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Chapter 2

Figure 2.1 The double-cross product  corresponding

to the double-wedge product  was originally

introduced by Gibbs in 1886 [6]. Here the bar

corresponds to the dyadic product (later replaced by

“no sign” by Gibbs [5]). The expression on the last

line stands for the nth double-cross power of the

dyadic .

Figure 2.2 The notation (bracketed number in

superscript) for the double-wedge power was

introduced by Reichardt [7]. There is no sign

denoting the bar product.



Preface

This book is a continuation of a previous one by the same

author (Differential Forms in Electromagnetics, [1]) on the

application of multivectors, multiforms, and dyadics to

electromagnetic problems. Main attention is focused on

applying the formalism to the analysis of electromagnetic

media, as inspired by the ongoing engineering interest in

constructing novel metamaterials and metaboundaries. In

this respect the present exposition can also be seen as an

enlargement of a chapter in a recent book on

metamaterials [2] by including substance from more recent

studies by this author and collaborators. The present four-

dimensional (4D) formalism has proved of advantage in

simplifying expressions in the analysis of general media in

comparison to the classical three-dimensional (3D)

Gibbsian formalism. However, the step from

electromagnetic media, defined by medium parameters, to

actual metamaterials and metaboundaries, defined by

physical structures, is beyond the scope of this book.

The first four chapters are devoted to the algebra of

multiforms and dyadics in order to introduce the formalism

and useful analytic tools. Similar material presented in [1]

has been extended. Chapter 5 summarizes basic

electromagnetic concepts in the light of the present

formalism. Chapter 6 discusses transformations useful for

simplifying problems. In the final Chapters 7–10 different

classes of electromagnetic media are defined on the basis

of their various properties. Because the most general linear

electromagnetic medium requires 36 parameters for its

definition, it is not easy to understand the effect of all these

parameters. This is why it becomes necessary to define

medium classes with reduced numbers of parameters. In



Chapter 7 the classes are defined in terms of a natural

decomposition of the medium bidyadic in three

components, independent of any basis representation.

Chapter 8 considers media whose medium bidyadic can be

expressed in terms of quadratic functions of dyadics

defined by 16 parameters. In Chapter 9 medium classes are

defined by the degree of the algebraic equation satisfied by

the medium bidyadic. Finally, in Chapter 10 media are

defined by certain restrictions imposed on plane waves

propagating in the media.

Main emphasis lies on the application of the present

formalism in the definition and analysis of media. It turns

out that certain concepts cannot be easily defined through

the 3D Gibbsian vector and dyadic representation. For

example, the perfect electromagnetic conductor (PEMC)

medium generalizing both perfect electric conductor (PEC)

and perfect magnetic conductor (PMC) media appears as

the simplest possible medium in the present formalism

while in terms of conventional engineering representation

with Gibbsian medium dyadics it requires parameters of

infinite magnitude. As another example, decomposable bi-

anisotropic media, defined to generalize uniaxially

anisotropic media in which fields can be decomposed in

transverse electric (TE) and transverse magnetic (TM)

components, can be represented in a compact 4D form

while the original analysis applying 3D Gibbsian

formulation produced extensive expressions. In addition to

the economy in expression, the present analysis is able to

reveal novel additional solutions. A number of details in the

analysis has been skipped in the text and left as problems

for the reader. Solutions to the problems can be found at

the end of the book, which allows the book to be used for

self-study.

Because of the background of the author, the book is

mainly directed to electrical engineers, although physicists



and applied mathematicians may find the contents of

interest as well. It has been attempted to make the

transition from 3D Gibbsian vector and dyadic formalism,

familiar to most electrical engineers, to the 4D exterior

calculus involving multivectors, multiforms, and dyadics, as

small as possible by showing connections to the

corresponding Gibbsian quantities in an appendix. The

main idea for adopting the 4D formalism is not to

emphasize time-domain analysis of electromagnetic fields

but to obtain compactness in expression and analysis. In

fact, harmonic time dependence exp (jωt) is often tacitly

assumed by allowing complex magnitudes for the medium

parameters.

Compared to the previous book [1], the present approach

shows some changes in the terminology followed by an

effort to make the presentation more accessible. For

example, to emphasize the most important dyadics defining

electromagnetic media, they have been called bidyadics

because they represent mappings between two-forms

and/or bivectors.

The author thanks students of the postgraduate courses

based on the material of this book for their comments and

responses. Special thanks are due to professors Ari Sihvola

and Friedrich Hehl and for doctors Alberto Favaro and Luzi

Bergamin for their long-lasting interest and help in treating

questions during the years behind this book.

ISMO V. LINDELL



(1.1)

(1.2)

(1.3)

CHAPTER 1 

Multivectors and Multiforms

1.1 VECTORS AND ONE-FORMS

Let us consider two four-dimensional (4D) linear spaces,

that of vectors,  and that of one-forms . The elements of

 are most generally denoted by boldface lowercase Latin

letters,

while the elements of  are most generally denoted by

boldface lowercase Greek letters

The space of scalars is denoted by  or  and its elements

are in general represented by nonboldface Latin or Greek

letters a, b, c, …, α, β, γ, ….

Exceptions are made for quantities with established

conventional notation. For example, the electric and

magnetic fields are one-forms which are respectively

denoted by the boldface uppercase Latin letters E and H.

1.1.1 Bar Product |

The product of a vector a and a one-form  yielding a scalar

is denoted by the “bar” sign | as . The product is

assumed symmetric,



(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

Because of the sign, it will be called as the bar product. In

the past it has also been known as the duality product or

the inner product. The bar product should not be confused

with the dot product. The dot product can be defined for

two vectors as a · b or two one-forms as  and it

depends on a particular metric dyadic as will be discussed

later.

1.1.2 Basis Expansions

A set of four vectors, e1, e2, e3, e4, is called a basis if any

vector a can be expressed as

in terms of some scalars ai. Similarly, any one-form can be

expanded in a basis of one-forms,  as

The expansion of the bar product yields

The vector and one-form bases are called reciprocal to one

another if they satisfy

with

In this case the scalar coeffients in (1.4) and (1.5) satisfy



(1.10)

(1.11)

(1.12)

(1.13)

and the bar product can be expanded as

From here onwards we always assume that when the two

bases are denoted by ei and , they are reciprocal.

Vectors can be visualized as yardsticks in the 4D spacetime,

and they can be used for measuring one-forms. For

example, measuring the electric field one-form  by a

vector a yields the voltage U between the endpoints of the

vector

provided E is constant in space or a is small in terms of

wavelength.

The bar product  is a bilinear function of a and . Thus, 

 can be conceived as a linear scalar-valued function of 

for a given vector a. Conversely, any linear scalar-valued

function  can be expressed as a bar product  in

terms of some vector a. To prove this, we express  in a

basis  and apply linearity, whence we have

in terms of the reciprocal vector basis {ei}. Thus, the

vector a can be defined as

1.2 BIVECTORS AND TWO-FORMS



(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

1.2.1 Wedge Product ∧

The antisymmetric wedge product ∧ between two vectors a

and b yields a bivector, an element of the space  of

bivectors,

This implies

for any vector a. In general, bivectors are denoted by

boldface uppercase Latin letters,

and they can be represented by a sum of wedge products of

vectors,

Similarly, the wedge product of two one-forms  and 

produces a two-form

Two-forms are denoted by boldface uppercase Greek letters

whenever it appears possible,

and they are linear combinations of wedge products of one-

forms,

A bivector which can be expressed as a wedge product of

two vectors, in the form



(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

is called a simple bivector. Similarly, two-forms of the

special form

are called simple two-forms.

For the 4D vector space as considered here, the bivectors

form a space of six dimensions as will be seen below. It is

not possible to express the general bivector in the form of a

simple bivector.

1.2.2 Basis Expansions

Expanding vectors in a vector basis {ei} induces a basis

expansion of bivectors where the basis bivectors can be

denoted by eij = ei∧ej. Because eii = 0 and six of the

remaining twelve bivectors are linearly dependent of the

other six,

the space of bivectors is six dimensional. Actually, the

bivector basis need not be based on any vector basis. Any

set of six linearly independent bivectors could do.

A bivector can be expanded in the bivector basis as

Here, J = ij is a bi-index containing two indices i, j taken in

a suitable order. In the following we will apply the order



(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

Similarly, a basis of two-forms can be built upon the basis

of one-forms as .

It helps in memorizing if we assume that the index 4

corresponds to the temporal basis element and 1, 2, 3 to

the three spatial elements. In this case the spatial indices

appear in cyclical order 1 → 2 → 3 → 1 in J while the index 4

occupies the last position.

It is useful to define an operation K(J) yielding the

complementary bi-index of a given bi-index J as

Obviously, the complementary index operation satisfies

The basis expansion (1.24) can be used to show that any

bivector can be expressed as a sum of two simple bivectors,

in the form

Such a representation is not unique. As an example,

assuming  in (1.24), we can write

Thus, any bivector can be expressed in the form

where the vectors ai are spatial, that is, they satisfy 

. a1∧a2 is called the spatial part of A and a3∧e4 its temporal



(1.32)

(1.33)

(1.34)

(1.35)

part. Similar rules are valid for two-forms. In particular,

any two-form can be expanded in terms of spatial and

temporal one-forms as

1.2.3 Bar Product

We can extend the definition of the bar product of a vector

and a one-form to that of a bivector and a two-form, 

. Starting from a simple bivector a∧b and a

simple one-form  the bar product is a quadrilinear

scalar function of the two vectors and two one-forms and it

can be expressed in terms of the four possible bar products

of vectors and one-forms as

Such an expansion follows directly from the antisymmetry

of the wedge product and assuming orthogonality of the

basis bivectors and two-forms as

by assuming ordered indices. Equation (1.33) can be

memorized from the corresponding rule for three-

dimensional (3D) Gibbsian vectors denoted by 

,

Relations of multivectors and multiforms to Gibbsian

vectors are summarized in Appendix B.

As examples of spatial two-forms we may consider the

electric and magnetic flux densities, for which we use the



(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

established symbols D and B. Bivectors can be visualized

as surface regions with orientation (sense of rotation). They

can be used to measure the flux of a two-form through the

surface region. For example, the magnetic flux Φ (a scalar)

of the magnetic spatial two-form B through the bivector

a∧b is obtained as

For more details on geometric interpretation of multiforms

see, for example, [3, 4].

1.2.4 Contraction Products ⌋ and ⌊

Considering a bivector a∧b and a two-form , the bar

product  can be conceived as a linear scalar-valued

function of the vector a. Thus, there must exist a one-form 

 in terms of which we can express

Obviously, the one-form  is a linear function of both b and 

 so that we can express it as a product of the vector b and

the two-form  and denote it either

or

The operation denoted by the multiplication sign ⌋ or ⌊ will

be called contraction, because the two-form  is contracted

(“shortened”) by the vector b from the left or from the right

to yield a one-form. Thus, the contraction product obeys

the simple rules



(1.41)

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

Contraction of a bivector A by a one-form  can be defined

similarly. Applied to (1.33), with slightly changed symbols,

yields

which is valid for any vector d. Choosing d = ei for i = 1,

…, 4, all components of the one-form expression in square

brackets vanish. Thus, we immediately obtain the “bac-cab

rule” valid for any vector a and one-forms ,

Equation (1.43) corresponds to the well-known bac-cab rule

of 3D Gibbsian vectors, Appendix B,

which helps in memorizing the 4D rule (1.43).

Useful contraction rules for basis vectors and one-forms

can be obtained as special cases of (1.43) as

They can be easily memorized as a way of canceling basis

vectors and one-forms with the same index from the

contraction operation.

1.2.5 Decomposition of Vectors and One-Forms

Two vectors  are called parallel if they satisfy the

relation



(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

Applying the bac-cab rule (1.43) for parallel vectors a, b,

implies that parallel vectors are linearly dependent, that is,

one is a multiple of the other one. Assuming  and 

, we can write the following decomposition for a

given vector b:

Here, b∥ can be interpreted as the component parallel to a

given vector a, while b⊥ can be called as the component

perpendicular to a given one-form , because it satisfies

Similarly, we can decompose a one-form  as

in terms of a given one-form  and a given vector a

satisfying .

1.3 MULTIVECTORS AND MULTIFORMS

Higher-order multivectors and multiforms are produced

through wedge multiplication. The wedge product is

associative so that we have



(1.54)

(1.55)

(1.56)

(1.57)

(1.58)

(1.59)

and the brackets can be omitted. Thus, trivectors and

three-forms are obtained as

They will be denoted by lowercase Latin and Greek

characters taken, if possible, from the end of the alphabets.

Quadrivectors and four-forms can be constructed as

The subscript N denoting the quadri-index N = 1234 is

used to mark a quadrivector or a four-form.

Because the space of vectors is 4D, there are no

multivectors of higher order than four. In fact, because any

vector a5 can be expressed as a linear combination of a

basis a1…a4 satisfying , as will be shown

below, we have a1∧a2∧a3∧a4∧a5 = 0. The spaces of

trivectors and three-forms are 4D and, those of

quadrivectors and four-forms, one dimensional.

1.3.1 Basis of Multivectors

The vector basis {ei} induces the trivector basis

whence the space of trivectors is 4D. There is only a single

basis quadrivector denoted by



(1.60)

(1.61)

(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

based upon the vector basis. Similar definitions apply for

the basis three-forms  and the basis four-

form .

Recalling the definition of the complementary bi-index

(1.26), (1.27), and applying the antisymmetry of the wedge

product we obtain

More generally, we can write

Defining the bi-index Kronecker delta by

we can write even more generally,

This means that, unless I equals K(J), that is, J equals K(I),

the wedge product yields zero.

1.3.2 Bar Product of Multivectors and

Multiforms

Extending the bar product to multivectors and multiforms,

we can define the orthogonality relations for the reciprocal

basis multivector and multiforms as



(1.67)

(1.68)

(1.69)

(1.70)

(1.71)

when the indices are ordered. From the antisymmetry of

the wedge product we obtain the expansion rules

All quadrivectors are multiples of a given basis

quadrivector eN and all four-forms are multiples of a given

basis four-form :

with

Applying the expansion rule for the determinant in (1.67),

we can expand the bar product

whence from (1.33) we obtain the rule



(1.72)

(1.73)

(1.74)

(1.75)

(1.76)

1.3.3 Contraction of Trivectors and Three-Forms

Defining the contraction of a three-form by a bivector as

arising from

from (1.72) we obtain the expansion rule

From this it follows that if the three one-forms satisfy 

, they must be linearly dependent.

Rewriting (1.72) in the form

which remains valid when b∧c is replaced by any bivector

A because of linearity, we obtain another contraction rule

for contracting a three-form by a vector,

If , the three two-forms , , and 

must be linearly dependent, which also follows from the

linear dependence of the three one-forms.



(1.77)

(1.78)

(1.79)

(1.80)

(1.81)

The contraction rules (1.74) and (1.76) are similar to the

bac-cab rule (1.43) and they can be easily memorized

because of the cyclic symmetry. Other similar forms are

obtained by replacing vectors by one-forms and one-forms

by vectors in (1.74) and (1.76). Commutation rules for the

contraction product can be summarized as

Here, a is a vector, A is a bivector and k is a trivector while

 is a one-form,  is a two-form and  is a three-form.

Useful rules for the contraction operations involving basis

trivectors and three-forms can be formed as

showing how similar indices are canceled in contraction

operations.

1.3.4 Contraction of Quadrivectors and Four-

Forms

Following the same path of reasoning, starting from (1.68)

we can expand the contraction of a four-form by a trivector

the contraction of a four-form by a bivector,



(1.82)

(1.83)

(1.84)

(1.85)

(1.86)

(1.87)

(1.88)

and the contraction of a four-form by a vector,

The above expressions appear invariant to cyclic

permutation of the one-forms , which may help in

memorizing and checking the formulas.

If , from (1.81) it follows that the four one-

forms are linearly dependent, from (1.82) it further follows

that also the six two-forms are linearly dependent and from

(1.83) it follows that the four three-forms are linearly

dependent. The contraction of a four-form  or

quadrivector qN obeys the commutation rules

Equations (1.81)–(1.83) imply the following contraction

rules for the basis multivectors and multiforms:



(1.89)

(1.90)

(1.91)

(1.92)

(1.93)

(1.94)

(1.95)

(1.96)

which can be applied for canceling indices in expressions

involving contraction of basis multivectors and multiforms.

From (1.81) to (1.83) we can see that contraction of a four-

form can be applied to transform vectors to three-forms,

bivectors to two-forms and trivectors to one-forms and

conversely. The converse cases can be obtained by applying

the rules

1.3.5 Construction of Reciprocal Basis

Given a set of basis vectors ai, i = 1, …, 4, and a four-form 

, we can form the reciprocal one-form basis as

where the aK(i) are four three-forms defined by

satisfying

The rule (1.93) is easily checked:


