inspecting the State of the DOM	 312
Using the Console Tab	 312
Setting Breakpoints in the Sources Tab	 313
Debugging Network Performance	 314

Conclusion	 314

Chapter 10: MOVING ON	 315

Using Angular‐UI Bootstrap	 316
Modals	 316
Datepicker	 320
Timepicker	 321
Custom Templates	 321

Hybrid Mobile Apps with the Ionic Framework	 325
Setting Up Ionic, Cordova, and the Android SDK	 326
Using AngularJS in Your Ionic App	 327
Yeoman Workflow and Building for Production	 329

Icons, Splash Screens, and Cordova Hooks	 330
Integrating Open Source JavaScript with AngularJS	 331

Dates and Time Zones with Moment	 331
Schema Validation and Deep Objects with Mongoose	 335

AngularJS and ECMAScript 6	 341
Using yield for Asynchronous Calls	 342

Conclusion	 343

Appendix: RESOURCES	 345

INDEX	 347

INTRODUCTION

IT’S AN EXCITING TIME  to be a JavaScript developer. Between the meteoric rise of server-side
JavaScript’s open source community (100,000 packages on the NodeJS package manager as of
October 2014—twice as many as in December 2013), the popularity of next-generation client-side
frameworks like AngularJS, and the growing number of companies that build web tools based on
full-stack JavaScript, JavaScript language skills are in high demand. Modern tools allow you to
build sophisticated browser-based clients, highly concurrent servers, and even hybrid native mobile
applications using a single language. AngularJS is quickly becoming the leading next-generation
client-side web framework, enabling individuals, small teams, and large corporations to build and
test phenomenally sophisticated browser-based applications.

WHAT IS ANGULARJS?

Within the rapidly growing JavaScript community, AngularJS burst onto the scene when it released
version 1.0 in June 2012. Although a relatively new framework, its powerful features and elegant tools
for structuring applications have made it the front-end framework of choice for many developers.
AngularJS was originally developed at Google by testing engineer Misko Hevery, who found that
existing tools, like jQuery, made it difficult to structure browser user interfaces (UIs) that needed
to display large amounts of sophisticated data. Google now has a dedicated team developing and
maintaining AngularJS and related tools. AngularJS also powers some active Google applications,
ranging from the DoubleClick Digital Marketing Platform to the YouTube app on the PlayStation 3.
AngularJS’s popularity is growing rapidly: As of October 2014, it powers 143 of the Quantcast Top
10k websites and is rapidly outpacing its closest rivals, KnockoutJS, ReactJS, and EmberJS.

What makes AngularJS so special? One particularly pithy expression borrowed from the
https://angularjs.org/ website describes AngularJS as enabling you to “write less code, go
have beer sooner.” The heart of AngularJS is a concept called two-way data binding, which enables
you to bind Hypertext Markup Language (HTML) and cascading style sheets (CSS) to the state of
a JavaScript variable. Whenever the variable changes, AngularJS updates all HTML and CSS that
references that JavaScript variable. For instance, in the following code:

<div ng-show="shouldShow">Hello</div>

If the shouldShow variable is changed to false, AngularJS automatically hides the div element for
you. There is nothing special about the shouldShow variable: AngularJS doesn’t require you to wrap
your variables in special types; the shouldShow variable can be a plain old JavaScript Boolean value.

Although two-way data binding is the basis for what makes AngularJS so useful, it’s only the tip
of the iceberg. AngularJS provides an elegant framework for organizing your client-side JavaScript
in a way to maximize reusability and testability. In addition, AngularJS has a rich set of testing
tools, such as Karma, protractor, and ngScenario (see Chapter 9), which are optimized for use
with AngularJS. AngularJS’s focus on testable structures and rich testing tools makes it a natural

https://angularjs.org/

xxvi

INTRODUCTION

choice for mission-critical client-side JavaScript. Not only does it enable you to write sophisticated
applications fast, it supplies tools and structure that make testing your application easy. As a matter
of fact, Google’s DoubleClick team cited AngularJS’s “full testing story” as one of its six biggest
reasons for porting its digital marketing platform to AngularJS. Here is a brief overview of some of
the concepts that make AngularJS special.

Two-Way Data Binding
In many older client-side JavaScript libraries, like jQuery and Backbone, you are expected to
manipulate the Document Object Model (DOM) yourself. In other words, if you want to change the
HTML contents of a div element, you need to write imperative JavaScript. For example:

$('div').html('Hello, world!');

AngularJS inverts this paradigm and makes your HTML the definitive source for how your data is
displayed. The primary purpose of two-way data binding is to bind an HTML or CSS property (for
instance, the HTML contents or background color of a div element) to the value of a JavaScript
variable. When the value of the JavaScript variable changes, the HTML or CSS property is updated
to match. The opposite is also true: If the user types in an input field, the value of the bound
JavaScript variable is updated to match what the user typed. For instance, the following HTML
greets whoever’s name is typed in the input field. You can find this example in this chapter’s sample
code as data _ binding.html: Simply right-click on the file and open it in your browser—no web
server or other dependencies required!

<input type="text" ng-model="user" placeholder="Your Name">
<h3>Hello, {{user}}!</h3>

No JavaScript is necessary! The ngModel directive and the {{}} shorthand syntax do all the work.
There is limited benefit to using AngularJS in this simple example, but, as you’ll see when you build
a real application in Chapter 1, data binding greatly simplifies your JavaScript. It’s not uncommon
to see 800 lines of jQuery spaghetti code reduced to 40 lines of clean DOM-independent AngularJS
code thanks to data binding.

Scopes in the DOM
DOM scopes are another powerful feature of AngularJS. As you might have guessed, there is no free
lunch with data binding; code complexity has to go somewhere. However, AngularJS allows you
to create scopes in the DOM that behave similarly to scopes in JavaScript and other programming
languages. This permits you to break your HTML and JavaScript into independent and reusable
pieces. For instance, here’s the same greeting example from earlier, but with two separate scopes:
one for greeting in English, the other in Spanish:

 <div ng-controller="HelloController">
 <input type="text" ng-model="user" placeholder="Your Name">
 <h3>Hello, {{user}}!</h3>
 </div>

xxvii

INTRODUCTION

 <hr>
 <div ng-controller="HelloController">
 <input type="text" ng-model="user" placeholder="Su Nombre">
 <h3>Hola, {{user}}!</h3>
 </div>

 <script type="text/javascript"
 src="angular.js">
 </script>
 <script type="text/javascript">
 function HelloController($scope) {}
 </script>

The ngController directive is one way to create a new scope, enabling you to reuse the same code
for two different purposes. Chapter 4 includes a thorough overview of two-way data binding and a
discussion of internal implementation details.

Directives
Directives are a powerful tool for grouping HTML and JavaScript functionality into one easily
reusable bundle. AngularJS has numerous built-in directives, like the ngController and ngModel
directives you saw earlier, that enable you to access sophisticated JavaScript functionality from your
HTML. You can write your own custom directives as well. In particular, AngularJS allows you to
associate HTML with a directive, so you can use directives as a way of reusing HTML as well as a
way of tying certain behavior into two-way data binding. Writing custom directives is beyond the
scope of this introduction, but Chapter 5 includes a thorough discussion of the subject.

Templates
On top of two-way data binding, AngularJS lets you swap out entire portions of the page based on the
state of a JavaScript variable. The ngInclude directive enables you to conditionally include templates,
pieces of AngularJS-infused HTML, in the page based on the JavaScript state. The following example
demonstrates a page with a div that contains different HTML based on the value of the myTemplate
variable. You can find this example in templates.html in this chapter’s sample code:

 <div ng-controller="TemplateController">
 <div ng-include="myTemplate">
 </div>

 <a ng-click="myTemplate = 'template1';"
 style="cursor: pointer"
 ng-class="{'selected': myTemplate === 'template1' }">
 Display Template 1

 <a ng-click="myTemplate = 'template2';"
 style="cursor: pointer"
 ng-class="{'selected': myTemplate === 'template2' }">
 Display Template 2

xxviii

INTRODUCTION

 </div>

 <script type="text/javascript"
 src="angular.js">
 </script>
 <script type="text/javascript">
 function TemplateController($scope) {
 $scope.myTemplate = 'template1';
 }
 </script>
 <script type="text/ng-template" id="template1">
 <h1>This is Template 1</h1>
 </script>
 <script type="text/ng-template" id="template2">
 <h1>This is Template 2</h1>
 </script>

Chapter 6 includes a thorough discussion of AngularJS templates, including how to use them to
structure single-page applications.

Testing and Workflow
Providing a framework for writing unit-testable code has been a core AngularJS goal from its first
release. AngularJS includes an elegant and sophisticated dependency injector, and all AngularJS
components (controllers, directives, services, and filters) are constructed using the dependency
injector. This ensures that your code’s dependencies are easy to stub out as necessary for your
tests. Furthermore, the AngularJS team has developed numerous powerful testing tools, such as the
Karma test runner and the protractor and ngScenario integration testing frameworks. These bring
the sophisticated multibrowser testing infrastructure that was previously only feasible for large
companies into the hands of the individual developer.

In addition, AngularJS’s architecture and testing tools interface nicely with various open source
JavaScript build and workflow tools, such as Gulp and Grunt. With these tools, you can execute
your tests seamlessly, tie in tools like code coverage and linting into your test execution, and even
scaffold entirely new applications from scratch. Core AngularJS is just a library, but the testing
and workflow tools surrounding it make the AngularJS ecosystem as a whole an innovative new
paradigm for building browser-based clients. Chapter 9 includes a more detailed discussion of
the AngularJS testing ecosystem and the different types of testing strategies you can use for your
AngularJS applications.

WHEN NOT TO USE ANGULARJS

Like any library, AngularJS is a perfect fit for some applications and a not-so-good fit for others. In
the next section, you learn about several use cases in which AngularJS is a perfect fit. In this section,
you learn about a few use cases in which AngularJS is not such a good fit and learn about some of
AngularJS’s limitations.

