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Preface

This book is a continuation of a previous one by the same
author (Differential Forms in Electromagnetics, [1]) on the
application of multivectors, multiforms, and dyadics to
electromagnetic problems. Main attention is focused on
applying the formalism to the analysis of electromagnetic
media, as inspired by the ongoing engineering interest in
constructing novel metamaterials and metaboundaries. In
this respect the present exposition can also be seen as an
enlargement of a chapter in a recent book on
metamaterials [2] by including substance from more recent
studies by this author and collaborators. The present four-
dimensional (4D) formalism has proved of advantage in
simplifying expressions in the analysis of general media in
comparison to the classical three-dimensional (3D)
Gibbsian formalism. However, the step from
electromagnetic media, defined by medium parameters, to
actual metamaterials and metaboundaries, defined by
physical structures, is beyond the scope of this book.

The first four chapters are devoted to the algebra of
multiforms and dyadics in order to introduce the formalism
and useful analytic tools. Similar material presented in [1]
has been extended. Chapter 5 summarizes basic
electromagnetic concepts in the light of the present
formalism. Chapter 6 discusses transformations useful for
simplifying problems. In the final Chapters 7-10 different
classes of electromagnetic media are defined on the basis
of their various properties. Because the most general linear
electromagnetic medium requires 36 parameters for its
definition, it is not easy to understand the effect of all these
parameters. This is why it becomes necessary to define
medium classes with reduced numbers of parameters. In



Chapter 7 the classes are defined in terms of a natural
decomposition of the medium bidyadic in three
components, independent of any basis representation.
Chapter 8 considers media whose medium bidyadic can be
expressed in terms of quadratic functions of dyadics
defined by 16 parameters. In Chapter 9 medium classes are
defined by the degree of the algebraic equation satisfied by
the medium bidyadic. Finally, in Chapter 10 media are
defined by certain restrictions imposed on plane waves
propagating in the media.

Main emphasis lies on the application of the present
formalism in the definition and analysis of media. It turns
out that certain concepts cannot be easily defined through
the 3D Gibbsian vector and dyadic representation. For
example, the perfect electromagnetic conductor (PEMC)
medium generalizing both perfect electric conductor (PEC)
and perfect magnetic conductor (PMC) media appears as
the simplest possible medium in the present formalism
while in terms of conventional engineering representation
with Gibbsian medium dyadics it requires parameters of
infinite magnitude. As another example, decomposable bi-
anisotropic media, defined to generalize uniaxially
anisotropic media in which fields can be decomposed in
transverse electric (TE) and transverse magnetic (TM)
components, can be represented in a compact 4D form
while the original analysis applying 3D Gibbsian
formulation produced extensive expressions. In addition to
the economy in expression, the present analysis is able to
reveal novel additional solutions. A number of details in the
analysis has been skipped in the text and left as problems
for the reader. Solutions to the problems can be found at
the end of the book, which allows the book to be used for
self-study.

Because of the background of the author, the book is
mainly directed to electrical engineers, although physicists



and applied mathematicians may find the contents of
interest as well. It has been attempted to make the
transition from 3D Gibbsian vector and dyadic formalism,
familiar to most electrical engineers, to the 4D exterior
calculus involving multivectors, multiforms, and dyadics, as
small as possible by showing connections to the
corresponding Gibbsian quantities in an appendix. The
main idea for adopting the 4D formalism is not to
emphasize time-domain analysis of electromagnetic fields
but to obtain compactness in expression and analysis. In
fact, harmonic time dependence exp (jwt) is often tacitly
assumed by allowing complex magnitudes for the medium
parameters.

Compared to the previous book [1], the present approach
shows some changes in the terminology followed by an
effort to make the presentation more accessible. For
example, to emphasize the most important dyadics defining
electromagnetic media, they have been called bidyadics
because they represent mappings between two-forms
and/or bivectors.

The author thanks students of the postgraduate courses
based on the material of this book for their comments and
responses. Special thanks are due to professors Ari Sihvola
and Friedrich Hehl and for doctors Alberto Favaro and Luzi
Bergamin for their long-lasting interest and help in treating
questions during the years behind this book.

ISMO V. LINDELL



CHAPTER 1
Multivectors and Multiforms

1.1 VECTORS AND ONE-FORMS

Let us consider two four-dimensional (4D) linear spaces,
that of vectors, E1 and that of one-forms 1. The elements of
[E) are most generally denoted by boldface lowercase Latin
letters,

ﬂ,b.C,...EE[, (11)

while the elements of I'1 are most generally denoted by
boldface lowercase Greek letters

a. p.y,...el,. (1.2)

The space of scalars is denoted by o or Fo and its elements
are in general represented by nonboldface Latin or Greek
letters a, b, ¢, ..., o, B, v, ....

Exceptions are made for quantities with established
conventional notation. For example, the electric and
magnetic fields are one-forms which are respectively
denoted by the boldface uppercase Latin letters E and H.

1.1.1 Bar Product |

The product of a vector a and a one-form a yielding a scalar
is denoted by the “bar” sign | as 2l® € Eq. The product is
assumed symmetric,

ala = a|a. (1.3)



Because of the sign, it will be called as the bar product. In
the past it has also been known as the duality product or
the inner product. The bar product should not be confused
with the dot product. The dot product can be defined for
two vectors as a - b or two one-forms as @ * £ and it
depends on a particular metric dyadic as will be discussed
later.

1.1.2 Basis Expansions

A set of four vectors, e, e,, e3, e,, is called a basis if any
vector a can be expressed as

a=ae +a,e, +aze;+ae,. (1.4)

in terms of some scalars a;. Similarly, any one-form can be
expanded in a basis of one-forms, €1:€2:€3: €4 as

ax =& + €, + XyE5 + AYE,. (1.5)
The expansion of the bar product yields

ala = 2 2 a;a;€;|€;

i=1 j=I

(1.6)

The vector and one-form bases are called reciprocal to one
another if they satisfy

e;le; = 5, (1.7)
with
5:'.:': l? 5."_.;':0 ’%j (]_8)
In this case the scalar coeffients in (1.4) and (1.5) satisfy

a; = €|, a; = ela, (1.9)



and the bar product can be expanded as

2 (1.10)
ala = Ea{-a{- = a,a) + ar, + azaz + a,ay.
=1
From here onwards we always assume that when the two
bases are denoted by e; and £/, they are reciprocal.

Vectors can be visualized as yardsticks in the 4D spacetime,
and they can be used for measuring one-forms. For
example, measuring the electric field one-form E € ¥, by a
vector a yields the voltage U between the endpoints of the
vector

alE=U, (1.11)

provided E is constant in space or a is small in terms of
wavelength.

The bar product al« is a bilinear function of a and a. Thus,
ala can be conceived as a linear scalar-valued function of a
for a given vector a. Conversely, any linear scalar-valued
function /(@) can be expressed as a bar product al@ in
terms of some vector a. To prove this, we express a in a
basis {€;} and apply linearity, whence we have

ala = f(a) =f (Z fI!-E,-) = Zaj(fj) = Zf{_ff-)e{}a:, (1.12)

in terms of the reciprocal vector basis {e;}. Thus, the
vector a can be defined as

a= Zf(f,-)e!-. (1.13)

1.2 BIVECTORS AND TWO-FORMS



1.2.1 Wedge Product a

The antisymmetric wedge product A between two vectors a
and b yields a bivector, an element of the space 2 of
bivectors,

aAnb=-bAa. (1.14)

This implies

ana=0, (1.15)

for any vector a. In general, bivectors are denoted by
boldface uppercase Latin letters,

A.B.C, ... ek, (1.106)

and they can be represented by a sum of wedge products of
vectors,

A=asrb+cAad+ .. (1.17)

Similarly, the wedge product of two one-forms a and £
produces a two-form

aANp=—-pAra. (1.18)

Two-forms are denoted by boldface uppercase Greek letters
whenever it appears possible,

Iow..ekl,, (1.19)

and they are linear combinations of wedge products of one-
forms,

IF'=aAB+yAd+--. (1.20)

A bivector which can be expressed as a wedge product of
two vectors, in the form



A=aAb, (1.21)

is called a simple bivector. Similarly, two-forms of the
special form

IF=anp, (1.22)
are called simple two-forms.

For the 4D vector space as considered here, the bivectors
form a space of six dimensions as will be seen below. It is
not possible to express the general bivector in the form of a
simple bivector.

1.2.2 Basis Expansions

Expanding vectors in a vector basis {e;} induces a basis

expansion of bivectors where the basis bivectors can be
denoted by e;; = e;ne;. Because e;; = 0 and six of the

remaining twelve bivectors are linearly dependent of the
other six,

Elz = El M EE — _Ejla EE? = EZ A e:’- - _e?'z’ Etl:., (1-23)

the space of bivectors is six dimensional. Actually, the
bivector basis need not be based on any vector basis. Any
set of six linearly independent bivectors could do.

A bivector can be expanded in the bivector basis as

A=) A (L.24)
J

=Ape; +Axpe;n +Az e +A ey Ay e, +Ajesy,.

Here, J = jjis a bi-index containing two indices i, j taken in
a suitable order. In the following we will apply the order

J =12, 23, 31, 14, 24, 34. (1.25)



Similarly, a basis of two-forms can be built upon the basis
of one-forms as £/ = &j = &N Ej,

It helps in memorizing if we assume that the index 4
corresponds to the temporal basis element and 1, 2, 3 to
the three spatial elements. In this case the spatial indices
appear in cyclical order 1 - 2 - 3 — 1 in J while the index 4
occupies the last position.

It is useful to define an operation K(J) yielding the
complementary bi-index of a given bi-index J as

K(12) = 34, K(23) = 14, K(31) =24, (1.26)

K(14) = 23, K(24) = 31, K(34) = 12. (1.27)
Obviously, the complementary index operation satisfies

K(K(J)) =J. (1.28)

The basis expansion (1.24) can be used to show that any
bivector can be expressed as a sum of two simple bivectors,
in the form

A=anb+cad. (1.29)

Such a representation is not unique. As an example,
assuming 423 7 0 in (1.24), we can write

| : (1.30)

A= A_(AHE] — Apey) A (Ape — Axze;) + ZAMEE A ey,

23 =

Thus, any bivector can be expressed in the form
Azﬂlﬂﬂz‘l‘agﬂe._p (131)

where the vectors a; are spatial, that is, they satisfy ale, =0
. a;ha, is called the spatial part of A and azAe, its temporal



part. Similar rules are valid for two-forms. In particular,
any two-form can be expanded in terms of spatial and
temporal one-forms as

F=a Aa, +a;NEy, ela;=0. (1.32)

1.2.3 Bar Product

We can extend the definition of the bar product of a vector
and a one-form to that of a bivector and a two-form,

A|® = @®|A  Starting from a simple bivector anb and a
simple one-form & A B the bar product is a quadrilinear
scalar function of the two vectors and two one-forms and it
can be expressed in terms of the four possible bar products
of vectors and one-forms as

(a Ab)|(a A B) = (ala)(b|B) — (a| B)(b|a) = det (gllz Ellg) (1.33)

Such an expansion follows directly from the antisymmetry

of the wedge product and assuming orthogonality of the
basis bivectors and two-forms as

E{;lERs” = 0, 10 - (1.34)

by assuming ordered indices. Equation (1.33) can be
memorized from the corresponding rule for three-

dimensional (3D) Gibbsian vectors denoted by
a,,b d, € E

g e

(a, Xb,)- (¢, xd,) = (@, - c,)(b, -d,)—(a, -d)(b,-c,). (1.35)

Relations of multivectors and multiforms to Gibbsian
vectors are summarized in Appendix B.

As examples of spatial two-forms we may consider the
electric and magnetic flux densities, for which we use the



established symbols D and B. Bivectors can be visualized
as surface regions with orientation (sense of rotation). They
can be used to measure the flux of a two-form through the
surface region. For example, the magnetic flux ® (a scalar)
of the magnetic spatial two-form B through the bivector
aAb is obtained as

® =(aAb)|B. (1.36)

For more details on geometric interpretation of multiforms
see, for example, [3, 4].

1.2.4 Contraction Products | and |

Considering a bivector aAnb and a two-form @, the bar
product (a Ab)|® can be conceived as a linear scalar-valued
function of the vector a. Thus, there must exist a one-form
a in terms of which we can express

ala = (aAb)|®=®|(aAb)=-®|(bAa)=ala. (1.37)

Obviously, the one-form a is a linear function of both b and
@ so that we can express it as a product of the vector b and
the two-form @ and denote it either

@ =b|d, (1.38)

or

a=—®|b. (1.39)

The operation denoted by the multiplication sign | or | will
be called contraction, because the two-form @ is contracted
(“shortened”) by the vector b from the left or from the right
to yield a one-form. Thus, the contraction product obeys
the simple rules

al|(b]®) = (a A b)|D, (1.40)



(@|b)|a = ®@|(b A a). (1.41)

Contraction of a bivector A by a one-form a can be defined
similarly. Applied to (1.33), with slightly changed symbols,
yields

(dAaa)(BAy)—((d|p)aly)— (dly)alp)) = (1.42)
dl[a](B A y)) — ((Baly) —y(a]|B)))] = 0,

which is valid for any vector d. Choosing d = e; for i = 1,

..., 4, all components of the one-form expression in square
brackets vanish. Thus, we immediately obtain the “bac-cab
rule” valid for any vector a and one-forms 8.7,

a|(BAy) = Baly) —y(@l|B) = (y A B)|a. (1.43)

Equation (1.43) corresponds to the well-known bac-cab rule
of 3D Gibbsian vectors, Appendix B,

a, X (byX¢,) =by(a,-c)—cga, -by)=(c,xb)Xa, (1.44)
which helps in memorizing the 4D rule (1.43).

Useful contraction rules for basis vectors and one-forms
can be obtained as special cases of (1.43) as

e|(e; NE) =¢|e; =€, (1.45)

(e; ne) e, = e e, =e,. (1.46)

They can be easily memorized as a way of canceling basis
vectors and one-forms with the same index from the
contraction operation.

1.2.5 Decomposition of Vectors and One-Forms

Two vectors a.b # 0 are called parallel if they satisfy the
relation



aAb=0. (1.47)
Applying the bac-cab rule (1.43) for parallel vectors a, b,

a|(a Ab) = a(a|b) — b(aja) = 0, (1.48)

implies that parallel vectors are linearly dependent, that is,
one is a multiple of the other one. Assuming a2 A b # 0 and
ala # 0, we can write the following decomposition for a
given vector b:

a|b — al(b Aa) (1.50)

b, = —a,
I ala 1 ala

Here, b can be interpreted as the component parallel to a

given vector a, while b, can be called as the component

perpendicular to a given one-form a, because it satisfies
alb, = a|(a](aab)) =(aAra)(@anb)=0. (1.51)

Similarly, we can decompose a one-form B as

p=pB+5B. (1.52)

alp al(a A p) 1.53

By=-a B=———: (1:59)
ala ala

in terms of a given one-form a and a given vector a

satisfying @la # 0,

1.3 MULTIVECTORS AND MULTIFORMS

Higher-order multivectors and multiforms are produced
through wedge multiplication. The wedge product is
associative so that we have



an(bac)=(aab)AaAc=aAbAc, (1.54)

and the brackets can be omitted. Thus, trivectors and
three-forms are obtained as

k:alﬂazﬁaj‘l‘blﬂhgﬂbg'l'*“E[E:h (1.55)

ﬂ':{r]ﬂﬂgﬁa3+ﬁ]ﬁﬁzﬂﬁ3+“‘EIFR- (156)

They will be denoted by lowercase Latin and Greek
characters taken, if possible, from the end of the alphabets.
Quadrivectors and four-forms can be constructed as

%{ZE]f\ﬂzﬂﬂgﬂahl_"‘blﬂbgﬂbjﬂb._L—F”'EE..La (157)

Ky=a ANayANayAay+ B AB, ABs AP+~ €F,.  (1.58)

The subscript N denoting the quadri-index N = 1234 is
used to mark a quadrivector or a four-form.

Because the space of vectors is 4D, there are no
multivectors of higher order than four. In fact, because any
vector as can be expressed as a linear combination of a

basis a;...a, satisfying 21 A& Aa; Aa; # 0, a5 will be shown
below, we have a;Aa;NaznasAag = 0. The spaces of

trivectors and three-forms are 4D and, those of
quadrivectors and four-forms, one dimensional.

1.3.1 Basis of Multivectors

The vector basis {e;} induces the trivector basis
E]EBZEIJ"'\.EEJ’\E}, EZBHL:EEBJ’\EHL:EEJ’\E?I!'\EJ_,

€y =€ A€ =€3;N€e Aey, €y =€erAE =€ A€ A€y, (1.59)

whence the space of trivectors is 4D. There is only a single
basis quadrivector denoted by



€y = €134 =€ Ae; Aes Aey, (1.60)

based upon the vector basis. Similar definitions apply for

the basis three-forms €iik = € N € N €x gand the basis four-
form €nv = €1234 — ELNEZ NEFNEY,

Recalling the definition of the complementary bi-index
(1.26), (1.27), and applying the antisymmetry of the wedge
product we obtain

€3 ACg3 =€ Al =€ ACACAC =€y =€y (1.61)
More generally, we can write
€; Aegy = €gy) A€y = ey. (1.62)
Defining the bi-index Kronecker delta by
6, =0, I#J, opy=1, I=1J, (1.63)
we can write even more generally,

e, Ae; = O g€y (1.64)

This means that, unless I equals K(J), that is, J equals K(J),
the wedge product yields zero.

1.3.2 Bar Product of Multivectors and
Multiforms

Extending the bar product to multivectors and multiforms,
we can define the orthogonality relations for the reciprocal
basis multivector and multiforms as

€| €,y = 6;,6; 04 45 (1.65)

Eﬁkflf.r:mr - 5i.r‘5j~.ﬁ'5k,15f+¢r? (166)



when the indices are ordered. From the antisymmetry of
the wedge product we obtain the expansion rules

ala a|p al|y (1.67),
(arnbAac)(anpAay)=det|bla b|g b|y].
cle c|p c|y

ala a|f aly al8) (1.68)
bl b|g b|y b|d

cla c|p cly c|6]

dla d|g d|y d|é

(anbAcAd)|(anp Ay Ad) =det

All quadrivectors are multiples of a given basis
quadrivector e,y and all four-forms are multiples of a given

basis four-form €n:
qQy = g€y, Ky = K&y, (1.69)
with

q = Qyl€xn. K = ey|Kky. (1.70)

Applying the expansion rule for the determinant in (1.67),
we can expand the bar product

(1.71)
_ bl blrY _ blar by
(aAbAc)(aA B AYy)=ala det (Clﬁ cl}’) ﬂlﬁdet(cla C|]">
bla b|p
+aly det(cla Clﬁ)’

whence from (1.33) we obtain the rule



(1.72)
(aAbAc)|(aABAy)=(ala)bAc)(BAY)+(a|B)bAc)|(y Aa)

+(aly)(b A ¢)|(a A B)].

1.3.3 Contraction of Trivectors and Three-Forms

Defining the contraction of a three-form by a bivector as
arising from

(@aabAao(aApAay)=al(bAe)|(aABAY)) (1.73)
= (@A BAY)|(bAc)|a,

from (1.72) we obtain the expansion rule

(1.74)
(bAae)|[(aABAY)=(@ABAY)|(bAC)

=((bAO(fAyNa+((bAac)(y Aa)p+((bAc)(aApB)y.

From this it follows that if the three one-forms satisfy
a AP AY =0 they must be linearly dependent.

Rewriting (1.72) in the form

(bAao|al(aAnpAay))=(arpAry)|a)bAac) (1.75)
=(bA0|l(BAYala+(y Aa)alf+ (ax A Baly],
which remains valid when bAc is replaced by any bivector

A because of linearity, we obtain another contraction rule
for contracting a three-form by a vector,

ajlanBAry)=(axAPAY)|a (1.76)
= (ala)(BAY)+ (@|p)y A a) + (aly)a A B).
IfeABAY =0 the three two-forms BAY, Y A& and * A B

must be linearly dependent, which also follows from the
linear dependence of the three one-forms.



The contraction rules (1.74) and (1.76) are similar to the
bac-cab rule (1.43) and they can be easily memorized
because of the cyclic symmetry. Other similar forms are
obtained by replacing vectors by one-forms and one-forms
by vectors in (1.74) and (1.76). Commutation rules for the
contraction product can be summarized as

alk=k|la, ®|k=k|®D, (1.77)

a|m = m|a, Alr =nx|A. (1.78)

Here, a is a vector, A is a bivector and k is a trivector while
a is a one-form, @ is a two-form and «x is a three-form.
Useful rules for the contraction operations involving basis
trivectors and three-forms can be formed as

EijE:}k = EjJEEj = &, (1.79)

e )€ = €5 (1.80)

showing how similar indices are canceled in contraction
operations.

1.3.4 Contraction of Quadrivectors and Four-
Forms

Following the same path of reasoning, starting from (1.68)
we can expand the contraction of a four-form by a trivector

brerd)](@arpAyAd)=—(aAPAyAd)|(barecAad) (1.81)
=—(bArcAd)[(@aABAYS+(DAcCAD|(BAY A
+hAcAd)(y AaAd)p+(bAcAd)|(anpAdy,

the contraction of a four-form by a bivector,



(cAd)J(@ABAYAS) =(@APBAYAD|(cAd) (1.82)
=(eAD[BAYNaAd)+(eAd)|(fAa)y Ad)
+eAd)|(y Aa)BAS)+(eAd)|(y Ad)a A P)
+eAd)(@AB)(BAY)+ (e Ad)|(B Ay Aa),

and the contraction of a four-form by a vector,

dj(a ABAYAS) =—(@aABAYyAS)|d (1.83)
=dla)(pAYyAS)+d]|B)y AaAd)
+(d|y)a A BAS)—(d[S)aABAy).

The above expressions appear invariant to cyclic
permutation of the one-forms @ 8.7, which may help in
memorizing and checking the formulas.

IfaABAYAS=0 from (1.81) it follows that the four one-
forms are linearly dependent, from (1.82) it further follows
that also the six two-forms are linearly dependent and from
(1.83) it follows that the four three-forms are linearly
dependent. The contraction of a four-form K or
quadrivector q, obeys the commutation rules

ajky = —ky|a, alqy = —qy|a, (1.84)
Alky = ky|A, D@ |qy = qy | D, (1.85)
kjy = —xylk, z|qy = —qy|x, (1.86)

Equations (1.81)-(1.83) imply the following contraction
rules for the basis multivectors and multiforms:

EKJE{,FM' = €y Gy l&; = €irr (1.87)

€ |Eijke = €y Cpr | € = €4 (1.88)



EjkaE{ik.{* =&, Ey l.Eijk = €y, (1.89)

which can be applied for canceling indices in expressions
involving contraction of basis multivectors and multiforms.
From (1.81) to (1.83) we can see that contraction of a four-
form can be applied to transform vectors to three-forms,
bivectors to two-forms and trivectors to one-forms and
conversely. The converse cases can be obtained by applying
the rules

Ehr[(Ehr lﬂ} = (HJ«ENJJ €y = —4a, (&)
ey[(ex[A) = (Aley) ey = A, (1.91)
eyl(ex| k) = (k]ey)|ey = —k. (1.92)

1.3.5 Construction of Reciprocal Basis

Given a set of basis vectors a; i =1, ..., 4, and a four-form
Ky, we can form the reciprocal one-form basis as

_ aﬁ.’[f}J Ky (1.93)

i

aylky

where the agy; are four three-forms defined by
Ak = A3, Ag) T A3y g3y T A1y gy T 1230 (1,94)
satisfying

a; A Ay = —Agy A a; = ay0;;. (1.95)
The rule (1.93) is easily checked:
_ (a; A agg)lky e (1.96)

ala = =4 ..
.fl i ﬂh,rlrh,r L




