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PREFACE

How quickly a concept is grasped, adopted, and assimilated
into the general culture is indicative of how germane a
human need it addresses. If that is indeed the case, the
notion of sustainable development seemed to have struck a
vibrant sympathetic chord with the contemporary society.
Since its emergence in the 1980s, the general tenet of
sustainability has gained rapid worldwide salience and
broad global appeal in some form or the other. Though it is
easy to identify with and even subscribe to it in general
terms, the goal of sustainability and how to achieve it
remain unclear. In addition to being a dictionary term,
“sustainability”! has also become a buzzword in the
business world. Today’s message of sustainability reaches
way beyond that of the early environmental movements of
the 1960s and 1970s in that it includes an ethical
component based on social justice for future generations.

With the global carrying capacity already exceeded,
energy/materials shortages looming in the medium term,
and the climate already compromised by anthropogenic
impacts, many believe that we have arrived at decisive
crossroads with no time to spare. The only way out of the
quagmire is a radical change in thinking that encompasses
the core values of sustainable growth. The message of
sustainable growth has also reached chemical industry at
large including the plastics industry. In a recent global
survey of consumer packaged goods companies by DuPont
in 2011, a majority (40%) of the respondents identified
attaining sustainability (not costs or profits) as the leading
challenge facing their industry today. Environmental
movements including the call for sustainability have
hitherto evolved along strict conservationist pathways over



the decades that saw economic development inextricably
linked with polluting externalities and tragedy of the
commons. This invariably pitted business enterprise
against the health of global environment. Industry was still
identified a significant polluter and generator of waste.
This has lead to the plethora of environmental regulations
promulgated in the United States during those decades
aiming to “regulate” their operations. The knee-jerk
response has been greenwashing, a mere defensive stance
by industry, seeking to make small visible changes to nudge
existing practices and products into a form that might be
construed as being sustainable.

The entrenched belief that business and technological
development must necessarily adversely impact the
environment remained entrenched in the 1970s and 1980s.
In 1992, at the UN Conference in Rio, this notion was
finally challenged and the dictum that economic
development (so badly needed to eradicate world poverty)
can occur alongside environmental preservation was finally
proposed. But preservation means maintaining the
environmental quality and services at least in its current
state for the future generations to enjoy. Without a clearly
articulated mechanism of how to achieve this rather
dubious goal or the metrics to monitor the progress along
the path to sustainability, the notion blossomed out into a
popular sociopolitical ideal. Consumers appear to have
accepted the notion and are demanding sustainable goods
and services from the marketplace.

The allure of sustainable development is that it promises to
somehow disengage the market growth from environmental
damage. It frees up businesses from having to continually
defend and justify their manufacturing practices to the
consumer and the environmentalists who continually
criticize them. Industry and trade associations still
continue under this old paradigm perhaps by the force of



habit but the rhetoric and dialogue with environmentalists
are slowly changing. Accepting in principal that the need
for a certain metamorphosis in their operation that
reshuffles their priorities is a prerequisite to fruitful
collaboration with environmental interests. The effort
toward sustainability is one where industry, the consumer,
and the regulators work together, ideally in a
nonadversarial relationship. In this awkward allegiance,
the business will move beyond meeting the regulatory
minima or “room to operate” in terms of environmental
compliance and respond positively to burgeoning “green
consciousness” in their marketplace. It frees up the
environmental movements to do what it does best, and
facilitates stewardship of the ecosystem in collaboration
with business interest, rather than be a watchdog. This is
not an easy transformation in attitudes to envision. Yet it is
a change that needs to be achieved to ensure not only
continued growth and profitability but the very survivability
of the planet and life as we know it.

The Consumer

Primarily, it is the mindset of traditional consumption that
determines the demand for market goods, that needs to
change. Businesses do not exist to preserve the
environment; they exist to make profit for their owners. But
to do so, they must meet the demands in the marketplace.
With the rich supply of easily-accessible (albeit sometimes
erroneous) information via the internet, interested
consumers are rapidly becoming knowledgeable. The
consumer demand for sustainable goods will grow rapidly,
automatically driving business into sustainable modes of
operation. Consumers need to be well informed and
educated so that they are aware of the need and know what
exactly to change.



In such a future scenario, the industry will be called upon
to justify not only their economic objectives but also
explicitly consider environmental (and social) objectives.
This shift from the solely fiscally-driven business plans to
the triple bottom-line business plan will propel the marked
shift in corporate function. To be successful, the change in
corporate orientation must encompass the entire value
chain with free flow of communication across the
traditional boundaries and interphases with suppliers,
customers, and waste managers. This cannot be achieved
by a few analysts embedded within a single department but
requires champions that represent all aspects of the value
chain.

Plastics Industry and Change

Why would a growing, robust, and profitable industry
providing a unique class of material that is of great societal
value want to change? The plastic industry certainly is not
an inordinate energy user (such as cement production or
livestock management) and does not place a significant
demand on nonrenewable resources. The benefits provided
by plastics justify the 4% fossil fuel raw materials and
another 3-4% energy resources devoted to manufacturing
it. In building applications, plastics save more energy that
they use. In packaging (where the energy/material cost can
be high), plastics reduce wastage and afford protection
from spoilage to the packaged material with savings in
healthcare costs. Plastics are a very desirable invention in
general. However, the customer base and operating
environment are changing rapidly; responding to the
challenge posed by these changes is a good business
strategy.

The plastics industry has its share of environmental issues.
It is based on a linear flow of nonrenewable fossil fuel
resources via useful consumer goods into the landfills. Lack



of cradle-to-cradle corporate responsibility and design
innovations to allow conservation of resources is
responsible for this deficiency. For instance, there is not
enough emphasis on design options for recovery of post-use
waste. The move toward bio-based plastics, an essential
component of sustainability, is too slow with not enough
incentive to fully implement even what little has been
achieved. Though good progress has been made, over-
packaging and over-gauging are still seen across the
plastics product range. While the plastics litter problem is
at its root a social-behavioral issue, the industry is still held
at least partially accountable. The issue of endocrine
disruptors and other chemicals in plastics potentially
contaminating human food still remains a controversial
issue. Complaints on plastics in litter, microplastics in the
ocean, endocrine disruptors in plastic products, and
emissions from unsafe combustion have been highlighted in
popular press as well as in research literature. Proactive
stance by industry to design the next generation production
systems is clearly the need of the day.

Any effort toward sustainability must reach well beyond
mere greening of processes and products. Not that
greening is bad (unless it is “greenwashing” which is
unethical) but because it alone will not be enough to save
the day. Sustainability starts at the design stage.
Visionaries in the industry need to reassess the supply of
energy, materials, and operational demands of the
products. Can the present products still remain
competitive, profitable, and acceptable despite perhaps
more stringent regulatory scrutiny in a future world? What
are the ways to increase the efficiency of energy use,
materials use, and processes for the leading products?
What potential health hazards (perceived as well as real)
can the product pose? What technologies are missing that
need to be adapted to achieve sustainability? Sustainable



growth is a process (not a goal) that has a high level of
uncertainty as we are planning for the present as well as
for a clouded undefined future. This uncertainty has forced
it to be grounded on precautionary strategies.

This Volume

This work is an attempt to survey the issues typically raised
in discussions of sustainability and plastics. The author has
attempted to separate scientific fact from overstatement
and bias in popular discussions on the topics, based on
research literature. Strong minority claims have also been
presented. Understandably, there are those where plastics
have been unfairly portrayed in the media and those where
sections of the industry in aggressively protecting their
domain have understated the adverse environmental
impacts of plastics. The author has attempted to remain
neutral in this exercise and he was not funded either by the
plastics industry or by any environmental organization in
writing this volume.

A work of this nature can never expect to satisfy all
stakeholders on all topics covered. Depending on his or her
affiliation, the reader will either feel environmental impacts
of plastics are exaggerated or that they are too
conservatively portrayed and do not capture their full
adverse impact. Despite this anticipated criticism, a
discussion of the science behind personal judgments and
public policy is critical to the cause of sustainability. If the
work serves as a catalyst for engagement between
industrial and environmental interests or at least generates
enough interest in either party to dig deeper into the
science behind the claims, the author’s objective would
have been served.
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