

Contents

Introduction

WHAT IS ANGULARJS?

WHEN NOT TO USE ANGULARJS

WHEN TO USE ANGULARJS

HOW TO USE THIS BOOK

HOW TO WORK WITH THIS BOOK’S SAMPLE CODE

CONVENTIONS

ERRATA

P2P.WROX.COM

1 Building a Simple AngularJS Application

WHAT YOU ARE BUILDING

WHAT YOU WILL LEARN

STEP 1: SCAFFOLDING YOUR PROJECT WITH

YEOMAN

STEP 2: CREATING WATCHLISTS

STEP 3: CONFIGURING CLIENT-SIDE ROUTING

STEP 4: CREATING A NAVIGATION BAR

STEP 5: ADDING STOCKS

STEP 6: INTEGRATING WITH YAHOO FINANCE

STEP 7: CREATING THE STOCK TABLE

STEP 8: INLINE FORM EDITING

STEP 9: FORMATTING CURRENCY

STEP 10: ANIMATING PRICE CHANGES

STEP 11: CREATING THE DASHBOARD

PRODUCTION DEPLOYMENT

CONCLUSION

2 Intelligent Workflow and Build Tools

WHAT CAN TOOLING DO FOR ME?

WHAT IS BOWER?

WHAT IS GRUNT?

WHAT IS GULP?

WHAT IS YEOMAN?

CONCLUSION

3 Architecture

WHY IS ARCHITECTURE IMPORTANT?

CONTROLLERS, SERVICES, AND DIRECTIVES

ORGANIZING YOUR CODE WITH MODULES

DIRECTORY STRUCTURE

MODULE LOADERS

BEST PRACTICES FOR STRUCTURING USER

AUTHENTICATION

CONCLUSION

4 Data Binding

WHAT IS DATA BINDING?

WHAT DATA BINDING CAN DO FOR YOU

SCOPING OUT ANGULARJS SCOPES

CONCLUSION

5 Directives

WHAT IS A DIRECTIVE?

A DEEPER UNDERSTANDING OF DIRECTIVES

CHANGING DIRECTIVE TEMPLATES AT RUNTIME

CONCLUSION

6 Templates, Location, and Routing

PART I: TEMPLATES

PART II: THE $LOCATION SERVICE

PART III: ROUTING

CONCLUSION

7 Services, Factories, and Providers

A BRIEF OVERVIEW OF DEPENDENCY INJECTION

BUILDING YOUR OWN SERVICES

COMMON USE CASES FOR SERVICES

UTILIZING BUILT-IN PROVIDERS

CONCLUSION

8 Server Communication

WHY WILL I LEARN?

INTRODUCTION TO PROMISES

SERVICES FOR HTTP REQUESTS

CONSUMING THE TWITTER REST API

SCAFFOLDING A REST API WITH STRONGLOOP

LOOPBACK

USING WEB SOCKETS WITH ANGULARJS

USING FIREBASE WITH ANGULARJS

CONCLUSION

9 Testing and Debugging AngularJS Applications

ANGULARJS TESTING PHILOSOPHY

UNIT TESTING IN ANGULARJS

DOM INTEGRATION TESTS

DEBUGGING ANGULARJS APPS

CONCLUSION

10 Moving On

USING ANGULAR-UI BOOTSTRAP

HYBRID MOBILE APPS WITH THE IONIC

FRAMEWORK

INTEGRATING OPEN SOURCE JAVASCRIPT WITH

ANGULARJS

ANGULARJS AND ECMASCRIPT 6

CONCLUSION

Appendix Resources

Title page

Copyright

Dedication

About the Authors

About the Technical Editor

Credits

Acknowledgments

Advert

EULA

List of Illustrations

Chapter 1

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9

Figure 1.10

Figure 1.11

Figure 1.12

Figure 1.13

Figure 1.14

Chapter 9

Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure 9.6

Figure 9.7

Figure 9.8

INTRODUCTION

It’s an exciting time to be a JavaScript developer. Between

the meteoric rise of server-side JavaScript’s open source

community (100,000 packages on the NodeJS package

manager as of October 2014—twice as many as in

December 2013), the popularity of next-generation client-

side frameworks like AngularJS, and the growing number of

companies that build web tools based on full-stack

JavaScript, JavaScript language skills are in high demand.

Modern tools allow you to build sophisticated browser-

based clients, highly concurrent servers, and even hybrid

native mobile applications using a single language.

AngularJS is quickly becoming the leading next-generation

client-side web framework, enabling individuals, small

teams, and large corporations to build and test

phenomenally sophisticated browser-based applications.

WHAT IS ANGULARJS?

Within the rapidly growing JavaScript community,

AngularJS burst onto the scene when it released version

1.0 in June 2012. Although a relatively new framework, its

powerful features and elegant tools for structuring

applications have made it the front-end framework of

choice for many developers. AngularJS was originally

developed at Google by testing engineer Misko Hevery, who

found that existing tools, like jQuery, made it difficult to

structure browser user interfaces (UIs) that needed to

display large amounts of sophisticated data. Google now

has a dedicated team developing and maintaining

AngularJS and related tools. AngularJS also powers some

active Google applications, ranging from the DoubleClick

Digital Marketing Platform to the YouTube app on the

PlayStation 3. AngularJS’s popularity is growing rapidly: As

of October 2014, it powers 143 of the Quantcast Top 10k

websites and is rapidly outpacing its closest rivals,

KnockoutJS, ReactJS, and EmberJS.

What makes AngularJS so special? One particularly pithy

expression borrowed from the https://angularjs.org/ website

describes AngularJS as enabling you to “write less code, go

have beer sooner.” The heart of AngularJS is a concept

called two-way data binding, which enables you to bind

Hypertext Markup Language (HTML) and cascading style

sheets (CSS) to the state of a JavaScript variable. Whenever

the variable changes, AngularJS updates all HTML and CSS

that references that JavaScript variable. For instance, in

the following code:

<div ng-show="shouldShow">Hello</div>

If the shouldShow variable is changed to false, AngularJS

automatically hides the div element for you. There is

nothing special about the shouldShow variable: AngularJS

doesn’t require you to wrap your variables in special types;

the shouldShow variable can be a plain old JavaScript Boolean

value.

Although two-way data binding is the basis for what makes

AngularJS so useful, it’s only the tip of the iceberg.

AngularJS provides an elegant framework for organizing

your client-side JavaScript in a way to maximize reusability

and testability. In addition, AngularJS has a rich set of

testing tools, such as Karma, protractor, and ngScenario

(see Chapter 9), which are optimized for use with

AngularJS. AngularJS’s focus on testable structures and

rich testing tools makes it a natural choice for mission-

critical client-side JavaScript. Not only does it enable you to

write sophisticated applications fast, it supplies tools and

structure that make testing your application easy. As a

https://angularjs.org/

matter of fact, Google’s DoubleClick team cited AngularJS’s

“full testing story” as one of its six biggest reasons for

porting its digital marketing platform to AngularJS. Here is

a brief overview of some of the concepts that make

AngularJS special.

Two-Way Data Binding

In many older client-side JavaScript libraries, like jQuery

and Backbone, you are expected to manipulate the

Document Object Model (DOM) yourself. In other words, if

you want to change the HTML contents of a div element,

you need to write imperative JavaScript. For example:

$('div').html('Hello, world!');

AngularJS inverts this paradigm and makes your HTML the

definitive source for how your data is displayed. The

primary purpose of two-way data binding is to bind an

HTML or CSS property (for instance, the HTML contents or

background color of a div element) to the value of a

JavaScript variable. When the value of the JavaScript

variable changes, the HTML or CSS property is updated to

match. The opposite is also true: If the user types in an

input field, the value of the bound JavaScript variable is

updated to match what the user typed. For instance, the

following HTML greets whoever’s name is typed in the

input field. You can find this example in this chapter’s

sample code as data _ binding.html: Simply right-click on the

file and open it in your browser—no web server or other

dependencies required!

<input type="text" ng-model="user" placeholder="Your Name">

<h3>Hello, {{user}}!</h3>

No JavaScript is necessary! The ngModel directive and the

{{}} shorthand syntax do all the work. There is limited

benefit to using AngularJS in this simple example, but, as

you’ll see when you build a real application in Chapter 1,

data binding greatly simplifies your JavaScript. It’s not

uncommon to see 800 lines of jQuery spaghetti code

reduced to 40 lines of clean DOM-independent AngularJS

code thanks to data binding.

Scopes in the DOM

DOM scopes are another powerful feature of AngularJS. As

you might have guessed, there is no free lunch with data

binding; code complexity has to go somewhere. However,

AngularJS allows you to create scopes in the DOM that

behave similarly to scopes in JavaScript and other

programming languages. This permits you to break your

HTML and JavaScript into independent and reusable

pieces. For instance, here’s the same greeting example

from earlier, but with two separate scopes: one for greeting

in English, the other in Spanish:

 <div ng-controller="HelloController">

 <input type="text" ng-model="user" placeholder="Your

Name">

 <h3>Hello, {{user}}!</h3>

 </div>

 <hr>

 <div ng-controller="HelloController">

 <input type="text" ng-model="user" placeholder="Su

Nombre">

 <h3>Hola, {{user}}!</h3>

 </div>

 <script type="text/javascript"

 src="angular.js">

 </script>

 <script type="text/javascript">

 function HelloController($scope) {}

 </script>

The ngController directive is one way to create a new scope,

enabling you to reuse the same code for two different

purposes. Chapter 4 includes a thorough overview of two-

way data binding and a discussion of internal

implementation details.

Directives

Directives are a powerful tool for grouping HTML and

JavaScript functionality into one easily reusable bundle.

AngularJS has numerous built-in directives, like the

ngController and ngModel directives you saw earlier, that

enable you to access sophisticated JavaScript functionality

from your HTML. You can write your own custom directives

as well. In particular, AngularJS allows you to associate

HTML with a directive, so you can use directives as a way

of reusing HTML as well as a way of tying certain behavior

into two-way data binding. Writing custom directives is

beyond the scope of this introduction, but Chapter 5

includes a thorough discussion of the subject.

Templates

On top of two-way data binding, AngularJS lets you swap

out entire portions of the page based on the state of a

JavaScript variable. The ngInclude directive enables you to

conditionally include templates, pieces of AngularJS-

infused HTML, in the page based on the JavaScript state.

The following example demonstrates a page with a div that

contains different HTML based on the value of the

myTemplate variable. You can find this example in

templates.html in this chapter’s sample code:

 <div ng-controller="TemplateController">

 <div ng-include="myTemplate">

 </div>

 <a ng-click="myTemplate = 'template1';"

 style="cursor: pointer"

 ng-class="{'selected': myTemplate === 'template1' }">

 Display Template 1

 <a ng-click="myTemplate = 'template2';"

 style="cursor: pointer"

 ng-class="{'selected': myTemplate === 'template2' }">

 Display Template 2

 </div>

 <script type="text/javascript"

 src="angular.js">

 </script>

 <script type="text/javascript">

 function TemplateController($scope) {

 $scope.myTemplate = 'template1';

 }

 </script>

 <script type="text/ng-template" id="template1">

 <h1>This is Template 1</h1>

 </script>

 <script type="text/ng-template" id="template2">

 <h1>This is Template 2</h1>

 </script>

Chapter 6 includes a thorough discussion of AngularJS

templates, including how to use them to structure single-

page applications.

Testing and Workflow

Providing a framework for writing unit-testable code has

been a core AngularJS goal from its first release. AngularJS

includes an elegant and sophisticated dependency injector,

and all AngularJS components (controllers, directives,

services, and filters) are constructed using the dependency

injector. This ensures that your code’s dependencies are

easy to stub out as necessary for your tests. Furthermore,

the AngularJS team has developed numerous powerful

testing tools, such as the Karma test runner and the

protractor and ngScenario integration testing frameworks.

These bring the sophisticated multibrowser testing

infrastructure that was previously only feasible for large

companies into the hands of the individual developer.

In addition, AngularJS’s architecture and testing tools

interface nicely with various open source JavaScript build

and workflow tools, such as Gulp and Grunt. With these

tools, you can execute your tests seamlessly, tie in tools like

code coverage and linting into your test execution, and

even scaffold entirely new applications from scratch. Core

AngularJS is just a library, but the testing and workflow

tools surrounding it make the AngularJS ecosystem as a

whole an innovative new paradigm for building browser-

based clients. Chapter 9 includes a more detailed

discussion of the AngularJS testing ecosystem and the

different types of testing strategies you can use for your

AngularJS applications.

WHEN NOT TO USE ANGULARJS

Like any library, AngularJS is a perfect fit for some

applications and a not-so-good fit for others. In the next

section, you learn about several use cases in which

AngularJS is a perfect fit. In this section, you learn about a

few use cases in which AngularJS is not such a good fit and

learn about some of AngularJS’s limitations.

Applications Requiring Support for Old Versions

of Internet Explorer

One limitation of AngularJS that may be significant for

some users is that it doesn’t support old versions of

Internet Explorer. AngularJS 1.0.x supports Internet

Explorer 6 and 7, but the version that you’ll be learning

about in this book, AngularJS 1.2.x, supports only Internet

Explorer 8 and greater. Furthermore, the current

experimental versions of AngularJS, 1.3.x, drop support for

Internet Explorer 8 entirely. (They only support Internet

Explorer 9 and greater.) If your application needs to

support Internet Explorer 7, using AngularJS is probably

not the right choice.

Applications That Don’t Require JavaScript

Server I/O

AngularJS is an extremely rich and powerful library, and

avid users are often tempted to use it for every application.

However, there are many cases in which AngularJS is

overkill and adds unnecessary complexity. For instance, if

you need to add a button to a page that shows or hides a

div element whenever a user clicks on it, using AngularJS

cannot help you unless you need to persist the state of the

div in the page’s URL or to the server. Similarly, choosing to

write your blog in AngularJS is usually a poor decision.

Blogs typically display simple data with limited

interactivity, so AngularJS is often unnecessary. Also, blogs

require good integration with search engines. If you were

to write a blog in AngularJS, you would need to do some

extra work (see Chapter 6) to make sure search engines

could effectively crawl your blog, because search engine

crawlers don’t execute JavaScript.

WHEN TO USE ANGULARJS

Now that you’ve learned about a couple of AngularJS’s

limitations, you’ll learn about a few use cases in which

AngularJS truly shines.

Internal Data-Intensive Applications

AngularJS is an extremely powerful tool for applications

that need to display complex data in a browser UI, such as

continuous integration frameworks or product dashboards.

Much of the challenge in developing UIs for these

applications lies in writing imperative JavaScript to render

data correctly every time it changes. Two-way data binding

frees you from needing to write this glue code, which

results in much slimmer and easier-to-read JavaScript. As

you’ll see when you write a stock market dashboard in

Chapter 1, two-way data binding and directives make it

easy to elegantly structure applications that need to display

a lot of data.

Mobile Websites

AngularJS has extensive support for most common mobile

browsers (Android, Chrome Mobile, iOS Safari).

Furthermore, as you’ll see in Chapter 6, AngularJS has

powerful animation support, and single-page apps enable

you to leverage browser caching to minimize your

bandwidth usage. This enables you to build mobile web

applications that are fast and effectively mimic native

applications. In addition, frameworks like Ionic (Chapter

10) enable you to build hybrid mobile applications,

applications written in JavaScript but distributed through

the Android and iPhone app stores, using AngularJS.

Building a Prototype

One theme that appears numerous times in this book is the

idea of two-way data binding creating an effective

separation between front-end JavaScript engineering and

user interface/user experience (UI/UX) design. Two-way

data binding enables the front-end JavaScript engineer to

expose an application programming interface (API) that a

UI/UX designer can then access in HTML, enabling both

the front-end engineer and the designer to work in their

preferred environments without stepping on each other’s

toes. This is particularly useful for building out a prototype

browser UI quickly, because you can then effectively

parallelize tasks and enable your team to run more

smoothly. In addition, AngularJS’s rich testing ecosystem

enables you to ensure solid test coverage, and thus make

sure your prototype doesn’t have any obvious bugs when

you present it.

HOW TO USE THIS BOOK

Now that you’ve seen why AngularJS is such a popular

library, next up is a brief overview of the contents of this

book and how it can take you from writing beginner-level

AngularJS to writing professional-level AngularJS.

You can think of this book as a “choose your own

adventure” for learning AngularJS. If you are an AngularJS

beginner, you will benefit a great deal from reading the

book sequentially, as the chapters provide a logical

sequence for learning AngularJS from scratch. However,

the chapters and their examples are designed to be mostly

independent of one another. If you are familiar with

AngularJS and are looking to expand your knowledge in one

particular area, such as using testing frameworks (Chapter

9), you can simply go to the appropriate chapter and skip

the intermediate chapters. Some example code is shared

between chapters, but each chapter explains each piece of

example code under the assumption that you have never

seen it before. Furthermore, some chapters reference

information in other chapters, but they always provide a

brief overview of the necessary concept. Whether you’re

just getting started with AngularJS or you’re a more

advanced user looking to learn about a specific topic, this

book allows you to skip right to the most useful

information. (However, if you are an AngularJS beginner,

you should read Chapter 1 before skipping to other

chapters.) Here are some brief highlights of what you can

learn in each chapter.

Chapter 1: Building a Simple AngularJS

Application

This chapter is geared toward readers who are new to

AngularJS. You use AngularJS to build out a stock market

dashboard application from scratch and get a high-level

overview of the topics covered in subsequent chapters.

Chapter 2: Intelligent Workflow and Build Tools

In this chapter, you learn about the myriad open source

tools for scaffolding new AngularJS applications,

automating workflow, and including external dependencies.

Special emphasis is placed on the popular scaffolding tool

Yeoman, which enables you to quickly kick-start new

AngularJS applications and provide powerful tools for

managing your workflow.

Chapter 3: Architecture

This chapter offers an overview of best practices for

structuring AngularJS components, including how to pass

data between services, controllers, and directives. In

addition, this chapter explores best practices for directory

structures in applications of various sizes. Finally, this

chapter covers two popular tools for managing file

dependencies: RequireJS and Browserify.

Chapter 4: Data Binding

Although AngularJS data binding is elegant and intuitive,

intermediate AngularJS developers often benefit from a

deeper understanding of how data binding is actually

implemented. This chapter explores how AngularJS scopes

are structured and the implementation details of the $digest

loop, so you can avoid common data binding pitfalls. This

chapter also includes an overview of filters, including use

cases and common mistakes.

Chapter 5: Directives

The first half of this chapter offers a basic working

knowledge of how to write your own AngularJS directives

and explores various use cases for directives. The second

half focuses on designing more advanced directives using

tools like transclusion.

Chapter 6: Templates, Location, and Routing

The primary purpose of this chapter is to supply an

overview of how to write single-page applications in

AngularJS, applications that allow a user to transition

between multiple “views” without reloading the page. To

build up to creating a single-page application, this chapter

provides a detailed overview of AngularJS templates, the

template cache, and the $location service. This chapter also

provides an overview of using CSS3 animations with

AngularJS and an example of how to make single-page

applications search-engine-friendly using Prerender.

Chapter 7: Services, Factories, and Providers

This chapter provides a thorough description of the

different methods of creating a service in AngularJS. You

also learn how services work “under the hood” and how to

take advantage of services’ internal implementation.

Chapter 8: Server Communication

In this chapter, you use basic services and interceptors to

create a login system. In addition, you learn how to

bootstrap a simple back end using StrongLoop’s Loopback

API and integrate Facebook login with your client-side

AngularJS application and your Loopback API.

Chapter 9: Testing and Debugging AngularJS

Applications

This chapter includes a thorough overview of structuring

unit tests and DOM integration tests (also known as

halfway tests) for your AngularJS applications using the

popular open source test runner Karma. This chapter also

discusses the open source behavior-driven development

(BDD) testing frameworks Mocha and Jasmine and explains

how to run your tests in SauceLabs’s browser cloud.

Chapter 10: Moving On

This chapter contains a brief overview of several popular

open source modules that enable AngularJS to do some

unexpected things. In particular, you learn how to integrate

Twitter Bootstrap components using Angular-UI Bootstrap,

how to build hybrid mobile applications with AngularJS and

the Ionic framework, and how to integrate two popular

open source JavaScript modules, Moment and Mongoose,

with AngularJS. You also learn how to use ECMAScript 6

generators with AngularJS’s $http service.

HOW TO WORK WITH THIS BOOK’S

SAMPLE CODE

Each chapter in this book has its own sample code,

available in the Code Downloads section at

http://www.wrox.com/go/proangularjs. Each chapter starts with

a reminder to visit this URL to download the sample code,

so don’t worry about bookmarking this exact page.

Although each chapter includes code in the text as

appropriate, it’s best to download each chapter’s sample

code and try the examples for yourself.

This book’s sample code has been designed to have a

minimum of outside dependencies. The beginning of each

chapter explains any special dependencies required for

running its sample code. For many of this book’s examples,

http://www.wrox.com/go/proangularjs

you only require a modern browser. (The examples were

primarily developed with Google Chrome 37 and Mozilla

Firefox 32, but Internet Explorer 9 and Safari 6 should be

sufficient.) These examples are in the form of .html files

that you can open by right-clicking on the file and choosing

to open the file in your browser using the file:// protocol.

For instance, to view the data _ binding.html example from

this chapter’s sample code, you may navigate to

file:///Users/user/Chapter%200/data _ binding.html if this

chapter’s sample code is in the /Users/user/Chapter 0

directory. You may safely assume that you can open any

HTML file from this book’s sample code in your browser

without extra setup unless otherwise specified.

You don’t require a special integrated development

environment (IDE) for this book’s sample code. Text editors

like vim and SublimeText should be sufficient for

experimenting with the sample code. You can use IDEs like

WebStorm if you prefer, but there is limited benefit to using

an IDE for this book’s sample code.

Many of the concepts covered in this book require a web

server to function properly. To make this process as

lightweight as possible, this book utilizes NodeJS and the

NodeJS package manager npm to start web servers. In

addition, many of the tools you’ll learn about in this book,

like Grunt, Prerender, and Yeoman, are most easily

installed through npm. To install NodeJS, you should go to

http://nodejs.org/download and follow the instructions for

your platform. NodeJS is easy to install and supports

virtually every common desktop operating system

(including Windows); furthermore, npm is automatically

included with NodeJS. Most examples in this book that

require NodeJS, however, assume that you are using a bash

shell. Linux and OSX users can use their default terminals.

On Windows, you should use git bash

(http://msysgit.github.io), a bash terminal for Windows, if

http://nodejs.org/download
http://msysgit.github.io/

you want to run the command-line instructions as is. (Keep

in mind, NodeJS does not officially support Cygwin, so

using Cygwin is not recommended.) Each chapter explains

how to install additional dependencies and reminds you to

install NodeJS if necessary.

CONVENTIONS

To help you get the most from the text and keep track of

what’s happening, this book uses a number of conventions.

NOTE Notes, tips, hints, tricks, and asides to the

current discussion are offset like this.

As for styles in the text:

URLs within the text are presented like so:

https://angularjs.org/#!.

Code shows up like this:

A monofont type is used for code examples.

Bold is used to emphasize code that is particularly important

in the present context or to show changes from a previous code

snippet.

ERRATA

Every effort has been made to ensure that there are no

errors in the text or in the code. However, no one is

perfect, and mistakes do occur. If you find an error in one

of the Wrox books, like a spelling mistake or faulty piece of

code, please share your feedback. By sending in errata, you

may save another reader hours of frustration; at the same

time, you are helping to provide even higher-quality

information.

https://angularjs.org/#!

To find the errata page for this book, go to

http://www.wrox.com/WileyCDA/ and locate the title using the

Search box or one of the title lists. Then, on the Book

Search Results page, click the Errata link. On this page you

can view all errata that has been submitted for this book

and posted by Wrox editors.

NOTE A complete book list including links to errata is

also available at http://www.wrox.com/WileyCDA/Section/id-

105077.html.

If you don’t spot “your” error on the Errata page, click the

Errata Form link and complete the form to send the error

you have found. The information will be checked and, if

appropriate, a message will be posted to the book’s errata

page and the problem corrected in subsequent editions of

the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at

http://p2p.wrox.com. The forums are a web-based system for

you to post messages relating to Wrox books and related

technologies and interact with other readers and

technology users. The forums offer a subscription feature

to e-mail you topics of interest of your choosing when new

posts are made to the forums. Wrox authors, editors, other

industry experts, and your fellow readers are present on

these forums.

At http://p2p.wrox.com, you will find a number of different

forums that will help you not only as you read this book,

but as you develop your own applications. To join the

forums, just follow these steps:

1. Go to http://p2p.wrox.com and click the Register link.

http://www.wrox.com/WileyCDA/
http://www.wrox.com/WileyCDA/Section/id-105077.html
http://p2p.wrox.com/
http://p2p.wrox.com/
http://p2p.wrox.com/

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any

optional information you want to provide, and click

Submit.

4. You will receive an e-mail with information describing

how to verify your account and complete the joining

process.

NOTE You can read messages in the forums without

joining P2P but in order to post your own messages, you

must join.

Once you join, you can post new messages and respond to

messages that other users post. You can read messages at

any time on the web. If you would like to have new

messages from a particular forum e-mailed to you, click the

Subscribe to this Forum icon by the forum name in the

forum listing.

For more information about how to use the Wrox P2P, be

sure to read the P2P FAQs for answers to questions about

how the forum software works as well as many common

questions specific to P2P and Wrox books. To read the

FAQs, click the FAQ link on any P2P page.

1

Building a Simple AngularJS

Application

WHAT YOU WILL LEARN IN THIS

CHAPTER:

Creating a new AngularJS application from scratch

Creating custom controllers, directives, and services

Communicating with an external API server

Storing data client-side using HTML5 LocalStorage

Creating a simple animation with ngAnimate

Packaging your application for distribution and

deployment using GitHub Pages

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter

at http://www.wrox.com/go/proangularjs on the Download Code

tab. For added clarity, the code downloads contain an

individual directory for each step of the application

building guide. The README.md file located in the root

directory of the companion code contains additional

information for properly utilizing the code for each step of

the guide. Those who prefer to use GitHub can find the

repository for this application, which includes Git tags for

each step of the guide and detailed documentation, by

visiting http://github.com/diegonetto/stock-dog.

WHAT YOU ARE BUILDING

http://www.wrox.com/go/proangularjs
http://github.com/diegonetto/stock-dog

The best way to learn AngularJS is to jump directly into a

real-world, hands-on application that leverages nearly all

key components of the framework. Over the course of this

chapter, you will build StockDog, a real-time stock

watchlist monitoring and management application. For the

unfamiliar, a watchlist in this context is simply an arbitrary

grouping of desired stocks that are to be tracked for

analytical purposes. The Yahoo Finance API (application

programming interface) will be utilized to fetch real-time

stock quote information from within the client. The

application will not include a dynamic back end, so all

information will be fetched from the Yahoo Finance API

directly or, in the case of company ticker symbols, be

contained within a static JSON (JavaScript Object Notation)

file. By the end of this chapter, users of your application

will be able to do the following:

Create custom-named watchlists with descriptions

Add stocks from the NYSE, NASDAQ, and AMEX

exchanges

Monitor stock price changes in real time

Visualize portfolio performance of watchlists using

charts

StockDog will consist of two main views that can be

accessed via the application’s navigation bar. The

dashboard view will serve as the landing page for

StockDog, allowing users to create new watchlists and

monitor portfolio performance in real time. The four key

performance metrics displayed in this view will be Total

Market Value, Total Day Change, Market Value by Watchlist

(pie chart), and Day Change by Watchlist (bar graph). A

sample dashboard view containing three watchlists is

shown in Figure 1.1.

Figure 1.1

Each watchlist created in StockDog has its own watchlist

view containing an interactive table of stock price

information as well as a few basic calculations that assist in

monitoring an equity position. Here, users of your

application can add new stocks to the selected watchlist,

monitor stock price changes in real time (during market

hours), and perform in-line editing of the number of shares

owned. A sample watchlist view tracking seven stocks is

shown in Figure 1.2.

Figure 1.2

The process of building this application will be described

over a series of 12 steps. Each step will focus on

developing a key feature of StockDog, with AngularJS

components introduced along the way, because they are

needed to fulfill requirements defined by the application.

Before beginning the construction of StockDog, it is

important to establish a high-level overview of what you

will be learning.

WHAT YOU WILL LEARN

The step-by-step guide included in this chapter will go

beyond basic AngularJS usage. By implementing practical,

real-world examples using the main building blocks of this

framework, you will be exposed to most of the components

provided by AngularJS, which will then be expanded upon

in detail in subsequent chapters. It is important to keep this

in mind because some of the features required by StockDog

will utilize advanced concepts of the framework. In these

cases, specific details on how the underlying AngularJS

mechanism works will be omitted, but a high-level

explanation will always be provided so that you can

understand how the component is being utilized in the

context of implementing the feature at hand. By the end of

this chapter, you will have learned how to do the following:

Structure a multiview single-page application

Create directives, controllers, and services

Configure $routeProvider to handle routing between views

Install additional front-end modules

Handle dynamic form validation

Facilitate communication between AngularJS

components

Utilize HTML5 LocalStorage from within a service

Communicate with external servers using $http

Leverage the $animate service for cascading style sheet

(CSS) animations

Build application assets for production

Deploy your built application to GitHub Pages

Now that the scope and high-level overview for StockDog

have been discussed, you should have enough background

and context to begin building the application. For those

interested in viewing a working demonstration of StockDog

immediately, you can find the completed application at

http://stockdog.io.

STEP 1: SCAFFOLDING YOUR PROJECT

WITH YEOMAN

http://stockdog.io/

Starting a brand new web application from scratch can be

a hassle because it usually involves manually downloading

and configuring several libraries and frameworks, creating

an intelligent directory structure, and wiring your initial

application architecture by hand. However, with major

advancements in front-end tooling utilities, this no longer

needs to be such a tedious process. Throughout this guide,

you will utilize several tools to automate various aspects of

your development workflow, but detailed explanations of

how these tools work will be saved for discussion in

Chapter 2, “Intelligent Workflow and Build Tools.” Before

getting started with scaffolding your project, you need to

verify that you have the following prerequisites installed as

part of your development environment:

Node.js—http://nodejs.org/

Git—http://git-scm.com/downloads

All the tools used in this chapter were built using Node.js

and can be installed from the Node Packaged Modules

(NPM) registry using the command-line tool npm that is

included as part of your Node.js installation. Git is required

for one of these tools, so please ensure that you have

properly configured both it and Node.js on your system

before continuing.

Installing Yeoman

Yeoman is an open source tool with an ecosystem of plug-

ins called generators that can be used to scaffold new

projects with best practices. It is composed of a robust and

opinionated client-side stack that promotes efficient

workflows which, coupled with two additional utilities, can

help you stay productive and effective as a developer.

Following are the tools Yeoman uses to accomplish this

task:

http://nodejs.org/
http://git-scm.com/downloads

Grunt—A JavaScript task runner that helps automate

repetitive tasks for building and testing your application

Bower—A dependency management utility so you no

longer have to manually download and manage your

front-end scripts

You can find an in-depth discussion of Yeoman, its

recommended workflow, and associated tooling in Chapter

2, “Intelligent Workflow and Build Tools.” For now, all you

need to do to get started is to install Grunt, Bower, and the

AngularJS generator by running the following from your

command line:

npm install –g grunt-cli

npm install –g bower

npm install –g generator-angular@0.9.8

NOTE Specifying the -g flag when invoking npm install

ensures that the desired package will be available

globally on your machine. When you’re installing

generator-angular, the official AngularJS generator

maintained by the Yeoman team, version 0.9.8 is

specified. This should allow you to easily follow along

with the rest of the guide, regardless of the current

version. For any subsequent projects, it’s highly

recommended that you update to the latest version. You

can do this by simply running npm install -g generator-

angular once you have completed this chapter.

Scaffolding Your Project

With all the prerequisite tools installed on your machine,

you are ready to get started scaffolding your project.

Thankfully, Yeoman makes this process quick and painless.

Go ahead and create a new directory named StockDog, and

