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BERNARD FELTZ, MARC CROMMELINCK, PHILIPPE GOUJON 

INTRODUCTION 

The concept of self-organization takes a growing place in the evolution of 
contemporary sciences. Coming from the second cybernetics, which 
developed in USA at the end of the 1950th, this concept had first 
implications in biological sciences in the context of the Biological Computer 
Laboratory founded by Von Foerster and in the works of three symposia on 
the Self-Organizing systems from 1960 to 1962. During the 1970th, this 
approach was developed especially by the chilian school of biology. Since 
the 1980th, the Santa Fe Institute gives a new impulse to these perspectives. 
These works go on linked with the progress in the algorithm’s theories, in 
artificial intelligence and in the analysis of non linear systems, in particular 
by the Brussels school. They lead, on the beginning of the 1990th, to books 
whose explicit purpose is a fundamental new approach of the living. 
 The concept of emergence refers to the coming out of new properties 
linked to the complexity of an organization. In scientific context, self-
organization models have an important place in the formalization of 
emergence. The order from chaos, presented by Self-Organizing models, is 
often interpreted in terms of emergence, id est the advent of a higher level of 
organization. 
 These two concepts can be analysed according to different perspectives. 
This explains the structure of this book in three parts: scientific, historic and 
epistemologic. It will be first analysed in what extent the concepts of self-
organization and emergence have some impact in experimentations in the 
different fields of contemporary life sciences. Second, historical origins, 
distant or more recent, will be envisaged. This concerns remote intuitions of 
antiquity, the first approach in philosophy of life in the modern period, as the 
more recent developments of the first and second cybernetics. Finally, in a 
third part, emergence and self-organization will be epistemologically 
analysed in relation with the questions of teleology and explanation. 
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 The scientific approach presents two parts. The first one is an 
introduction to different formalisms of self-organization and emergence. 
Physicist G. Weisbuch introduces to the dynamic complex systems. 
V. Bauchau analyses boolean automata networks in biology and H. Bersini 
presents the problematic of artificial life. The second part analyses 
experimental biology and medical practice. R. Thomas shows the importance 
of positive feed back in the cellular differentiation process. Ph. Lefevre and 
his colleagues develop an example of emergent properties of neuronal 
networks and F. Varela studies neuronal synchronization in cognitive 
functions. Ph. Meire analyses the relevance of self-organization concept in 
psychiatric practice. Finally, H. Atlan shows the fecundity of  
self-organization perspective in immunology. The dominant image is one 
of great potentialities with already actual results but specially a great hope  
of promise.  
 For historicist, such a fecundity is not surprising. Self-organization and 
emergence problematic indeed concerns fundamental debate on specificity of 
living since antiquity to contemporary period. G. Van De Vijver shows that 
precisely in a detailed analysis of kantian position. More linked to the 
history of science, the contribution of F. Duchesneau studies the concepts of 
“formative force” and “essential force” in the epigenesis theories in the 18th 
century, while P. Mengal shows how, in the 19th century, the concept of 
emergence oscillates between biology and theology. This historical survey 
shows that self-organization and emergence, in their philosophical intuitions, 
lead to a concept of scientific approach of living which takes distance with 
mechanistic project. On the contrary, analysis of more recent origin of these 
concepts places us in a radically mechanicist perspective. The first 
cybernetics is the starting point of a more complex elaboration which tends 
to integrate the problematic of self-programmation. J.C. Heudin develops 
such perspectives in relation with artificial life, while P. Livet studies the 
relations between self-organization and the logic of deconstruction. 
Historical approach exhibits clearly ambiguities of self-organization and 
emergence. Distant origin refers to concepts which lead to vitalism, while 
proximate context places these concepts in a deliberate mechanistic research 
programme. 
 This ambiguity is precisely in the core of epistemological analysis of the 
third part. All the scientists and philosophers of this book keep away from 
vitalism without renouncing to the question of the specificity of living which 
presents new formulations. R. Brandon analyses the relation between 
self-organization and teleology, which is at the core of living, while  
 
 

* * * 
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M. Maesschalck and V. Kokoszka envisage the relation between self-
organization and the phenomenological intentionality. Moreover, 
epistemological analysis of emergence is linked to the question of 
explanation which focalises the last contributions. P. Thompson studies the 
concept of model in Self-Organizing systems. R. Richardson analyses the 
relation between explanation and causality in these systems. Finally, B. Feltz 
proposes an articulation between self-organisation and selection in 
evolutionary theory and analyses the implication of these concepts in the 
question of emergence.  
 

* * * 
 
 We thank the Fonds National de la Recherche Scientifique de la 
Communauté Française de Belgique, the Institut Supérieur de Philosophie  
as the Mécénat of the Université catholique de Louvain without whom  
this book would not have been possible.  
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GÉRARD WEISBUCH 

THE COMPLEX ADAPTATIVE SYSTEMS 
APPROACH TO BIOLOGY 

The purpose of this contribution is to describe the applications of concepts 
and methods derived from statistical physics of disordered systems and non-
linear dynamics to certain issues in Theoretical biology. In those 
applications, the central issue is to study functional organization of a multi-
component system based on a simplified description of the components. The 
first section gives a few examples of complex systems taken from physics 
and biology. We then describe three formalisms commonly used in 
theoretical biology. The central concepts of this approach, the attractors is 
introduced in the section on networks. Rather than emergence, we further 
discuss generic organizational properties of networks and give some 
examples which characterize the difference between organized and chaotic 
dynamical regimes. Before concluding, we discuss two implementations of 
memory in models of the brain and of the immune system. 
 
 
1. FROM STATISTICAL PHYSICS TO COMPLEX 
 SYSTEM 
 
1.1 The Physics Approach to Simplicity and Complexity 
 
Statistical physics has accustomed us to mathematical descriptions of 
systems with a large number of components. The thermodynamic properties 
of ideal gases were understood as early as the end of the 19th century, while 
those of solids were understood at the beginning of the 20th century. In both 
cases, two important properties make modeling easy: 
 These are systems in which all of the components are identical. 
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 If the interactions between the components are very weak, they can be 
ignored, as in the case of ideal gases. Otherwise, as in the case of solids, we 
can use linearization methods to put the problem into a form in which these 
simplifications can be made. 
 These early successes compared to the difficulties encountered in the 
understanding of biological systems would make us consider the above 
mentioned systems as rather simple.  
 On the other hand, here are some examples of complex living systems: 
 The human brain is composed of approximately ten billion cells, called 
neurons. These cells interact by means of electrico-chemical signals through 
their synapses. Even though there may not be very many different types of 
neurons, they differ in the structure of their connections. 
 The immune system is also composed of approximately ten billion cells, 
called lymphocytes with a very large number of specificities which interact 
via molecular recognition, in the same way as recognition of foreign 
antigens. 
 Even the metabolism of a single cell is the result of interactions among a 
large number of genes which results into the cell function. 
 Although complexity is now a somewhat overused expression, it has a 
precise meaning within this text: it a complex system is a system composed 
of a large number of different interacting elements. 
 In fact, the great majority of natural or artificial systems are of a complex 
nature, and scientists often choose to work on model systems simplified to a 
minimum number of components, which allows to observe “pure” effects. 
This approach is illustrated by a number of Belgian teams (see Nicolis and 
Thomas). The complex systems approach, on the other hand, is to simplify 
as much as possible the components of a system, so as to take into account 
their large number. This idea has emerged from a recent trend in research 
known by physicists as the physics of disordered systems. 
 
 
1.2 Disordered Systems 
 
A large class of physical systems, known as multiphase systems, are 
disordered at the macroscopic level, but some are disordered even at the 
microscopic level. Glasses, for example, differ from crystals in that 
interatomic bonds in a glass are not distributed according to symmetries 
which we observe in crystals. In spite of this disorder, the macroscopic 
physical properties of a glass of a given composition are generally the same 
for different samples, as for crystals. In other words, disorder in a system 
does not lead to impredictable behavior. The simple models used by 
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physicists are based on periodic networks, or grids, and simplified 
components of two different types are placed on the nodes, such as for 
example conductors or insulators in the problem known as percolation. 
These components are randomly distributed, and the interactions are limited 
to pairs of neighboring nodes. For large enough networks, we perceive that 
certain interesting properties do not depend on the particular sample created 
by a random selection, but of the parameters of this selection. In the case of 
the aforementioned insulator/conductor mixture, the conductivity between 
the two edges of the sample depends only on the ratio of the number of 
conductive sites to the number of insulating sites. 
 These primeval examples show the approach taken by a number of 
theoretical biologists: 
 We choose to oversimplify the components of the system whose global 
behavior we would like to model. The formal genes, neurons and 
lymphocytes discussed below are cartoon-like simplifications of biological 
polymers and cells. 
 Nonetheless, these simplifications enable us to apply rigorous methods 
and to obtain exact results. 
 Furthermore this approach of biology is dynamical. We start from a local 
description of the state changes of the components due to their interactions. 
We expect the global description of the system from the method, that is to 
say the long term behavior of the system as a whole. The global behavior can 
be very complex, and it can be interpreted in terms of emergent properties. 
Within this notion is the idea that the properties are not a priori predictable 
from the structure of the local interactions, and that they are of biological 
functional significance. 
 
 
2. NETWORKS 
 
2.1 Units 
 
2.1.1 Boolean Automata 
 
A simplified automaton is defined by its sets of inputs and outputs and by 
the transition function, which gives the output at time t +1 as a function of 
the inputs and sometimes also the internal state (i.e. the output) at time t. In 
addition, we will limit ourselves to binary automata, that is to say to two 
states, for example 0 and 1. 

Boolean automata operate on binary variables, that is to say variables 
which take the values 0 or 1. The usual logic functions AND, OR and XOR 
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are examples of transition functions of boolean automata with two inputs. 
A boolean automaton with k inputs, or of connectivity k, is defined by a truth 
table which gives the output state for each one of the 2k possible inputs. 
There are 22 k  different truth tables, and then 22 k automata. 
 Let k = 2. Here are the truth tables of four boolean logic functions with 
two inputs: 
 

Table 1.  
 

 AND OR XOR NAND 
Input 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 

Output 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 
 

 On the input line of the table, we have represented the four possible input 
states by 00, 01, 10, and 11. The four truth tables correspond to the standard 
definitions of the following logic functions: AND returns a 1 only if its two 
inputs are 1; OR returns a 1 only if at least one of its inputs is a 1; XOR is 
1 only if exactly one of its inputs is a 1; and NAND is the complement 
of AND. In logical terms, if A and B are two propositions, the proposition 
(A AND B) is true only if A and B are true. 
 We will further discuss the application of boolean units to genetics. 
 
 
2.1.2 Threshold Automata 
 
The state xi of the ith threshold automaton is computed according to: 

 
j

j
iji xJh ∑=  (1)

 

 xi = 1 if hi > θi ; xi = 0 otherwise 

 The sum is computed over all of the inputs, subscripted by j. Jij is the 
weight of the interaction between the ith and jth automata. In other words, 
the ith automaton has the value 1 if the weighted sum of the states of the 

ij i
otherwise. 

We will further summarize some applications of threshold units to 
cognition. 
 
 
 
 

input automata Σ J is greater than or equal to the threshold θ  and 0 xj
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2.1.3 Formal Lymphocytes 
 
Not all networks are made of automata. A number of authors studying neural 

lymphocytes proliferation. The time evolution of the population xi of clone 
i is described by the following differential equation: 

 
( ( ) )i

i i
dx m x pf h d
dt

= + −
 

(2)
 

where m is a source term corresponding to newly generated cells coming 
into the system from the bone marrow, the function pf (hi) defines the rate of 
cell proliferation as a function of the “field” hi , and d specifies the per capita 
rate of cell death.  

For each clone i, the total amount of stimulation is considered to be a 
linear combination of the populations of other interacting clones j. This 
linear combination is called the field, hi, acting on clone xi , i.e.,  

 
j

j
iji xJh ∑=  (3)

 

where Jij specifies the interaction strength (or affinity) between clones xi and 
xj. The choice of a J matrix defines the topology of the network. Typically Jij 
values are chosen as 0 and 1. 

The most crucial feature of this model is the shape of the activation 
function  f (hi), which is taken to be a log bell-shaped dose-response function 
 

 f (hi) = 2

1 2 1 2

1i i i

i i i i

h h h
h h h h

θ
θ θ θ θ

⎛ ⎞
− =⎜ ⎟+ + + +⎝ ⎠

 (4) 

 
with parameters θ1 and θ2 chosen such that θ2 >> θ1. 

Below the maximum of f (hi), increasing hi increases f (hi), we call this 
the stimulatory regime. Above the maximum, increasing hi decreases f (hi); 
we call this the suppressive regime. Plotted as a function of log hi, the graph 
of  f (hi) is a bell-shaped curve. 

 
 

 
 
 

nets used differential equations as units. In immunology, Perelson and 
Weisbuch (1997), for instance, started from the following model of 
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2.2 Networks 
 
2.2.1 Structural Properties 
 
A network is composed of units interconnected such that the outputs of some 
are the inputs of others. It is therefore a directed graph, where the nodes are 
the units and the edges are the connections from the output of one unit to the 
input of another. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A network of five boolean automata with two inputs. Each automaton has two inputs 
and transmits its output signal to two other automata. The XOR and AND functions have been 
previously defined. The EQU(ivalence) function is the complement of the XOR function – it 
is 0 only if exactly one input is a 1. 
 

Figure 1 represents the graph of the connections of a network of five 
boolean automata with two inputs. 

A network of five boolean automata with two inputs. Each automaton has 
two inputs and transmits its output signal to two other automata. The XOR 
and AND functions have been previously defined. The EQU(ivalence) 
function is the complement of the XOR function — it is 0 only if exactly one 
input is a 1. 

 
 

2.2.2 Dynamical Properties 
 
Iteration Mode 
 
Let us discuss here the dynamics of automata networks, since the notion 
related to attractors are easily defined. Everything discussed here generalizes 
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to continuous dynamics. In fact historically, most notions were first 
discussed for continuous dynamics. 

The dynamics of an automata network are completely defined by its 
connection graph, the transition functions of the automata, and by the choice 
of an iteration mode. It must be stated whether the automata change their 
state simultaneously or sequentially, and in what order. In the parallel mode, 
for instance, all of the automata change their state simultaneously as a 
function of the states of the input automata in the previous timestep. 
Conversely, in the case of sequential iteration, or iteration in series, only one 
automaton at a time changes its state. Sequential iteration is therefore 
defined by the order in which the automata are to be updated. In the 
discussion that follows, we will talk only of parallel iteration. 
 
Iteration Graph 
 
There are 2N possible configurations for a network of N boolean automata. 
The network goes from one configuration to the next by applying the state 
change rule to each automaton. Its dynamics can be represented by a directed 
graph, the iteration graph, where the nodes are the configurations  
of the network and the directed edges indicate the direction of the 
transitions of the network from its configuration at time t to a new 
configuration at time t +1. 

Figure 2 represents the iteration graph of the previous network for the 
case of parallel iteration. This graph contains the 25 = 32 possible states. 
It illustrates the fundamental dynamical characteristics which we will define 
below.  
 
 
 
 
 
 
 
 
 
 
Figure 2. Iteration graph of the network of Figure 1. The numbers from 0 to 31 refer to the 
decimal representations of the 32 binary configurations of the network. The arrows show the 
temporal order of the configurations. Note that there are four different basins of attraction.  
State number 3 is an isolated fixed point. State number 8 is another fixed point. The other, 
larger, basins are composed of the configurations which converge toward the limit cycles with 
periods 4 and 5. 
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Attractors 
 

Since an automata network is a deterministic system, if the network reaches 
a state for the second time, it will go through the same sequence of states 
after the second time as it did after the first time. Therefore, the system will 
go into an infinite loop in state space. These loops are called the attractors of 
the dynamical system, and the time it takes to go around the loop is called 
the period of the attractor. If this period is 1, as is the case for the 
configuration numbered 8 in the example shown below, the attractor is a 
fixed point. We speak of limit cycles if the period is greater than 1. The set of 
configurations which converge toward an attractor constitutes a basin of 
attraction. The network shown in the example below has four attractors. 

Clearly it is only possible to construct a complete iteration graph for 
small networks. For the large networks we must be content to describe the 
dynamics of the system by characterizing its attractors. 

In this way we can try to determine:  
– the number of different attractors,  
– their periods,  
– the sizes of the basins of attraction (the number of configurations which 

converge toward each attractor), 
– the notion of distance is also very important. The Hamming distance 

between any two configurations is the number of automata which are in 
different states. 

 

 

3. IN SEARCH OF GENERIC PROPERTIES 
 

In view of all the simplifications that were made to define the units of the 
model networks, one cannot expect all properties of living systems to be 
modeled. Only some very general properties, independent of the details of 
the model will show-up. These are the so-called generic properties of the 
network. In fact, we are interested not in the particularities of a specific 
network, but in the orders of magnitude which we expect to observe in 
studying a set of networks with fixed construction principles. We therefore 
consider a set containing a large but finite number of networks. We choose 
some of these networks at random, construct them, and measure their 
dynamical properties. We then take the average of these properties, and we 
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examine those which are fairly evenly distributed over the set of networks. 
An example will help to clarify these ideas. 

Consider the boolean networks with connectivity k = 2, with a random 
connection structure. The dynamical variable we are interested in is the 
period, for the set of all initial conditions and networks. Of course, this 
period varies from one network to the next. We have measured it for 10 
randomly chosen initial conditions for 1 000 different networks of 256 
randomly connected automata, whose state change functions were generated 
at random at each node of the network. Figure 3 shows the histogram of the 
measured periods. This histogram reveals that the order of magnitude of the 
period is ten (this is the generic property), even though the distribution of the 
periods is quite large. 
 We can certainly construct special “extreme” networks for which the 
period cannot be observed before a million iterations. For this, we need only 
take networks which contain a random mixture of exclusive OR and 
EQUivalence functions (EQU is the complementary function of XOR; its 
output is 1 only if its two inputs are equal). But these extreme cases are 
observed only for a tiny fraction (1/7256) of the set under consideration. We 
consider them to be pathological cases, i.e. not representative of the set being 
studied. 
 
 

Figure 3. Histogram of the periods for 10 initial conditions of 1 000 random boolean networks 
of 256 automata. 
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We then call generic properties of a set of networks those properties 
which are independent of the detailed structure of the network — they are 
characteristic of almost all of the networks of the set. This notion then 
applies to randomly constructed networks. The generic properties can be 
shown not to hold for a few pathological cases which represent a proportion 
of the set which quickly approaches 0 as the size of the network is increased. 
In general the generic properties are either:  
– qualitative properties with probabilities of being true are close to 1 
– semi-qualitative properties, such as the scaling laws which relate the 

dynamical properties to the number of automata. 
The notion of generic properties characteristic of randomly constructed 

networks is the basis for a number of theoretical biological models. It is 
similar to the notion of universality classes, developed for phase transitions. 
Without going into too much detail, we can say that the physical variables 
involved in phase transitions obey scaling laws which can be independent of 
the transition under consideration (such as, for example, problems in 
magnetism, superconductivity, or physical chemistry) and of the details of 
the mathematical model which was chosen. These laws only depend on the 
physical dimension of the space in which the transition takes place (for us, 
this is three-dimensional space) and on the dimension of the order parameter. 
The set of phase transitions (and their mathematical models) which obey the 
same scaling laws constitutes a universality class. 

In fact, the first attempt to model a biological system by a disordered 
network of automata by S. Kauffman (1969), a theoretical biologist, predates 
the interest of physicists in this subject. It is also based on the idea that the 
properties of disordered systems are representative of the vast majority of 
systems defined by a common average structure. 

 
 

3.1 An example: Cell Differentiation and Random Boolean 
Automata 

 
The apparent paradox of cell differentiation is the following: “Since all cells 
contain the same genetic information, how can there exist cells of different 
types within a single multicellular organism?”. 

Indeed, our body contains cells with very different morphologies and 
biological functions: neurons, liver cells, red blood cells (…) a total of more 
than 200 different cell types. Yet the chromosomes, which carry the genetic 
information, are not different in different cells. Part of the answer is that not 
all of the proteins coded for by the genome are expressed (synthesized with  
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a non-zero concentration) in a cell of a given type. Hemoglobin is found 
only in red blood cells, neurotransmitters and their receptors only appear in 
neurons, etc. 

Several mechanisms can interfere with the different stages of gene 
expression to facilitate or block it. We speak of activation and repression. 
The best known mechanisms involve the first steps of transcription. In order 
to transcribe the DNA, a specific protein, DNA polymerase, must be able to 
bind to a region of the chain, called the promoter region, which precedes the 
coded part of the macromolecule. Now, this promoter can be partially 
covered by a control protein, called the repressor; reading the rest of the 
chain is then impossible. It follows that, depending on the quantity of 
repressor present, the gene is either expressed or not expressed. The protein 
which acts as a repressor is also coded for by another gene, which is itself 
under the control of one or several proteins. It is tempting to model the 
network of these interdependent interactions by an automata network. 
– A gene is then represented by an automaton whose binary state indicates 

whether or not it is expressed. If the gene is in state 1, it is expressed and 
the protein is present in large concentrations in the cell. It is therefore 
liable to control the expression of other genes. 

– The action of control proteins on this gene is represented by a boolean 
function whose inputs are the genes which code for the proteins 
controlling its expression. 

– The genome itself is represented by a network of boolean automata which 
represents the interactions between the genes. 

In such a network, the only configurations which remain after several 
iteration cycles are the attractors of the dynamics, which are fixed points or 
limit cycles, at least when the dynamics is not chaotic. These configurations 
can be interpreted in terms of cell types: a configuration corresponds to the 
presence of certain proteins, and consequently to the biological function of a 
cell and its morphology. Consequently, if we know the set of control 
mechanisms of each of the genes of an organism, we can predict the cell types. 
In fact, this is never the case, even for the simplest organisms. Without 
knowing the complete diagram of the interactions, S. Kauffman (1969) set out 
to uncover the generic properties common to all genomes by representing them 
by random boolean networks. Since there is a finite number of possible 
boolean laws for an automaton with a given input connectivity k, it is possible 
to construct a random network with a given connectivity. 

S. Kauffman determined the scaling laws relating the average period of the 
limit cycles and the number of different limit cycles to N, the number of 
automata in the network. For a connectivity of 2, these two quantities seem to  
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depend on the square root of N (in fact the fluctuations are very large). In fact, 
these same scaling laws have been observed for the time between cell divisions 
and for the number of cell types as a function of the number of genes per cell. 

It is clear that Kauffman’s approximations were extremely crude 
compared to the biological reality — binary variables representing protein 
concentrations, boolean (and thus discrete) functions, simultaneity of the 
transitions of automata, random structures\dots The robustness of the results 
obtained with respect to the possible modifications of the model (these are 
random networks) justifies this approach. As for the existence of a large 
number of attractors, it is certainly not related to the particular specifications 
of the chosen networks; it is a generic property of complex systems, which 
appears as soon as frustrations exist in the network of the interactions 
between the elements. 

 
 

3.2 Generic properties of Random Boolean Nets 
 
In fact, the results obtained by Kauffman show two distinct dynamical 
regimes, depending on the connectivity. 

For networks of connectivity 2, the average period is proportional to the 
square root of N, the number of automata. The same is true of the number of 
attractors. In other words, among the 2N configurations which are a priori 
possible for the network, the dynamics selects only a small number of the 
order of N which are really accessible to the system after the transient 
period. This selection can be interpreted to be an organization property of 
the network. 

As the connectivity is increased, the period increases much faster with the 
number of automata; as soon as the connectivity reaches 4, the period as well 
as the number of attractors become exponential in the number of automata. 
These periods, which are very large as soon as the number of automata is 
greater than one hundred, are no longer observable, and are reminiscent of 
the chaotic behavior of continuous aperiodic systems. In contrast with the 
organized regime, the space of accessible states remains large, even in the 
limit of long times. Further research has shown that other dynamical 
properties of these discrete systems resemble those of continuous chaotic 
systems, and so we will refer to the behavior characterized by long periods 
as chaotic. 
 
 
 
 
 
 



 THE COMPLEX ADAPTATIVE SYSTEMS APPROACH TO BIOLOGY  

 

19 

 
 
 

3.2.1 Functional Structuring 
 
We have shown that when boolean automata are randomly displayed on a 
grid their temporal organization in period is related to a spatial organization 
in isolated islands of oscillating automata as soon as the attractor is reached. 
In the organized regime, percolating structures of stable units isolate the 
oscillating islands. In the chaotic regime the inverse is true: few stable units 
are isolated by a percolating set of oscillating units. 

3.2.2 The Phase Transition 
 
The connectivity parameter is an integer. It is interesting to introduce a 
continuous parameter in order to study the transition between the two 
regimes: the organized regime for short periods, and the chaotic regime 
corresponding to long periods. B. Derrida and D. Stauffer suggested the 
study of square networks of boolean automata with four inputs.  

The continuous parameter p is the probability that the output of the 
automaton is 1 for a given input configuration. In other words, the networks 
are constructed as follows. We determine the truth table of each automaton 
by a random choice of outputs, with a probability p of the outputs being 1. If 
p = 0, all of the automata are invariant and all of the outputs are 0; if p = 1, 
all of the automata are invariant and all of the outputs are 1. Of course the 
interesting values of p are the intermediate values. If p = 0.5, the random 
process described above evenly distributes all of the boolean functions with 
four inputs; we therefore expect the chaotic behavior predicted by Kauffman. 
On the other hand, for values of p near zero, we expect a few automata to 
oscillate between attractive configurations composed mainly of 0’s, 
corresponding to an organized behavior. Somewhere between these extreme 
behaviors, there must be a change of regimes. The critical value of p is 0.28. 
For smaller values, we observe small periods proportional to a power of the 
number of automata in the network. For p > 0.28, the period grows 
exponentially with the number of automata. 

 
 

3.2.3 Distance 
 
The distance method has recently been found to be one of the most fruitful 
techniques for determining the dynamics of a network. Recall that the 
Hamming distance between two configurations is the number of automata in 
different states. This distance is zero if the two configurations are identical, 
and equal to the number of automata if the configurations are complementary. 
We obtain the relative distance by dividing the Hamming distance by the 
number of automata. 
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The idea of the distance method is the following: we choose two initial 
conditions separated by a certain distance, and we follow the evolution in 
time of this distance. The quantity most often studied is the average of the 
asymptotic distance, measured in the limit as time goes to infinity. We 
compute this average over a large number of networks and of initial 
conditions, for a fixed initial distance. Depending on the initial distance, the 
two configurations can either evolve toward the same fixed point (in which 
case the distance goes to zero), or toward two different attractors, or they 
could even stay a fixed distance apart (in the case of a single periodic 
attractor), regardless of whether the period is long or short. Again, we 
observe a difference in the behaviors of the two regimes. On Figure 4, the 
x-axis is the average of the relative distances between the initial 
configurations, and the y-axis is the average of the relative distances in the 
limit as time goes to infinity. In the chaotic regime, we observe that if the 
initial distance is different from 0, the final distance is greater than 10 %. 
The final distance seems almost independent of the initial distance. On the 
other hand, in the organized regime, the final distance is proportional to the 
initial distance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4. Relative distances at long times as a function of the initial relative distances, 
in the organized (p = 0.2) and chaotic ( p = 0.3) regimes. (From B. Derrida and D. Stauffer 
(1986) Europhys. Lett., 2, 739). 


