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Preface

This book is a continuation of a previous one by the same author (Dif-
ferential Forms in Electromagnetics, [1]) on the application of multi-
vectors, multiforms, and dyadics to electromagnetic problems. Main
attention is focused on applying the formalism to the analysis of elec-
tromagnetic media, as inspired by the ongoing engineering interest in
constructing novel metamaterials and metaboundaries. In this respect
the present exposition can also be seen as an enlargement of a chap-
ter in a recent book on metamaterials [2] by including substance from
more recent studies by this author and collaborators. The present four-
dimensional (4D) formalism has proved of advantage in simplifying
expressions in the analysis of general media in comparison to the classi-
cal three-dimensional (3D) Gibbsian formalism. However, the step from
electromagnetic media, defined by medium parameters, to actual meta-
materials and metaboundaries, defined by physical structures, is beyond
the scope of this book.

The first four chapters are devoted to the algebra of multiforms
and dyadics in order to introduce the formalism and useful analytic
tools. Similar material presented in [1] has been extended. Chapter 5
summarizes basic electromagnetic concepts in the light of the present
formalism. Chapter 6 discusses transformations useful for simplifying
problems. In the final Chapters 7-10 different classes of electromagnetic
media are defined on the basis of their various properties. Because the
most general linear electromagnetic medium requires 36 parameters for
its definition, it is not easy to understand the effect of all these param-
eters. This is why it becomes necessary to define medium classes with
reduced numbers of parameters. In Chapter 7 the classes are defined in
terms of a natural decomposition of the medium bidyadic in three com-
ponents, independent of any basis representation. Chapter 8 considers
media whose medium bidyadic can be expressed in terms of quadratic
functions of dyadics defined by 16 parameters. In Chapter 9 medium
classes are defined by the degree of the algebraic equation satisfied by

xi



xii Preface

the medium bidyadic. Finally, in Chapter 10 media are defined by certain
restrictions imposed on plane waves propagating in the media.

Main emphasis lies on the application of the present formalism in the
definition and analysis of media. It turns out that certain concepts cannot
be easily defined through the 3D Gibbsian vector and dyadic represen-
tation. For example, the perfect electromagnetic conductor (PEMC)
medium generalizing both perfect electric conductor (PEC) and per-
fect magnetic conductor (PMC) media appears as the simplest possi-
ble medium in the present formalism while in terms of conventional
engineering representation with Gibbsian medium dyadics it requires
parameters of infinite magnitude. As another example, decomposable
bi-anisotropic media, defined to generalize uniaxially anisotropic media
in which fields can be decomposed in transverse electric (TE) and trans-
verse magnetic (TM) components, can be represented in a compact 4D
form while the original analysis applying 3D Gibbsian formulation pro-
duced extensive expressions. In addition to the economy in expression,
the present analysis is able to reveal novel additional solutions. A num-
ber of details in the analysis has been skipped in the text and left as
problems for the reader. Solutions to the problems can be found at the
end of the book, which allows the book to be used for self-study.

Because of the background of the author, the book is mainly directed
to electrical engineers, although physicists and applied mathematicians
may find the contents of interest as well. It has been attempted to make
the transition from 3D Gibbsian vector and dyadic formalism, famil-
iar to most electrical engineers, to the 4D exterior calculus involving
multivectors, multiforms, and dyadics, as small as possible by showing
connections to the corresponding Gibbsian quantities in an appendix.
The main idea for adopting the 4D formalism is not to emphasize time-
domain analysis of electromagnetic fields but to obtain compactness in
expression and analysis. In fact, harmonic time dependence exp(jwt) is
often tacitly assumed by allowing complex magnitudes for the medium
parameters.

Compared to the previous book [1], the present approach shows
some changes in the terminology followed by an effort to make the pre-
sentation more accessible. For example, to emphasize the most impor-
tant dyadics defining electromagnetic media, they have been called
bidyadics because they represent mappings between two-forms and/or
bivectors.
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Multivectors and
Multiforms

1.1 VECTORS AND ONE-FORMS

Let us consider two four-dimensional (4D) linear spaces, that of vectors,
E, and that of one-forms ;. The elements of [E, are most generally
denoted by boldface lowercase Latin letters,

a,b,c,... e £, (1.1)

while the elements of I, are most generally denoted by boldface low-

ercase Greek letters
a, py,..€F,. (1.2)

The space of scalars is denoted by E, or I, and its elements are in
general represented by nonboldface Latin or Greek letters a, b, c, ...,

a, ﬂ ’ 7, ceee
Exceptions are made for quantities with established conventional

notation. For example, the electric and magnetic fields are one-forms
which are respectively denoted by the boldface uppercase Latin letters
E and H.

1.1.1 Bar Product |

The product of a vector a and a one-form a yielding a scalar is denoted
by the “bar” sign | as a|a € E,. The product is assumed symmetric,

ala = aja. (1.3)

Multiforms, Dyadics, and Electromagnetic Media, First Edition. Ismo V. Lindell.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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2 CHAPTER 1 Multivectors and Multiforms

Because of the sign, it will be called as the bar product. In the past it
has also been known as the duality product or the inner product. The bar
product should not be confused with the dot product. The dot product
can be defined for two vectors as a - b or two one-forms as « - f and it
depends on a particular metric dyadic as will be discussed later.

1.1.2 Basis Expansions

A set of four vectors, e, e,, €5, €,, is called a basis if any vector a can
be expressed as

a= alel + a262 + a3e3 + a4e4, (14)
in terms of some scalars ;. Similarly, any one-form can be expanded in
a basis of one-forms, €, €,, €5, €, as

The expansion of the bar product yields

4 4
ala =)' Y aaele;. (1.6)

i=1 j=1

The vector and one-form bases are called reciprocal to one another if
they satisfy

ele =9, (1.7)

j =
with
s,=1,  8,;=0i#]. (1.8)

i,

In this case the scalar coeffients in (1.4) and (1.5) satisfy

and the bar product can be expanded as

4
ala = Zaiai =a,o; + a,0, + az0; + a,oy. (1.10)
i=1
From here onwards we always assume that when the two bases are
denoted by e; and ¢;, they are reciprocal.
Vectors can be visualized as yardsticks in the 4D spacetime, and
they can be used for measuring one-forms. For example, measuring



1.2 Bivectors and Two-Forms 3

the electric field one-form E € IF; by a vector a yields the voltage U
between the endpoints of the vector

alE = U, (1.11)

provided E is constant in space or a is small in terms of wavelength.

The bar product a|e is a bilinear function of a and e. Thus, a|a can
be conceived as a linear scalar-valued function of a for a given vector a.
Conversely, any linear scalar-valued function f (&) can be expressed as
a bar product a|a in terms of some vector a. To prove this, we express
a in a basis {¢;} and apply linearity, whence we have

ala=fla)=f (Z ai£i> = Z af(g;) = Zf(ei)eila, (1.12)

in terms of the reciprocal vector basis {e;}. Thus, the vector a can be
defined as

a= ) f(e)e, (1.13)

1.2 BIVECTORS AND TWO-FORMS

1.2.1 Wedge Product A

The antisymmetric wedge product A between two vectors a and b yields
a bivector, an element of the space E, of bivectors,

aAnb=-bAa. (1.14)
This implies
ana=0, (1.15)

for any vector a. In general, bivectors are denoted by boldface uppercase
Latin letters,

AB,C,... €E,, (1.16)
and they can be represented by a sum of wedge products of vectors,
A=aAb+cAd+---. (1.17)

Similarly, the wedge product of two one-forms a and B produces a
two-form

aAf=—-PAa. (1.18)
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Two-forms are denoted by boldface uppercase Greek letters whenever
it appears possible,

Io,¥Y,...el,, (1.19)
and they are linear combinations of wedge products of one-forms,
F'=aAp+yAd+ . (1.20)

A bivector which can be expressed as a wedge product of two vectors,
in the form

A=anb, (1.21)
is called a simple bivector. Similarly, two-forms of the special form
'=aAp, (1.22)

are called simple two-forms.

For the 4D vector space as considered here, the bivectors form a
space of six dimensions as will be seen below. It is not possible to
express the general bivector in the form of a simple bivector.

1.2.2 Basis Expansions

Expanding vectors in a vector basis {e;} induces a basis expansion
of bivectors where the basis bivectors can be denoted by e; =e; Ae;.
Because e; = 0 and six of the remaining twelve bivectors are linearly
dependent of the other six,

elz = el /\62 = —621, 623 = e2 A 63 = —632, etC., (123)

the space of bivectors is six dimensional. Actually, the bivector basis
need not be based on any vector basis. Any set of six linearly independent
bivectors could do.

A bivector can be expanded in the bivector basis as

A=ZAJeJ
J

=Apepy + Ay + Az ey +A e +Ayey + A0 (1.24)

Here, J = ij is a bi-index containing two indices i,j taken in a suitable
order. In the following we will apply the order

J =12, 23, 31, 14, 24, 34. (1.25)
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Similarly, a basis of two-forms can be built upon the basis of one-forms
asE; = €; = ;A\ €.

It helps in memorizing if we assume that the index 4 corresponds to
the temporal basis element and 1, 2, 3 to the three spatial elements. In
this case the spatial indices appear in cyclical order ] -2 - 3 — 1 in
J while the index 4 occupies the last position.

It is useful to define an operation K(J) yielding the complementary
bi-index of a given bi-index J as

K(12) = 34, K(23) = 14, K(31) = 24, (1.26)
K(14) = 23, K(24) =31, K(34)=12. (1.27)

Obviously, the complementary index operation satisfies
KK(J)) =J. (1.28)

The basis expansion (1.24) can be used to show that any bivector
can be expressed as a sum of two simple bivectors, in the form

A=aAb+cad (1.29)

Such a representation is not unique. As an example, assuming A,; # 0
in (1.24), we can write

| 3
A = 14—(A3]e1 - A23e2) /\ (A1261 - A23e3) + <2A14el> /\ e4. (130)

23 i=1

Thus, any bivector can be expressed in the form

where the vectors a; are spatial, that is, they satisfy a;|e, = 0. a; A a, is
called the spatial part of A and a; A e, its temporal part. Similar rules
are valid for two-forms. In particular, any two-form can be expanded in
terms of spatial and temporal one-forms as

IF'=a, Aa,+a;ng,, ela;=0. (1.32)

1.2.3 Bar Product

We can extend the definition of the bar product of a vector and a one-
form to that of a bivector and a two-form, A|® = ®|A. Starting from a
simple bivector a A b and a simple one-form & A f the bar product is a
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quadrilinear scalar function of the two vectors and two one-forms and
it can be expressed in terms of the four possible bar products of vectors
and one-forms as

(a Ab)|(a A B) = (ala)(b]) — (al p)(ba) = det (;'lg ;:g) |

(1.33)

Such an expansion follows directly from the antisymmetry of the
wedge product and assuming orthogonality of the basis bivectors and
two-forms as

by assuming ordered indices. Equation (1.33) can be memorized from
the corresponding rule for three-dimensional (3D) Gibbsian vectors
denoted by ag,bg, C,, dg ek,
(a, X bg) . (cg X dg) = (a, - cg)(bg . dg) —(a, - dg)(bg “C,). (1.35)

Relations of multivectors and multiforms to Gibbsian vectors are sum-
marized in Appendix B.

As examples of spatial two-forms we may consider the electric and
magnetic flux densities, for which we use the established symbols D and
B. Bivectors can be visualized as surface regions with orientation (sense
of rotation). They can be used to measure the flux of a two-form through
the surface region. For example, the magnetic flux @ (a scalar) of the
magnetic spatial two-form B through the bivector a A b is obtained as

® = (a A b)|B. (1.36)

For more details on geometric interpretation of multiforms see, for
example, [3, 4].

1.2.4 Contraction Products | and |

Considering a bivector a A b and a two-form ®, the bar product (a A
b)|® can be conceived as a linear scalar-valued function of the vector a.
Thus, there must exist a one-form a in terms of which we can express

ala = (@ Ab)|®=®|(aAb)=—-®|(bAra)=ala. (1.37)
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Obviously, the one-form « is a linear function of both b and ® so that
we can express it as a product of the vector b and the two-form @ and
denote it either

a=b|®, (1.38)
or
a=-®|b. (1.39)

The operation denoted by the multiplication sign | or | will be called
contraction, because the two-form @ is contracted (“shortened”) by the
vector b from the left or from the right to yield a one-form. Thus, the
contraction product obeys the simple rules

a|(b|®) =(aAb)|D, (1.40)

(®@|b)la = P|(b Aa). (1.41)
Contraction of a bivector A by a one-form a can be defined similarly.
Applied to (1.33), with slightly changed symbols, yields

dAa)(BAy) —(d|p)aly) — d|y)a|B)) =
di[a](BAY)) — ((B(aly) —y(a|p))] =0, (1.42)

which is valid for any vector d. Choosing d =e; for i =1,...,4, all
components of the one-form expression in square brackets vanish. Thus,
we immediately obtain the “bac-cab rule” valid for any vector a and one-
forms B, 7,

a|(BAy) = B@ly) —r@l|p) = (y A P)|a. (1.43)

Equation (1.43) corresponds to the well-known bac-cab rule of 3D
Gibbsian vectors, Appendix B,

a, X (bg X cg) = bg(ag . cg) —c,(a, - bg) = (cg X bg) X a,, (1.44)
which helps in memorizing the 4D rule (1.43).
Useful contraction rules for basis vectors and one-forms can be
obtained as special cases of (1.43) as
el(e;ne) =¢le; =€, (1.45)
They can be easily memorized as a way of canceling basis vectors and
one-forms with the same index from the contraction operation.
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1.2.5 Decomposition of Vectors and One-Forms
Two vectors a, b # 0 are called parallel if they satisfy the relation
anb=0. (1.47)
Applying the bac-cab rule (1.43) for parallel vectors a, b,
al(aAb)=a(alb) —b(a|a) =0, (1.48)

implies that parallel vectors are linearly dependent, that is, one is a
multiple of the other one. Assuming a Ab # 0 and a|a # 0, we can
write the following decomposition for a given vector b:

b=b,+b,, (1.49)

alb _aj(bra)

ala ala
Here, b can be interpreted as the component parallel to a given vector
a, while b, can be called as the component perpendicular to a given

one-form a, because it satisfies

alb, = al(a](aab)) =(aAa)l(aAb)=0. (1.51)

Similarly, we can decompose a one-form f as
B=P+B.. (1.52)
b= ::—ﬁa, B, = W, (1.53)

in terms of a given one-form a and a given vector a satisfying a|a # 0.

1.3 MULTIVECTORS AND MULTIFORMS

Higher-order multivectors and multiforms are produced through wedge

multiplication. The wedge product is associative so that we have
an(bAc)=(@Ab)Ac=aAbAc, (1.54)

and the brackets can be omitted. Thus, trivectors and three-forms are
obtained as

k=al/\az/\a3+bl/\b2/\b3+"'€E3, (155)
7[=a1/\a2/\a3+ﬁ1/\ﬁ2/\ﬂ3+"'EIF3. (156)
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They will be denoted by lowercase Latin and Greek characters taken, if
possible, from the end of the alphabets. Quadrivectors and four-forms
can be constructed as

qN:al/\32/\33/\a4+b1/\bz/\b3/\b4+"'€E4, (157)
The subscript N denoting the quadri-index N = 1234 is used to mark a
quadrivector or a four-form.

Because the space of vectors is 4D, there are no multivectors of
higher order than four. In fact, because any vector a5 can be expressed as
alinear combination of abasis a, ... a, satisfyinga, Aa, Aa; Aa, #0,
as will be shown below, we have a; A a, A a; A a, A ag = 0. The spaces

of trivectors and three-forms are 4D and, those of quadrivectors and
four-forms, one dimensional.

1.3.1 Basis of Multivectors

The vector basis {e;} induces the trivector basis

€03 =€ ACNCy, €3y = e NE =€ NC3AC,
6314 =e31 Ae4 =e3 Ael Ae4, e]24 =e]2/\e4 =e] /\ez/\e4, (1.59)

whence the space of trivectors is 4D. There is only a single basis
quadrivector denoted by

based upon the vector basis. Similar definitions apply for the basis three-
forms £, = €; A €; A €, and the basis four-form ey = €534 = €, A€, A
€3N €.

Recalling the definition of the complementary bi-index (1.26),
(1.27), and applying the antisymmetry of the wedge product we obtain

ex A€oy =€xAe =€ Ae;Ae Ae =¢ep =€y (1.6])
More generally, we can write
e, Aeg) =ex i Ae; =ey. (1.62)
Defining the bi-index Kronecker delta by
6;;=0, I#J, op =1, I=1J, (1.63)
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we can write even more generally,
eI AeJ = 5]’[((1)61\/. (164)

This means that, unless I equals K(J), that is, J equals K(/), the wedge
product yields zero.

1.3.2 Bar Product of Multivectors and Multiforms

Extending the bar product to multivectors and multiforms, we can define
the orthogonality relations for the reciprocal basis multivector and mul-
tiforms as

€c|€, = 6;,6; O, (1.65)
eijkz/”lerstu = 5i,r5j,35k,15f,u’ (166)

when the indices are ordered. From the antisymmetry of the wedge
product we obtain the expansion rules

ale alp aly
@aAbAO|(@ApAy)=det|bla b|f bly], (1.67)
cla ¢l cly

ala a|p aly a|d
bla b|f bly b|d
cla c|f cly c|b
dla d|pg d|y d|é

All quadrivectors are multiples of a given basis quadrivector ey and
all four-forms are multiples of a given basis four-form &,:

@AbAcAd|(@ABAY AS) =det . (1.68)

qy = g€y, Ky = K&y, (1.69)
with
q = qQyley, K = ey|Kky. (1.70)

Applying the expansion rule for the determinant in (1.67), we can
expand the bar product

c|p cly cla cly

+aly det <b|“ bm), (1.71)

cla c|p

@AbAO|(@ABAY) = ala det <blﬁ blr) _alp det <b|a blr)
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whence from (1.33) we obtain the rule

@nbao)@npay)=@la)bAro)l(Ay)+@|p)bAc)yAa)
+@|y)(bAo)(aAp)l. (1.72)

1.3.3 Contraction of Trivectors and Three-Forms

Defining the contraction of a three-form by a bivector as arising from

@AbAOl@ArBAy)=al((bro)|(@nBAy))
=(@ABpArplbAac)la,  (1.73)

from (1.72) we obtain the expansion rule

(broj(@anpry)=(@ABAy)bAc)
=((bAOIBAYIa+ (DAY A+ ((bAC)(xAP)y.
(1.74)

From this it follows that if the three one-forms satisfy a A Ay =0,
they must be linearly dependent.
Rewriting (1.72) in the form

(brol@(anpAry)=(arBAry)|aldAac)
=(bAoll(BAyala+(y Aaa|p+(axApaly]l, (1.75)

which remains valid when b A cis replaced by any bivector A because of
linearity, we obtain another contraction rule for contracting a three-form
by a vector,

aJ(@aABAYy)=(@APBAY)|a
=(ala)(BAy)+@|B)(y Aa)+ (aly)a A p). (1.76)

If a A B Ay =0, the three two-forms B Ay, ¥ A @, and a A § must be
linearly dependent, which also follows from the linear dependence of
the three one-forms.

The contraction rules (1.74) and (1.76) are similar to the bac-cab
rule (1.43) and they can be easily memorized because of the cyclic
symmetry. Other similar forms are obtained by replacing vectors by
one-forms and one-forms by vectors in (1.74) and (1.76). Commutation
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rules for the contraction product can be summarized as

alk =Kk|a, Dk =k|D, (1.77)

a|r = r|a, Alr =rx|A. (1.78)

Here, a is a vector, A is a bivector and K is a trivector while « is a

one-form, ® is a two-form and = is a three-form. Useful rules for the

contraction operations involving basis trivectors and three-forms can be
formed as

e e =ele; =¢, (1.79)

e e =€ (1.80)

showing how similar indices are canceled in contraction operations.

1.3.4 Contraction of Quadrivectors and Four-Forms

Following the same path of reasoning, starting from (1.68) we can
expand the contraction of a four-form by a trivector
bAcAD|(@APAYAS) =—(aABAYAS)|(BACAd)
=—(bAcAD(@APAY)I+DAcAD|(BAY A
+bAcAD|FAaAS)B+DAcAD)|(@xAPASy, (1.81)

the contraction of a four-form by a bivector,

cAD]|(@ABAYAS) =(@APAYAD)|(cAd)
= AD|BAYN @A)+ (cAD|(BAX)Y AS)
+EeAD[(y Aa)PAS)+(cAd)|(y Ad)aAP)
+eAD(@AS)PAY)+ e AD|(BASTYAa), (1.82)

and the contraction of a four-form by a vector,

dj(a ABAYAS)=—(aAPAyAD|d
=d|a)(BAyY A+ M|f)y AaAd)
+@|y)aABAS)—M|&)aAPAY). (1.83)
The above expressions appear invariant to cyclic permutation of the
one-forms a, B,y, which may help in memorizing and checking the
formulas.

IfaABAyAd=0,from (1.81) it follows that the four one-forms
are linearly dependent, from (1.82) it further follows that also the six
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two-forms are linearly dependent and from (1.83) it follows that the four
three-forms are linearly dependent. The contraction of a four-form x
or quadrivector q, obeys the commutation rules

alky = —kyla, alqy = —qyla, (1.84)
Alky =kylA, ®|qy = qy P, (1.85)
k|ky = —kylk, T|qy = —qy|x, (1.86)

Equations (1.81)—(1.83) imply the following contraction rules for the
basis multivectors and multiforms:

e )€ = € o lE =€y, (1.87)
elene =€ epele; =e (1.88)
€ lEie = € e lEj = €4, (1.89)

which can be applied for canceling indices in expressions involving
contraction of basis multivectors and multiforms. From (1.81) to (1.83)
we can see that contraction of a four-form can be applied to transform
vectors to three-forms, bivectors to two-forms and trivectors to one-
forms and conversely. The converse cases can be obtained by applying
the rules

eyl(eyla) = (a]ey)]ey = —a, (1.90)
eyl(ey|[A) = (Aley) ey = A, (1.91)
eyl(ey|k) = (k]ey)]ey = —k. (1.92)

1.3.5 Construction of Reciprocal Basis

Given a set of basis vectors a,, i = 1, ... ,4, and a four-form x,, we can
form the reciprocal one-form basis as

ag; |k
a,~=—K()J r (1.93)
ay|ky

where the ag; are four three-forms defined by
gy = Ax.  Ag) = A3y4. Aga) = Ay, Ay = A (1.94)
satisfying
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The rule (1.93) is easily checked:

(@ Aag;)lky
ala,=——— "5 (1.96)
’ aylky
When the indices are ordered in the above sense, we can define the
two-form basis reciprocal to {aij} as

agy |k
j= =2 (1.97)
' aylky
In fact, from (1.64) we have
(@, A agg)lky
ala, = ———"—— =6,05,,. (1.98)

ay|xy

Because all four-forms are equal except for a scalar factor, the definitions
are independent of the chosen four-form k.

1.3.6 Contraction of Quintivector

Because any quintivector Q = a A b A ¢ A d A e based on the 4D vector
space vanishes, continuing the previous pattern by expanding the con-
traction k', |Q we can obtain the following relation between the five
vectors:

abbAacAdAe)ky—blarncAdAae)ky+c@AbAadAe)lky
—d(aAnbAcAe)ky+e@AbAcAd)|ky =0. (1.99)
Assuming that the four vectors a -+ d are linearly independent, we have
(aAbAcAd)|ky #0, whence from (1.99) we obtain a rule how a

given vector e can be expressed as a linear combination of the other four
vectors.

1.3.7 Generalized Bac-Cab Rules

From the expansions of the previous sections we can derive useful oper-
ational rules similar to the bac-cab rule (1.43) involving more general
bivectors or two-forms. Let us start from (1.74) which can be written as

broj@anpry)=pbAOlyAa)+aly) —yEle), (1.100)



