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CHAPTER 1
INTRODUCTION

CLIFFORD K. HO AND STEPHEN W. WEBB
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA

Gas and vapor transport in porous media occur in a number of important applications
including drying of industrial and food products, oil and gas exploration, environmen-
tal remediation of contaminated sites, and carbon sequestration. Understanding the
fundamental mechanisms and processes of gas and vapor transport in porous media
allows models to be used to evaluate and optimize the performance and design of
these systems.

In this book, gas and vapor are distinguished by their available states at stan-
dard temperature and pressure (20°C, 101 kPa). If the gas-phase constituent can also
exist as a liquid phase at standard temperature and pressure (e.g., water, ethanol,
toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is
non-condensable at standard temperature and pressure (e.g., oxygen, carbon diox-
ide, helium, hydrogen, propane), it is considered a gas. The distinction is important
because different processes affect the transport and behavior of gases and vapors in
porous media. For example, mechanisms specific to vapors include vapor-pressure
lowering and enhanced vapor diffusion, which are caused by the presence of a gas-
phase constituent interacting with its liquid phase in an unsaturated porous media. In
addition, the “heat-pipe” exploits isothermal latent heat exchange during evaporation
and condensation to effectively transfer heat in designed and natural systems.

The intent of this book is to expose the reader to a variety of important studies
of gas and vapor transport in porous and fractured media. The primary focus is on
the presentation of fundamental processes, state-of-the-art modeling, experiments,
and applications that are relevant to gas and vapor transport in porous and fractured
media. The topics in this book span multiple disciplines, ranging from soil science to
engineering. This has been done intentionally to integrate the broad audience in this
subject area and to provide a compilation of common areas of research. Historically,
the treatment of gas and vapor transport processes in porous and fractured media has
been segregated according to disciplines or journals. Approaches to understanding
these processes have evolved in soil science for many decades, but there has been
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2 Ho and Webb

relatively little cross-fertilization of these studies and findings into other disciplines
such as engineering. Some processes such as enhanced vapor diffusion have been
investigated by researchers in soil sciences as far back as the 1950s and 1960s, but
they are only recently being considered in engineering applications such as drying of
porous materials.

Another motivation for this book is to identify applications where gas and vapor
transport are important or dominant mechanisms. Often, the importance of gas and
vapor transport mechanisms is overlooked or overshadowed by studies of liquid-
flow processes. However, advances in numerical modeling and experimental methods
have allowed the simulation of coupled gas- and liquid-flow processes in complex
media, and we are now able to distinguish the relative importance of mechanisms
in various applications. Examples of recent applications in which gas and vapor
transport processes are significant include nuclear waste disposal in geologic media
and detection of unexploded ordnance in the subsurface.

This book is divided into three parts: Part 1 — Processes and Models; Part 2 —
Measurement and Monitoring; and Part 3 — Applications. The first part, Processes
and Models, presents fundamental processes associated with gas and vapor transport
in porous media. Beginning with gas transport mechanisms, it describes advection
and diffusion processes, including the Dusty-Gas Model. Vapor transport processes
are then described in a similar manner, illustrating important features of a condensable
gas in porous media such as enhanced vapor diffusion and vapor-pressure lowering.
Vapor-solid sorption is also discussed because of its importance to recent applications
in land-mine detection, and mechanisms involving evaporation and coupled processes
are presented. The impact of heterogeneities and scaling on gas and vapor transport
processing in porous and fractured media is also discussed. Two-phase processes
and characteristics are also described, and various models of gas and vapor transport
processes using continuum and Lattice Boltzmann models are presented.

In Part 2, Measurement and Monitoring, various methods are described that have
been used to measure gas and vapor transport processes and parameters at the labo-
ratory and field scales. Measurement of the diffusion coefficient, permeability, flow
rate, constituent concentration, and mass flux of gas and vapors are described. New
technologies and microelectronic sensors that measure gas-phase volatile organic
compounds are also introduced.

Finally, in Part 3, Applications of gas and vapor transport in porous and frac-
tured media are presented. Applications include radon transport, landmine detection,
environmental remediation, geologic waste disposal, oil and gas exploration, carbon
sequestration, and industrial processes.

This book provides a broad and interdisciplinary view of the different processes,
models, experimental methods, and applications associated with gas and vapor trans-
port in porous media. We hope that the reader develops an understanding of the many
diverse topics and an appreciation for the important applications covered in this book.
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CHAPTER 2
GAS TRANSPORT MECHANISMS

STEPHEN W. WEBB
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA

Gas-phase momentum transport in porous media consists of advective and diffu-
sive components. In this chapter, the individual advective and diffusive components
will be presented separately first, followed by a discussion of the combined mecha-
nisms. Gas-only situations will be discussed for all the mechanisms. Two-phase, or
unsaturated, flow effects are included in Chapter 5.

The conservation equations presented below are given in a simplified form. For
a complete derivation of the various conservation equations, including underlying
assumptions, see Whitaker (Chapter 6 of this book).

Energy transport is not discussed in this chapter. Gas-phase energy transport in
porous media is treated by Plumb (Chapter 27 of this book). Energy transport is also
discussed in Nield and Bejan (1999) and Kaviany (1995).

2.1 GAS-PHASE ADVECTION
2.1.1 Darcy’s Law

Gas-phase advection in porous media is generally analyzed using Darcy’s law (Darcy,
1856), which simply states that the gas Darcy velocity, ug, is directly proportional
to the gas-phase pressure gradient, VP, and the gas-phase permeability, kg. Darcy’s
law can be written as

k
— g o
g =——= (VP — pg8)
Hg
where g is the gas-phase viscosity and g is the gravitational constant. In terms of
mass flux, the equation is

_ k _
ngpgugz_lu_gpg(vpg_pgg)
g
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6 Webb

Neglecting gravity and rearranging

Note that the Darcy velocity, ug, is not a physical velocity. Rather, it is a superfi-
cial velocity based on the entire cross section of the flow, not just the fluid flow
cross-section. The Darcy velocity is related to the pore velocity, Vg, through the
porosity, ¢, or
u
Ve = f

The gas-phase permeability, kg, is a proportionality constant that is usually experi-
mentally determined with units of length?. The gas-phase permeability may be slightly
different than the liquid-phase permeability due to the effects of the fluids. Values
of the liquid-phase permeability vary widely, from 10~7 to 10~ m? for clean gravel
down to 1078 to 1072 m? for granite (Bear, 1979, pg. 68). The unit Darcy is often
used, which is equal to 0.987 x 10712 m2.

Darcy’s law is applicable to low velocity flow, which is generally the case in porous
media flow, and to regions without boundary shear flow, such as away from walls.
When wall shear is important, the Brinkman extension can be used as discussed below.
For turbulent flow conditions, the Forchheimer equation is appropriate. In some
situations (e.g., Vafai and Tien, 1981), the Brinkman and Forchheimer equations
are both employed for a more complete momentum equation. For a more detailed
discussion of the various flow laws, see Nield and Bejan (1999), Kaviany (1995), or
Lage (1998).

2.1.2 Brinkman Extension

The Brinkman extension to Darcy’s law equation includes the effect of wall or
boundary shear on the flow velocity, or

Heg _ JUR
Vsz—k—gug—i-,u,Vzug

g

where gravity has been ignored for clarity. The first term on the RHS is immediately
recognizable as the Darcy expression, while the second term is a shear stress term
such as would be required by a boundary wall no-slip condition. The coefficient fi is
an effective viscosity at the wall, which in general is not equal to the gas viscosity, jig,
as discussed by Nield and Bejan (1999). For many situations, the use of the boundary
shear term is not necessary. The effect is only significant in a region close to the
boundary whose thickness is of order of the square root of the gas permeability, kgl/ 2
(assuming & = ug), so for most applications, the effect can be ignored.

The Brinkman equation is also often employed at the interface between a porous
media and a clear fluid, or a fluid with no porous media, in order to obtain continuity
of shear stress. This interfacial condition is discussed in more detail by Nield and
Bejan (1999) and Kaviany (1995).
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2.1.3 Forchheimer Extension

At low pore velocities, Darcy’s law works quite well. However, as the pore velocities
increase, the flow becomes turbulent, the flow resistance becomes non-linear, and the
Forchheimer equation is more appropriate. From Joseph etal. (1982), the Forchheimer
equation is

VPy = — %ﬁg _CFkg_l/ng || 2
g

where cF is a constant and gravity has been ignored. The first term on the RHS is
again immediately recognizable as Darcy’s law. The second term on the RHS is a non-
linear flow resistance term. According to Nield and Bejan (1999), the above equation
is based on the work of Dupuit (1863) and Forchheimer (1901) as modified by Ward
(1964). The value of cf is approximately 0.55 based on the work of Ward (1964).
However, later work indicates that cf is a function of the porous medium and can
be as low as 0.1 for foam metal fibers as summarized by Nield and Bejan (1999). In
addition, Beavers et al. (1973) showed that bounding walls can change the value of
cr significantly.

The above equation can be rearranged in terms of a permeability-based
Reynolds number, where the characteristic dimension is the square root of the gas
permeability, or

1/2
__ Pglg kg/
Mg

The Forchheimer equation can be rearranged in terms of the value of cp and the
Reynolds number, or

Rey

1
VP —_—
g X [Rek + CF}

According to Nield and Bejan (1999), the transition from Darcy’s law (cr = 0.) to
the above Forchheimer equation occurs in the permeability-based Reynolds number
range of 1 to 10. Note that this transition is based on liquid flow through an isothermal
liquid-saturated porous medium, not an all-gas system. At low Reynolds numbers,
Darcy’s law is recovered (cp << 1/Rey). As the Reynolds number increases, the pres-
sure drop increases above that predicted by Darcy’s law. For further details, see the
discussion in Nield and Bejan (1999).

More recently, porous media approaches have been developed that include a two-
equation turbulence model similar to that used in clear fluid computational fluid
dynamics codes as exemplified by Masuoka and Takatsu (1996), Antohe and Lage
(1997), and Getachew et al. (2000).

2.1.4 Low Permeability Effects

Gas advection through porous media can be idealized as flow through numerous
capillary tubes. For large capillary tubes, the gas molecular mean free path is much
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smaller than the radius, and continuum flow occurs. As the capillary tubes get smaller
and smaller, the gas molecular mean free path becomes of the same order, and free-
molecule, or Knudsen, diffusion becomes important.

Low permeability effects were experimentally investigated by Knudsen in 1909
for gas flow in capillaries as discussed by Cunningham and Williams (1980, pg. 49).
Based on Darcy’s law, the mass flux for a given pressure drop should decrease as
the average pressure is reduced due to the change in gas density. However, Knudsen
found that at low pressures, the mass flux reaches a minimum value and then increases
with decreasing pressure, which is due to slip, or the fact that the fluid velocity at the
wall is not zero due to free-molecule flow.

Klinkenberg (1941) derived an expression for the effective gas permeability, kg,
of a single gas in the Knudsen diffusion regime, which is a function of the liquid
permeability, k;, the average pressure, P, and the Klinkenberg coefficient of gas
i,b;, or

For a large average pressure, the correction factor in parentheses goes to zero, and the
gas and liquid permeabilities tend to become equal. As the average pressure decreases,
the two permeabilities can deviate significantly from each other. This behavior is
confirmed by data presented by Klinkenberg (1941) for glass filters and core samples
and by Reda (1987) for tuff. The Klinkenberg parameter for a given porous medium
can be derived by plotting the effective gas permeability as a function of the inverse
of the average pressure. The slope of the line is related to the Klinkenberg parameter,
and the intercept at zero inverse average pressure is the liquid permeability.

The Klinkenberg coefficient, b;, is a function of the porous medium, the gas, and
the temperature. The Klinkenberg coefficient for air can be estimated from the Heid
et al. (1950) correlation for air at 25°C as a function of permeability (Thorstenson
and Pollock, 1989a, Figure 3), or

bair = 0.11 k; %%

where by, is in Pa and k; is the liquid permeability in m?. The data used in this
correlation are from oil-field cores with permeability values between about 10712
and 10717 m?.

Another expression for the Klinkenberg coefficient is from Jones and Owens
(1980), who performed similar measurements for low-permeability gas sands
with permeabilities between 10~'% and 107!° m?. They developed the following
correlation for air (presumably at 25°C)

bair = 0.98 k; 0

where the units are the same as for the Heid et al. (1950) correlation. Between
10~ and 10~!7 m?, which is where the permeabilities for the data sets overlap, the
Klinkenberg factors from both correlations are quite similar.
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As discussed later on in Section 2.2.2, the Klinkenberg coefficient for a given
porous media is different for each gas and is dependent on the local temperature. The
Klinkenberg factor can be corrected for different conditions as follows

b:=>b f(— Hi )(mref)l/2< T; )1/2
' e Mref (Tref) m; Tref

where ref refers to the reference gas, which is usually air, and m is the molecular
weight. The temperature is in absolute units.

As the permeability of the medium gets even lower, the pore dimensions approach
those of a single molecule. At this point, the flow mechanisms change, and con-
figurational diffusion (Cunningham and Williams, 1980) becomes important. As
discussed in Section 2.2.2, the transition from Knudsen diffusion (Klinkenberg effect)
to configurational diffusion is estimated to be at a permeability of approximately
10721 m?.

2.2 GAS-PHASE DIFFUSION

Diffusion in porous media consists of continuum, or ordinary, diffusion and free-
molecule diffusion. Continuum diffusion refers to the relative motion of different gas
species. Free-molecule diffusion, or Knudsen diffusion, refers to an individual gas
and occurs when the mean-free path of the gas molecules is of the same order as
the pore diameter of the porous media. As the pore size decreases further, configura-
tional diffusion is encountered where the gas molecule size is comparable to the pore
diameter. Configurational diffusion is briefly discussed in the free-molecule diffusion
section.

A number of different models have been used to quantify gas diffusion processes in
porous media, some of which will be discussed in the next section. Many of the models
are simply models derived for a clear fluid (no porous media) that were simply adapted
for a porous media. The clear fluid diffusion models only consider molecular diffusion
and do not include Knudsen diffusion. Other models are specifically derived for
porous media applications. Molecular diffusion and Knudsen diffusion are included
in their formulation.

2.2.1 Ordinary (Continuum) Diffusion

Fick’s law is the most popular approach to calculating gas diffusion in clear fluids
(no porous media) due to its simplicity. While it is only strictly applicable to clear
fluids, it has been extensively applied to porous media situations through introduction
of a porous media factor. Another approach often employed is the Stefan-Maxwell
equations. This equation set is simply an extension to Fick’s law for a multicomponent
mixture as discussed by Bird, Stewart, and Lightfoot (1960, pg. 569) (hereafter BSL).
While attempts have been made to define effective diffusion parameters to account
for the presence of the porous medium, the basic transport equations are not altered.
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2.2.1.1 Ficks law

Fick’s law is actually two laws. Fick’s first law is the relationship of the diffusive
flux of a gas component as a function of the concentration gradient under steady-state
conditions. Fick’s second law relates the unsteady diffusive flux to the concentration
gradient. Both laws were originally derived for clear fluids (no porous media).

First Law

Clear Fluids

Fick’s first law for a binary system basically states that the mole or mass flux is
proportional to a diffusion coefficient times the gradient of the mole or mass concen-
tration. For the mole flux formulation, Fick’s first law of diffusion for the mole flux
of component A, J, X[, in one dimension in a clear fluid (no porous medium) is

M
J5 = —cDaB,cr Vxa

where c is the concentration of the gas, Dag cr is the diffusion coefficient in a clear
fluid, and xp is the mole fraction of component A. The above form of Fick’s first
law is commonly misused. The M superscript on the mole flux denotes that the mole
flux is relative to the molar-average velocity, NOT to stationary coordinates (BSL,
pg. 502). The mole flux equation relative to stationary coordinates for a binary system
is given by

NR —xa (NAD + Ng) = —cDaB,cr VXA

where N is relative to stationary coordinates. The second term on the LHS is the
molar-average velocity. The mass flux form relative to stationary coordinates is

Fa —wp (Fa + FB) = —pg DaB,cr Voa

where F is the mass flux and wy is the mass fraction of component A.

Fick’s first law and a number of equivalent forms (mole and mass forms, relative
to mole or mass velocities or stationary coordinates) are discussed in great detail by
BSL (Chapter 16). The relationships between the various fluxes are also discussed
in detail in BSL (Chapter 16). However, many applications that use Fick’s first law
overlook the coordinate system issues. In particular, many applications use Fick’s
law for the molar-average velocity and incorrectly apply it to stationary coordinates
as discussed later in this chapter.

Porous Media

The above forms of Fick’s law are appropriate for clear fluids. For application to
porous media, Fick’s first law is often modified by the introduction of a porous media
factor, 8, or

Djp = BDaBcF
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The term B is defined as
B=¢Sgt

where D7y is the effective diffusion coefficient for the AB gas system in a porous
media, Dap cF is the effective diffusion coefficient of the AB gas system in a clear
fluid, ¢ is the porosity, S, is the gas saturation (equal to 1.0 for all-gas conditions),
and t is the tortuosity. The tortuosity factor is discussed in further detail below.

Similar to the clear fluid equation, the mole flux through a porous media relative
to stationary coordinates is given by

Fa —wa (FA + FB) = —f pg DaB,cF Voa

= —pgDipVoa

Inclusion of the f term takes into account the effective area for gas flow in the
pores (¢ Sg) and the porous media tortuosity (). The diffusion coefficient Dap cF
can be estimated from correlations as discussed by Reid et al. (1987). The diffusion
coefficient for gases is inversely proportional to the absolute pressure and directly
proportional to the absolute temperature to the 1.75 power as given by the Fuller et al.
correlation discussed in Reid et al. (1987).

The tortuosity factor, t, as defined in this application as the ratio of the length of
the “tortuous” path in a porous media divided by a straight line value. The tortuosity
factor is evaluated for diffusion, not advection. For clear fluids, the tortuosity is
equal to 1.0. Note that sometimes other definitions of the tortuosity factor are used
(Dullien, 1992, pg. 311). There are a number of models for the tortuosity factor. The
most widely used correlation is that of Millington and Quirk (1961). The tortuosity
correlation of Millington and Quirk (1961) is given by

r— ¢1/3 Sg7/3
which can be rewritten as

T=TTs, = ¢1/3Sg7/3

where 7, is the tortuosity due to the structure of the porous medium and ts, is the

tortuosity due to the partial saturation. For all-gas conditions as discussed in this
chapter, the tortuosity factor reduces to the porous medium value, or

T(Sg=1.0)=1,=¢'?

Costanza-Robinson and Brusseau (Chapter 7 of this book) discuss porous media
tortuosity.
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Second Law

Fick’s second law of diffusion for clear fluids is concerned with the temporal evolution
of the concentration, or (BSL, pg. 558)

3 CA 2

—— =DV

o7 AB V7CA
which is only strictly applicable if the molar-average velocity is zero, or for equimolar
counterdiffusion. This equation is similar to the heat conduction equation, so many
solutions exist such as in Carslaw and Jaeger (1959).
The rest of the present chapter is concerned with Fick’s first law, not Fick’s second

law. For an excellent discussion of Fick’s second law, see Fen and Abriola (2004).
Abriola et al. (1992) and Sleep (1998) also evaluate Fick’s second law.

2.2.1.2 Stefan-Maxwell Equations

Fick’s first law of diffusion presented above is applicable to binary gases. This restric-
tion is due to the fact that the gradients of the two gases are directly related to each
other, so only a single gradient needs to be specified. For multicomponent gases,
multiple gradients need to be determined. For an ideal mixture, the component mass
flux equations can be manipulated resulting in (BSL, pg. 569)

n

1
Vx,- = ZE (x,-Nj - xjN,)
=1

which are known as the Stefan-Maxwell equations applicable to stationary coordinates
in a clear fluid. For a two-component system, the Stefan-Maxwell equations reduce
to Fick’s first law. For application to a porous medium, the diffusion coefficients need
to be modified as discussed above.

2.2.2 Free-Molecule Diffusion

As discussed earlier, when the gas molecular mean free path becomes of the same order
as the tube dimensions, free-molecule, or Knudsen, diffusion becomes important. Due
to the influence of walls, Knudsen diffusion and configurational diffusion implicitly
include the effect of the porous medium. Unlike ordinary (continuum) diffusion,
there are no approaches for the free-molecule diffusion regime that use clear fluid
approaches modified to include porous media effects.

The molecular flux of gas i due to Knudsen diffusion is given by the general
diffusion equation (Mason and Malinauskas, 1983, pg. 16)

Jik = —Dix Vn;

where n; is the molecular density and D;k is the Knudsen diffusion coefficient. The
Knudsen diffusivity of gas i for a capillary of a given radius can be estimated as follows
(Cunningham and Williams, 1980, eqns. 2.17 and 2.65) assuming a coefficient of
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diffuse reflection equal to unity

2 (8RT\'?
DiK,capillary = 5 W Fcapillary
1

This equation can be written as

1/2
DiK,capillary =97.0 <_) Vcapillary
mj

where Dik capillary 18 in m?/s, T is in K, m is the molecular weight, and reapilary is
in m. While this equation may be appropriate for flow in well-defined capillaries, it
is not directly useful for porous media applications. However, there is an alternative
way to determine the Knudsen diffusion coefficient that includes the complexity of
the porous media.

The equation for the molecular flux from Knudsen diffusion can be rewritten in
the same form as Darcy’s law. From this expression, and Klinkenberg’s formula,
the Knudsen diffusion coefficient, D;k, can be related to the Klinkenberg factor as
follows (Thorstenson and Pollock, 1989a, eqn 60)

. kg b;
B i

Dix

As discussed in the advection part of this chapter, there are a number of correla-
tions for the Klinkenberg coefficient, b;, as a function of the porous medium, the fluid,
and the temperature. The Klinkenberg coefficient can be used in the above equation
to evaluate the Knudsen diffusion coefficient for a porous medium. The Klinken-
berg coefficient implicitly takes into account the structure of the porous medium as
reflected through the permeability. The modifications to the Klinkenberg factor due
to the gas (molecular weight and viscosity) and the temperature should be used as
discussed earlier in Section 2.1.4.

As the permeability of the medium gets even lower, the pore dimensions approach
those of a single molecule. At this point, the flow mechanisms change, and con-
figurational diffusion (Cunningham and Williams, 1980) becomes important. In
configurational diffusion, the size of the molecules is comparable to the pore dimen-
sions, and the molecular configuration becomes important (e.g., Xiao and Wei,
1992a, b). Membrane diffusion occurs at even smaller pore sizes where the chemical
characteristics of the molecules are important (Cunningham and Williams, 1980).

Cunningham and Williams (1980) suggest that configurational diffusion may be
encountered when the pore sizes are less than about 10 A. Note that the molecular
size can be characterized by the Lennard-Jones length constant, o', which varies from
about 2.5 to 7.5 A as given by BSL (1960, pg. 744). Assuming a porosity of about
10%, and calculating the tortuosity by the Millinton and Quirk relationship given
earlier, the effective Knudsen diffusion coefficient will be about 10~° m?/s. Using
the Jones and Owens (1980) correlation for the Klinkenberg coefficient, the perme-
ability is about 10~2! m?. This prediction of the transition from Knudsen diffusion to
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configuration diffusion is qualitative at best. However, it should indicate the approx-
imate permeability where configurational diffusion should at least be considered to
be as the possible diffusion mechanism.

2.3 COMBINED MECHANISMS

The interaction between advection and diffusion in porous media can be significant.
Consider two separate volumes connected by a tube containing a light gas and a
heavy gas. Diffusion of the light gas is faster than the heavy gas because of the higher
molecule velocity. The net flow of molecules is toward the heavy gas volume, so the
pressure rises in the heavy gas volume and decreases in the light gas volume. In turn,
this pressure difference causes advection from the heavy gas volume to the light gas
volume. Thus, diffusion directly leads to advection. Only in the case of equimolar
gases will diffusion not result in advection.

As mentioned earlier, this scenario was implicitly included in the diffusion formu-
lation discussed by BSL in that diffusion is relative to the molar-average velocity.
However, this effect has generally been ignored. Coupling of the advection and diffu-
sion mechanisms has been formalized with the development of the Dusty Gas Model
by Evans, Mason and colleagues (Evans et al., 1961; Evans et al., 1962a; Mason et
al., 1963; Mason et al., 1964). The Dusty Gas Model (DGM) takes the gas trans-
port equations a step further by including the effect of the porous media as a “dusty
gas” component of the gas mixture. The “dusty gas” is assumed to consist of large
molecules fixed in space that is treated as a component of the gas mixture. The kinetic
theory of gases is applied to this dusty-gas mixture. One of the key aspects of the
DGM is the combination of diffusion (ordinary and Knudsen) and advection. Ordi-
nary and Knudsen diffusion are combined through addition of momentum transfer
based on kinetic-theory arguments, and diffusive fluxes (ordinary plus Knudsen) are
added to advective fluxes based on Chapman-Enskog kinetic theory.

The DGM, including numerous data-model comparisons, is discussed in detail
by Mason and Malinauskas (1983) and by Cunningham and Williams (1980). Other
excellent references on application of the Dusty Gas Model for porous media are
Thorstenson and Pollock (1989a, 1989b) and Jackson (1977).

The exclusive presentation of the DGM in this chapter does not imply that the DGM
is the most comprehensive gas-phase diffusion model available for porous media.
There are a number of other models available including Feng and Stewart (1973), who
extended the DGM to more complicated pore networks, a mean transport pore model
as presented by Arnost and Schneider (1995) (see Solcova and Schneider (Chapter 14
of this book)), and Shapiro (1993), who developed a model for heterogeneous
anisotropic porous media. Altevogt et al. (2003a, b) present an alternate approach for
binary gas diffusion. Rather, the DGM is the most widely used model for a mechanistic
approach to combine gas advection and diffusion in porous media at the present time.

Ignoring thermal diffusion, which is typically small, the DGM can be written
either in terms of the diffusive molar flux, NP, or the total molar flux (diffusive plus
advective), N T which are relative to fixed coordinates (Thorstenson and Pollock,
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1989a, eqns. 41 and 48). The two expressions are
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where the second equation simply includes the advective flux on both sides of the
equation. The first term on the LHS considers molecule-molecule interactions and is
immediately recognized as being based on the Stefan—-Maxwell equations discussed
earlier. The second term on the LHS considers molecule-particle (Knudsen diffusion)
interactions, while the RHS is the driving force for diffusion and advection, which
includes concentration and pressure gradients.

There are many forms of the DGM. One particularly useful form is for the total mass

flux of component 1 in an isothermal binary system, or (Thorstenson and Pollock,
1989a, eqn. F4)

F1 =I111N1T

” [Dik D}, (P/RT)Vx1 4+ Dik (D} + Dax)x1(VP/RT)]
1
(D}, +x1D2k + x2D1x)

T RT
The flux of component 1 has diffusive (first term) and advective (second term) com-
ponents. The diffusive flux consists of ordinary diffusion (mole fraction gradient) and
Knudsen diffusion (pressure gradient) components.

Note that in the special case of isobaric conditions (VP = 0), the advective and
Knudsen diffusion fluxes are zero. However, this does not mean that the Knudsen
diffusion coefficients are not important. The ordinary diffusion flux is dependent on
both diffusion (Knudsen and ordinary) coefficients. The Knudsen diffusion coeffi-
cients characterize the impact of the porous media (gas-wall interactions) on ordinary
diffusion. This behavior is absent in the clear fluid formulations, such as Fick’s law,
that are modified for porous media applications.

2.4 COMPARISON TO FUNDAMENTAL RELATIONSHIPS AND
EXPERIMENTAL DATA

In the 1800s, Thomas Graham discovered two important relationships for gas diffu-
sion in a porous media that relate the diffusive fluxes of a binary mixture in a porous
medium (Mason and Malinauskas, 1983, pg. 3). Graham’s law of effusion applies to
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Knudsen diffusion as experimentally discovered by Graham (1846), or

NE <m2>1/2

NE T \m
For ordinary diffusion (no advection), Graham’s law of diffusion applies as
experimentally discovered by Graham (1833) or

1/2
NP (@) /
NY m
Even though the ratios are identical, each equation applies to a different diffusion
regime. In terms of a mass flux ratio, these equations become

FK i\
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The above relationships are significant. Graham’s laws were “lost” and were inde-
pendently rediscovered in the 1950s and 1960s (Mason and Malinauskas (1983, pg.
3)). Graham’s laws are fundamental relationships for gas diffusion in porous media
and were used in the development of the Dusty Gas Model. These relationships will
be used in the data-model comparisons that follow.

The data used in these comparisons were obtained by Evans, Watson, and Truitt
(1962b, 1963). They performed these experiments to support development of the
Dusty Gas Model. The experiments consisted of flow and diffusion of helium and
argon across a low-porosity (0.11) and low-permeability (2.13 x 10~!8 m?) graphite.
At this low permeability, Knudsen diffusion plays a significant role.

In addition to the data and model predictions, Mason and Malinauskas (1983,
pg. 91) provide closed-form solutions for the DGM for special cases, which are also
plotted as a continuous line labeled DGM in Figure 2.1 and Figure 2.2. In the data-
model comparisons, the DGM is compared to the data as is a model labeled ADM.
The ADM Model, which stands for advective-diffusive (or dispersive) model, is sim-
ply a linear addition of Darcy’s law and ordinary diffusion using Fick’s law, which is
incorrectly applied to stationary coordinates as discussed above. This simple linear
addition is commonly used as exemplified by TOUGH2 (Pruess, 1991) and Abriola
and Pinder (1985). Slip effects, or Knudsen diffusion, are included through a Klinken-
berg parameter to define an effective permeability for the advective flux as discussed
earlier. Porous medium effects for ordinary diffusion are included through a porosity-
tortuosity-gas saturation factor applied to the diffusive flux in free space. This simple

additive approach, while intuitively appealing, ignores coupling between advective
and diffusive mechanisms. The expression for the ADM used in this comparison is
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Figure 2.1. Mole flux data-model comparison for zero pressure difference conditions (reprinted from
Webb, 1998 with permission with minor modifications)

1.0 1.0 T T T T T T T
I I \ Nac: _NAr
L Lo\ ]
\
— \
o 3 r \ T
\g r —~ B \\ )
: : N
< [ -
< 0.5 - 5 0.5 . ADM
Z r Nﬁe: 7N:£r B o S ~ 4
E ] ITOUGH2-DGM ~ ~~<_ ]
o TOUGH2-DGM E
® Data
0.0 | | 1 | | 1 | X
0.0 2.0 4.0 6.0 8.0 0.0 2.0 4.0 6.0 8.0
P (atm) P (atm)
(a) Mole flux (b) Pressure difference

Figure 2.2. Data-model comparison for zero net mole flux conditions (reprinted from Webb, 1998 with
permission with minor modifications)
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given below
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The DGM and the ADM results presented in this section were calculated by the
TOUGH?2 code (Pruess, 1991), which was modified to incorporate the DGM by Webb
(1998). Pruess (Chapter 12 of this book) summarizes the flux expressions in many
commonly used porous media codes including TOUGH2.

2.4.1 Zero Pressure Difference

The first data-model comparison considers zero pressure difference across the porous
media. In this case, there is diffusion but no advection. From Graham’s laws, the
ratio of the mole fluxes (not the magnitude) for Knudsen diffusion and for ordinary
diffusion is the same. Graham’s laws give a mole flux ratio of helium to argon of 3.2
based on the molecular weights of helium (m = 4.00) and argon (m = 39.944).

Data-model comparisons are given in Figure 2.1 as a function of the average pres-
sure. Helium mole flux is positive, and argon mole flux is negative. The data for both
gases increase with increasing pressure. The DGM data-model comparison is quite
good. In addition to the individual values, the ratio of the mole fluxes is consistent
with the theoretical value given above. In contrast, the model predictions of the ADM
show a constant mole flux value independent of pressure for each component, which
is not consistent with the data. The ADM predicts that the mass fluxes of the two
components are equal. The mole flux ratio (helium/argon) is simply the inverse of the
ratio of the molecular weights, or about 10, which is not consistent with the data. The
ADM, which for zero pressure difference reduces to Fick’s law, does not match the
experimental data very well. Knudsen diffusion is not included because there isn’t
any advection in the ADM predictions.

2.4.2 Zero Net Mole Flux

The second case is for zero net mole flux. This case simulates what would occur in
a closed volume, where the total mole fluxes of the two components are equal. The
sum of diffusion and advection of each component are equal to each other resulting in
azero net mole flux. The predicted flux of each component and the pressure difference
across the experiment are compared to the experimental data.

Figure 2.2a gives the data-model comparison for the mole flux as a function of the
average pressure. The data-model comparison for the DGM is very good including
the variation of flux with pressure. For the ADM, the predicted mole flux is constant,
unlike the data.

The data-model comparison for pressure difference across the porous media is
shown in Figure 2.2b. The pressure difference results in equal and opposite mole
fluxes across the graphite. The data-model comparison for the DGM is very good.
The ADM data-model comparison is poor, similar to the zero pressure difference case.
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Figure 2.3. Data-model comparison for combined advection and diffusion (reprinted from Webb, 1998
with permission with minor modifications)

2.4.3 Combined Advection and Diffusion

The most general situation of combined advection and diffusion is shown next. The
pressure difference across the test section was varied while maintaining the same aver-
age pressure. The total individual fluxes of the two gases were measured. Figure 2.3
shows the data-model comparisons. Figure 2.3a shows the ADM comparison, which
is generally poor similar to the earlier results. Figure 2.3b shows the DGM results,
which show excellent agreement with the experimental data.

2.4.4 Overall Evaluation

In general, the ADM data-model comparisons are poor, while the DGM data-model
comparisons are quite good. Overall, the DGM is significantly better than the ADM
for the conditions of this experiment. Webb (1998) provides more details on the
comparison of these two models.

Many other comparisons of the ADM, or variations of the ADM, and DGM have
been performed (Abriola et al., 1992; Fen and Abriola, 2004; Oldenburg et al., 2004).
All agree that for higher permeabilities, the ADM is adequate, while for lower perme-
abilities, the DGM is needed. Just what is “low” and “high” has not been quantified.
Some guidance may be developed from the results for trace gas diffusion developed
by Webb and Pruess (2003) in that the pressure and permeability were varied for
different diffusing species.
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2.5 TRACE GAS LIMIT

The above data-model comparison was for gas diffusion where the different gas mass
fractions are significant. As shown by Webb and Pruess (2003), in the limit of trace gas
diffusion in a binary mixture where one gas has a vanishingly small mass fraction, the
DGM and ADM reduce to similar equations. Two “correction” factors are needed to
bring the ADM in line with the DGM. The first correction factor is an additional
tortuosity term on the diffusion coefficient. The second correction factor is on the
Klinkenberg coefficient, b.

The correction factors can also be viewed as ratio of the mass flux predicted by the
DGM to that predicted by the ADM. As will be seen, the tortuosity correction factor
is always 1 or less, which indicates that ordinary diffusion is always overpredicted by
the ADM, in some cases by orders of magnitude. The magnitude of the Klinkenberg
correction factor is much smaller and may be less than or greater than 1.0 depending
on the molecular weight ratio of the trace gas to the bulk species.

The standard ADM equation incorporating the Klinkenberg coefficient is as follows

ke b _
Fg=—— (1 + ?> pg (VPg — pgg) — pegD, Vx
Mg g

Introducing the correction factors gives

ki bpgmb -

Fog=—— 1+ — Pg (VPg — pgg) — TDGM,OgDTzvx
Mg P g

The first term on the RHS is simply the convective flux including the Klinkenberg

correction factor. The second term on the RHS is ordinary diffusion with a tortuosity

correction factor. For trace gas diffusion, these factors are given by (see Webb and
Pruess, 2003)
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where Dy is the ratio of the effective ordinary diffusion coefficient to the Knudsen
diffusion coefficient, or

sk
Do — Dy,
rat —
Dix
and myy is the ratio of molecule weights
my
Mpat = —
m

where gas 1 is the trace diffusing species and gas 2 is the bulk species.



Chapter 2: Gas Transport Mechanisms 21

The above expressions for bpgm and tpgm have been evaluated by Webb and
Pruess (2003) for a bulk species of air at 25°C and a porous media with a porosity of
0.4 and a tortuosity of 0.74. The permeability was varied over a wide range, and the
trace gas species include He, water vapor, and TCE.

Figure 2.4 shows the variation in the correction factors as a function of permeability
for three different trace gases (He, H>O, and TCE) at three different gas pressures
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Figure 2.4. Trace gas correction factors as a function of pressure, permeability, and trace gas (reprinted
from Webb and Pruess, 2003 with permission)
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(1, 10, and 100 atmospheres). The bpgm correction factor depends on the trace gas.
If the trace gas is heavier than the bulk species (air), the correction factor is less than
1.0. Conversely, if the trace gas is lighter than the bulk gas, the bpgym correction
factor is greater than 1.0. The values have a generally small range, varying between
about 0.5 and 2.7 for the trace gases evaluated. The tpgm correction factor can be
viewed as the ratio of ordinary diffusion flux predicted by the DGM divided by the
Fick’s law value. For example, if the value of tpgy is 0.01, Fick’s law without the
correction factor would overpredict the ordinary gas diffusion flux by two orders of
magnitude compared to the DGM prediction. The value of tpgym is about unity for
higher permeabilities (> 10~!3 m?) at all pressures. For lower permeabilities, Fick’s
law may dramatically overpredict the gas diffusion flux. The value of tpgnM decreases
dramatically to about 0.01 at a permeability of 10~'® m2. The variation of the ratio
for different trace gases is small. Therefore, the difference between the DGM and
ADM becomes important for permeabilities < 10~13 m?, with larger differences for
lower permeabilities and lower pressures.

2.6 APPLICABILITY OF DGM TO REAL POROUS MEDIA

There are questions and concerns about the applicability of the DGM to real porous
media and the appropriate parameter values. While a number of authors (Abu-El-
Sha’r and Abriola, 1997; Fen and Abriola, 2004; Cunningham and Williams, 1980,
pg. 220; Mason and Malinauskas, 1983, pg. 50) address this point, it must be pointed
out that the DGM (or the other coupled models as discussed earlier), are the best
models to date and are vastly superior to the ADM, which was used for a number of
years and is still used today.

While the DGM is widely used, there are modifications to improve its applicability.
For example, modifications have been made to the DGM to include things such as
mass transfer (e.g., Chen and Rinker, 1979) and chemical reaction (e.g., Veldsink
et al., 1995). Note that these references are just representative and do not necessarily
represent the latest information on these modifications.
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NOMENCLATURE

b Klinkenberg coefficient

c concentration

CF constant in Forchheimer equation
D ordinary diffusion coefficient

Dix Knudsen diffusion coefficient
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F mass flux

g gravity

JM diffusive mole flux relative to molar-average velocity value
k permeability

m molecular weight

NP diffusive mole flux relative to stationary coordinates
NT total mole flux relative to stationary coordinates
n molecular density

P pressure

P average pressure

r radius

R gas constant

Rey permeability-based Reynolds number

S saturation

T temperature

u Darcy velocity

V pore velocity

X mole fraction

Greek

B porous media factor

T tortuosity

¢ porosity

p density

uw viscosity

i effective viscosity at wall (Brinkman equation)
Subscript

A,B components A, B

air value for air

CF clear fluid

DGM Dusty Gas Model

g gas

K Knudsen diffusion

14 liquid phase

pore pore

PM porous media

rat ratio

ref reference

S saturation

0 all-gas conditions

1,2 component 1, 2
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Superscript

D ordinary diffusion

K Knudsen diffusion

T total

* effective porous media value
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