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1 Introduction

Energy-efficient projects use alternative technologies, fuels and management
systems to reduce heat and electricity consumption. Renewable energy-supply
projects produce heat and electricity using sources of energy which are regen-
erated over short time periods. Their recent rise to prominence in modern
society has been driven by their low environmental impacts relative to
fossil-fuelled alternatives. However, as they mature, energy-efficient and
renewable energy technologies must demonstrate not only their environ-
mental benefits but also their economic competitiveness. This book focuses
on the assessment of projects using approaches that take into account the
unique economic, environmental and energy characteristics of renewable
and energy-efficient technologies.

The global demand for energy-supply and efficiency projects has never
been greater. Between 2012 and 2035, the demand for primary energy and
electricity is estimated to increase by half and 70%, respectively, mainly
in developing countries, while in developed countries the ongoing shift
to energy-efficient and low carbon supply technologies are projected to
continue. These trends are driven by many – mostly inescapable – factors: a
growing global population, increasing wealth, uncertainty of fossil fuel price,
security of supply concerns and enhanced policies to combat greenhouse
gas (GHG) emissions and global warming. For example, by 2013, China, the
European Union (EU) and Japan had adopted emission-reduction targets,
while California, Australia, New Zealand and the EU had introduced carbon
emissions trading schemes. Assuming the implementation of such existing
policy commitments only, it is projected that between 2010 and 2035, a $37tn
investment will be required in the world’s energy-supply infrastructure and
as much as $11.8tn will be spent on energy-efficient measures across all
economic sectors (IEA, 2012).

Renewable Energy and Energy Efficiency: Assessment of Projects and Policies, First Edition.
Aidan Duffy, Martin Rogers and Lacour Ayompe.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Each of the myriad of energy efficiency and supply projects which will
comprise these investments must be identified, shortlisted, modelled and
economically assessed before it can be financed and implemented. Some will
be very large investments such as nuclear or hydro power schemes; others
will be small energy-efficient measures such as the installation of domestic
attic insulation. All require a systematic approach to assessing their relative
costs and benefits. The intention of this book is to present and illustrate the
assessment tools necessary to make these decisions as efficiently as possible.

1.1 Background

The history of assessing the costs and benefits of energy projects is prob-
ably as long as humans have been harnessing energy for their needs.
Hunter-gatherers must have recognised that the advantages of cooking, light
and warmth from fires outweighed the time and effort involved in collecting
the necessary fuel. However, it was not until the 18th century that the formal
process of investment appraisal (or capital budgeting) emerged as a discipline,
which focused on quantifying the benefits of long-term capital investments
to companies. Assessing the cost-effectiveness of energy investments became
much more important as a result of the 1973 oil and 1979 energy crises,
which resulted in real oil prices increasing from a long-term historic average
of about $20/barrel ($∕bbl) to $60 and then over 100$∕bbl (Figure 1.1). This
heralded a much greater level of interest in energy-efficient and renewable
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energy-supply technologies as economic alternatives to fossil fuels. With the
long-term rise in fossil fuel prices since the 1970s and projections for this
trend to continue, the investment appraisal of energy projects has continued
to become increasingly important (see Figure 1.1).

While the process of investment appraisal has been developed to meet
the needs of the private investors of a project, the costs and benefits to the
wider community are often ignored, often because they have no market value
and are thus difficult to quantify. As energy-supply infrastructure became
more widely deployed in developed countries in the mid-20th century and as
societies became more environmentally and socially aware, these costs and
benefits became more apparent. For example, coal combustion for industrial
and domestic heating caused smog, resulting in increased morbidity, higher
health costs and lost productivity; hydroelectric dams were built without suf-
ficient consideration of their undesirable impacts on agriculture, fishery and
local communities. As these impacts often have no direct market value and
are, therefore, difficult to monetise, methods other than investment appraisal
become necessary. One solution to this was cost–benefit analysis (CBA or
benefit–cost analysis), which was first developed in the mid-19th century but
was not used in practice until the 1930s for assessing the attractiveness to
society of large infrastructural projects. CBA is typically used to monetise and
compare the costs and benefits of large projects or policies that have societal
impacts. It attempts to approximate and account for the monetary values of
non-marketed goods and services such as air and water quality, employment
impacts or displaced local industry. A project is beneficial where its societal
benefits outweigh its costs.

However, many large energy projects are complex and have important
attributes that are difficult to either quantify or monetise or both. For example,
the visual impact of wind turbines on the landscape may affect house prices
for the local population and amenity value for tourists: these effects can
be difficult to quantify and value. In projects of public importance where
environmental and social criteria assume significant importance, purely
economic approaches such as CBA or investment appraisal cannot represent
all of the attributes which must be considered for an accurate assessment.
The emergence of multi-criteria decision analysis (MCDA) in the 1960s and
1970s attempted to address this failure by allowing impacts on different scales
to be compared. It breaks the assessment problem in smaller parts to facilitate
analysis and aggregates these in a way that allows a project ranking to be
made. MCDA is now widely used to shortlist options for large energy projects
of public importance such as hydroelectric dams, transmission infrastructure
and wind farms.

Energy policies as well as large, strategically important energy projects,
which are supported by the state, must be measured not only by their value for
money to their investors and wider society but also by their ability to achieve
important national objectives such as GHG emission-reduction targets. In
February 2005, the Kyoto agreement came into force obliging many developed
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countries to limit emissions of GHGs. Since then, emission mitigation has
become a key energy policy objective for many industrialised countries. In
order to develop and monitor policies, project appraisal techniques have
been extended to measure the societal cost of climate change mitigation. One
widely used metric is the marginal abatement cost (MAC) of a technology,
which expresses the cost to an economy of reducing emissions by one unit by
switching to a more energy-efficient or renewable energy technology. Initially,
only operational emissions were considered when estimating MACs, but the
low operational and relatively high production and installation emissions
of renewable energy systems led to concerns about the accuracy of this
approach. This has led to the increasing adoption of life cycle assessment as
a method for estimating the whole life (or “cradle-to-grave”) emissions of
energy systems.

The development of the aforementioned economic and non-economic
assessment techniques (investment appraisal, CBA and MCDA) over the past
two centuries has been critical to the effective assessment of energy projects.
Two more recent developments are the widespread development of personal
computers (PCs) and the collection of large energy-related datasets, many of
which are in the public domain. These provide both a wide variety of input
data and the necessary processing power for energy-related models. PCs
now support powerful programming and data analysis packages that can
be configured to simulate a wide range of detailed energy systems. Hourly
wholesale electricity data are publically available in Ireland; dynamic wind
farm output data are freely available in Denmark, and the advent of smart
metering leads to collection of energy demand data at the level of individual
buildings. These enable the development of detailed dynamic numerical
models which are representative of energy conversion and conservation
processes, which, until even a decade ago, were not possible. The resulting
ability to model accurate cash flows, pollutant emissions and other outputs
provides much more knowledge for decision-making purposes than was
possible heretofore.

1.2 Aim

The aim of this book is to provide the reader with the tools to shortlist and eco-
nomically evaluate energy projects as well as gain an appreciation for aspects
of energy policy design. Specifically, students will learn

• approaches to the dynamic modelling of energy inputs and outputs to and
from a wide variety of projects employing a range of different renewable
and energy-efficient technologies;

• how to extend these models to estimate cash flows and GHG emissions;
• ways of parameterising these results in order to quantify the financial and

environmental performances of the projects;
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• techniques for assessing and shortlisting complex projects involving
non-economic impacts; and

• simple methods for designing price supports for energy technologies.

The book is written for students and practitioners alike. Undergraduate and
postgraduate students will be introduced to the economic performances of a
variety of technologies and to the basic concepts and frameworks of project
financial assessment. Facilities’ manager will learn how to provide evidence for
business plans outlining their proposals for the energy retrofit and upgrade of
their assets. Design engineers will benefit from understanding how to eco-
nomically optimise their design solutions rather than sizing the plant and
equipment to meet peak loads. Planners of large infrastructural projects will
be introduced to systematic techniques for site and project screening before
undertaking a detailed economic appraisal of a smaller set of project alterna-
tives. Policy makers and planners will be introduced to the fundamentals of
subsidy design for renewable and energy-efficient technologies.

The book deals primarily with renewable energy-supply and energy-
efficient technologies. Renewable energy supply relates to energy conversion
technologies, which use sources of energy that are naturally regenerated
on a short (human) time scale, such as solar, wind, ocean, biofuels and
geothermal energies. Typical technologies that convert renewable energy
sources into electricity include wind turbines, solar photovoltaics (PV),
biomass-driven gas and steam turbines, geothermally driven steam turbines,
concentrating solar power, tidal barrages and a variety of wave-powered
devices. Thermal conversion technologies are very diverse and include solar
water heaters, biomass and biogas boilers and stoves and geothermal tech-
nologies. Non-renewable energy supply relates primarily to fossil fuels such
as oil, coal and natural gas, which cannot be created in a human time scale
and typically take many millions of years to form. Fossil-fuelled electricity
generation usually employs various gas- and steam-turbine technologies,
but also includes reciprocating engines, while heat generation is normally
undertaken using boiler technologies and, to a lesser extent, stoves. We do
not deal specifically with nuclear power in this book because this is a large
topic in itself that, at the time of writing, has an uncertain medium-term
future for political, economic and environmental reasons. Nonetheless, many
of the principles described here can be directly applied to this technology.

Energy-efficient projects involve the use of alternative technologies, fuels
and management systems to deliver the same level of service or output using
less energy (irrespective of the energy-supply source). Therefore, any tech-
nology, fuel or management system has the potential to be energy efficient,
because this classification is gained by comparing it to the displaced alterna-
tive. An obvious example is increasing the amount of insulation in a building
to reduce heat losses, so that the same level of thermal comfort can be provided
using less heat and, therefore, fuel. Burning gas instead of coal in a thermal
power station can result in the consumption of less primary energy and, in
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this situation, may be viewed as an energy-efficient technology. It should be
highlighted that although fossil-fuelled technologies are not the focus of this
book, the concepts presented are equally valid for their assessment.

The learning approach adopted involves explaining each theory and pro-
viding an example in close proximity in order to illustrate and embed the
concept. Larger case studies are also included to demonstrate the combination
of different concepts for more complex examples. We attempt to give examples
for a wide variety of industry sectors and applications to make the book as
broadly relevant as possible. Examples are given for the domestic, commercial,
energy and industrial sectors using single and multiple electrical and thermal
technologies such as PV, solar water heaters, wind turbines, wave power, com-
bined heat and power, boilers and insulation. In addition, a number of policy
examples that illustrate feed-in-tariff and capital subsidy design are given. We
attempt to make this book as practical as possible, so that the reader is able
to easily apply the concepts to projects of personal interest. For this reason,
the examples and case studies are made available online (www.wiley.com/go/
duffy/renewable), which help the reader to gain a detailed understanding of
the techniques used and apply them directly to problems of personal interest.

Finally, this book adopts a bottom-up ‘engineering’ approach to the
financial appraisal of renewable energy projects. This involves the modelling,
simulation and economic parameterisation of individual energy projects in
isolation to the market in which they operate.

1.3 Aspects of renewable energy project appraisal

In general, the appraisal of renewable energy and energy-efficient projects is
no different to the assessment of any other capital projects. Although we will
see that some project performance measures are specific to the field, the main
appraisal techniques described here such as investment appraisal, CBA, and
multi-criteria analysis are widely applied to other investments, both large and
small. Nevertheless, renewable and energy-efficient projects do have unique
characteristics, which the assessor must be aware of in order to undertake a
proper assessment.

Many renewable and energy-efficient projects are characterised by high
initial investment costs and low operational costs. This is true for technologies
such as wind, PV and solar thermal as well as energy-efficient measures
such as insulation. Conventional fossil-fuelled plant, on the other hand, has
lower capital costs as a proportion of total life cycle costs with relatively
higher operational outgoings because of the ongoing need to purchase fossil
fuels. This means that renewable energy and energy-efficient supply projects
are generally less exposed to fluctuations in variable costs as compared to
fossil-fuelled ones due to the high price volatility of fuel inputs, particularly
oil and its derivatives. Renewables do remain exposed to fluctuations in
revenues resulting from changes in the unit cost of energy outputs, such as

http://www.wiley.com/go/duffy/renewable
http://www.wiley.com/go/duffy/renewable
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electricity and heat, as does conventional plant, although input and output
prices tend to move together, thus acting as a natural ‘hedge’ to revenue risk
for fossil-fuelled plant. Often, the ‘revenues’ in renewable or energy-efficient
projects are avoided costs such as the cost of grid electricity displaced by
embedded generators. Revenues from many renewable projects may also
include long-term price supports such as feed-in-tariffs, which provide a fixed
production tariff or tariff floor. However, these can represent a significant risk
because a single regulatory decision can greatly alter the basis of an initial
investment decision. This political risk is exacerbated by the long payback
periods needed for many renewable energy technologies. For example, PV
feed-in-tariffs were reduced in the United Kingdom, Spain, Germany and
Bulgaria, between 2009 and 2011. Societal imperatives can also shift quickly:
the Great Recession of 2009 focused public debate on economic growth
and employment while costly emissions’ mitigation policies dropped down
the priority list. The identification and quantification of project risk are,
therefore, an important task in many renewable and energy-efficient project
assessments.

The fast-changing energy and renewables landscape results in other risks
too. Technology costs are evolving quickly: real capital costs of installed
US commercial PV system have more than halved in the 15 years between
1998 and 2013 (Feldman et al., 2012), whereas the development of hydraulic
fracturing technology has been associated with a drop in nominal US
wellhead natural gas prices from $6.25 to $2.66/1000 ft3 between 2007 and
2012 (US EIA, 2014). Therefore, the timing of investments in renewable
energy and energy-efficient projects and policies is particularly important.
For example, investing under conditions of strong global growth is likely
to be more attractive as energy prices are likely to be higher giving greater
certainty to short- and medium-term revenues. Moreover, technology costs
in the future are likely to be lower, possibly resulting in better returns to the
private investor and lower technology subsidies.

Many renewable energy technologies rely on national subsidies for a
variety of reasons, not least because they may not be competitive with
conventional alternatives. The approach is controversial as governments
do not have a reputation for ‘picking winners’, particularly in a field as
technologically complex as energy conversion, storage, transmission and
efficiency. These subsidies include feed-in-tariffs, capital subsidies, tax rebates
and renewable obligations certificates. Opponents argue that putting a price
on the negative effects of fossil fuels using a carbon tax is a more efficient
approach because the market would adopt the technology with the lowest
marginal abatement cost, thus resulting in lower overall societal costs as
compared with subsidies. However, renewables’ subsidies are regarded by
others as important in encouraging investment in emerging low carbon
technologies, accelerating market growth and reducing technology costs.
State investments in onshore wind since the 1990s, for example, have greatly
contributed to a decrease of about two-thirds in the real cost of wind power
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plant over the past two decades. Indeed, the costs of renewable technologies
are falling more rapidly than conventional technologies because they are
typically less mature. However, while policy supports can result in widespread
technological deployment, learning and cost reductions, they can also result
in supply constraints and increased market prices. Policy makers must apply
project appraisal techniques to answer the questions: What is the minimum
support necessary to support a technology? Is this cost-effective in support-
ing key government policies such as emissions mitigation? It is important
that where subsidies are introduced they represent value for money for
the taxpayer.

Project assessors should be aware that renewable energy-supply technolo-
gies do not always offer identical outputs to the conventional alternatives. A
unit of electricity from a wind turbine is not the same as that from a thermal
power station because the latter is almost always available when it is needed
(i.e. it is ‘dispatchable’), whereas the former is only available when the wind
is blowing and its availability cannot be guaranteed when needed (and it,
therefore, is ‘non-dispatchable’). An accurate comparative analysis should
always compare like-with-like; for example, storage and backup should be
included with intermittent renewable generation when comparing it with
dispatchable plant, so that identical levels of service are provided in each
case. This approach should be considered when comparing any intermittent
technology (wind, solar and ocean). However, when compared to conven-
tional alternatives, renewable energy projects can provide additional benefits
to society over fossil-fuelled alternatives, which should be considered as part
of the assessment process. These include emissions reductions, local employ-
ment as well as increased national security of energy-supply due to reduced
import dependency (in net energy importing countries only). Social costs
imposed by renewable and energy-efficient projects should also be included.

1.4 Book layout

There are five main chapters in this book that introduce the reader to the
techno-economic characteristics of renewable and energy-efficient systems,
financial and non-financial project assessment methods and aspects of energy
policy. Each chapter includes an initial content overview before describing rel-
evant theory; short examples are provided throughout, which apply this the-
ory to practical applications of renewable energy and energy-efficient projects.
Chapters 3–6 include concluding comments, which highlight the key concepts
introduced. Case studies are included at the ends of chapters, which illustrate
how complete renewable energy projects might be assessed using the main
concepts introduced.

Chapter 2, ‘Technologies’, describes a variety of renewable energy and
energy-efficient technologies, which are necessary to understand the examples
and case studies described in the book. The descriptions mainly focus on
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those aspects that are necessary for subsequent modelling and appraisal such
as efficiencies and other operational parameters, investment costs, operating
and maintenance costs and environmental emissions. This is by no means a
comprehensive overview of all relevant technologies because this is not the
focus of the book.

The foundation of almost all financial measures of energy project perfor-
mance is an accurate cash flow. For energy projects, all cash flows are directly
related to energy flows to and from the system being considered. For example,
the cost of running a gas-fired boiler is related to how efficient it is at con-
verting the gas input into the necessary heat output. Quantities of gas used
and heat produced represent the main costs and benefits of the system and,
together with capital cost, largely determine its financial performance. Simi-
larly, environmental impacts such as GHG emissions are largely determined
by the gas inputs to the system. Therefore, Chapter 3, ‘Modelling Energy Sys-
tems’, is dedicated to system definition, modelling and simulation.

Chapter 4, ‘Financial Analysis’, uses these cash flows to create financial mea-
sures – or parameters – for renewable energy and energy-efficient projects.
First, fundamental concepts are introduced, which are necessary for convert-
ing project cash flows into useful parameters. A wide variety of parameters are
then presented and their strengths and weaknesses in different contexts dis-
cussed. Those of particular relevance to assessing renewable energy projects
are highlighted.

Not all projects can be compared on purely economic grounds. Many other
advantages and disadvantages of a particular project option may be important.
For example, social, political and environmental dimensions may be partic-
ularly important for large infrastructural projects such as the construction
of hydroelectric dams or the routing of large overhead transmission lines.
Chapter 5, ‘Multi-criteria Analysis’, offers alternative methods for shortlisting
and selecting projects using MCDA techniques.

Chapter 6, ‘Policy Aspects’, combines these financial techniques with envi-
ronmental assessment methods and extends them to introduce basic concepts
in policy design. An initial review of policy options for emission mitigation is
followed by an overview of life cycle assessment and methods for quantifying
GHG emissions from different renewable energy and energy-efficient projects.
The chapter explains marginal abatement costs and subsidy design and gives
a short introduction to social CBA.

Case studies are provided at the end of Chapters 3–6, which demon-
strate the application of many of the key concepts introduced in these
chapters. Case studies include energy and cash flow models (commercial
PV systems, gas heat pumps for data room cooling, compressed air energy
storage), financial appraisals (converting a bus fleet to compressed natural
gas fuel, wind farm appraisal), non-economic analysis (wind farm site
selection) and policy-related assessments (MAC estimation and domestic PV
feed-in-tariff design). Case study spreadsheet calculations can be accessed at
www.wiley.com/go/duffy/renewable.

http://www.wiley.com/go/duffy/renewable
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