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PREFACE

How quickly a concept is grasped, adopted, and assimilated

into the general culture is indicative of how germane a

human need it addresses. If that is indeed the case, the

notion of sustainable development seemed to have struck a

vibrant sympathetic chord with the contemporary society.

Since its emergence in the 1980s, the general tenet of

sustainability has gained rapid worldwide salience and

broad global appeal in some form or the other. Though it is

easy to identify with and even subscribe to it in general

terms, the goal of sustainability and how to achieve it

remain unclear. In addition to being a dictionary term,

“sustainability”1 has also become a buzzword in the

business world. Today’s message of sustainability reaches

way beyond that of the early environmental movements of

the 1960s and 1970s in that it includes an ethical

component based on social justice for future generations.

With the global carrying capacity already exceeded,

energy/materials shortages looming in the medium term,

and the climate already compromised by anthropogenic

impacts, many believe that we have arrived at decisive

crossroads with no time to spare. The only way out of the

quagmire is a radical change in thinking that encompasses

the core values of sustainable growth. The message of

sustainable growth has also reached chemical industry at

large including the plastics industry. In a recent global

survey of consumer packaged goods companies by DuPont

in 2011, a majority (40%) of the respondents identified

attaining sustainability (not costs or profits) as the leading

challenge facing their industry today. Environmental

movements including the call for sustainability have

hitherto evolved along strict conservationist pathways over



the decades that saw economic development inextricably

linked with polluting externalities and tragedy of the

commons. This invariably pitted business enterprise

against the health of global environment. Industry was still

identified a significant polluter and generator of waste.

This has lead to the plethora of environmental regulations

promulgated in the United States during those decades

aiming to “regulate” their operations. The knee-jerk

response has been greenwashing, a mere defensive stance

by industry, seeking to make small visible changes to nudge

existing practices and products into a form that might be

construed as being sustainable.

The entrenched belief that business and technological

development must necessarily adversely impact the

environment remained entrenched in the 1970s and 1980s.

In 1992, at the UN Conference in Rio, this notion was

finally challenged and the dictum that economic

development (so badly needed to eradicate world poverty)

can occur alongside environmental preservation was finally

proposed. But preservation means maintaining the

environmental quality and services at least in its current

state for the future generations to enjoy. Without a clearly

articulated mechanism of how to achieve this rather

dubious goal or the metrics to monitor the progress along

the path to sustainability, the notion blossomed out into a

popular sociopolitical ideal. Consumers appear to have

accepted the notion and are demanding sustainable goods

and services from the marketplace.

The allure of sustainable development is that it promises to

somehow disengage the market growth from environmental

damage. It frees up businesses from having to continually

defend and justify their manufacturing practices to the

consumer and the environmentalists who continually

criticize them. Industry and trade associations still

continue under this old paradigm perhaps by the force of



habit but the rhetoric and dialogue with environmentalists

are slowly changing. Accepting in principal that the need

for a certain metamorphosis in their operation that

reshuffles their priorities is a prerequisite to fruitful

collaboration with environmental interests. The effort

toward sustainability is one where industry, the consumer,

and the regulators work together, ideally in a

nonadversarial relationship. In this awkward allegiance,

the business will move beyond meeting the regulatory

minima or “room to operate” in terms of environmental

compliance and respond positively to burgeoning “green

consciousness” in their marketplace. It frees up the

environmental movements to do what it does best, and

facilitates stewardship of the ecosystem in collaboration

with business interest, rather than be a watchdog. This is

not an easy transformation in attitudes to envision. Yet it is

a change that needs to be achieved to ensure not only

continued growth and profitability but the very survivability

of the planet and life as we know it.

The Consumer

Primarily, it is the mindset of traditional consumption that

determines the demand for market goods, that needs to

change. Businesses do not exist to preserve the

environment; they exist to make profit for their owners. But

to do so, they must meet the demands in the marketplace.

With the rich supply of easily-accessible (albeit sometimes

erroneous) information via the internet, interested

consumers are rapidly becoming knowledgeable. The

consumer demand for sustainable goods will grow rapidly,

automatically driving business into sustainable modes of

operation. Consumers need to be well informed and

educated so that they are aware of the need and know what

exactly to change.



In such a future scenario, the industry will be called upon

to justify not only their economic objectives but also

explicitly consider environmental (and social) objectives.

This shift from the solely fiscally-driven business plans to

the triple bottom-line business plan will propel the marked

shift in corporate function. To be successful, the change in

corporate orientation must encompass the entire value

chain with free flow of communication across the

traditional boundaries and interphases with suppliers,

customers, and waste managers. This cannot be achieved

by a few analysts embedded within a single department but

requires champions that represent all aspects of the value

chain.

Plastics Industry and Change

Why would a growing, robust, and profitable industry

providing a unique class of material that is of great societal

value want to change? The plastic industry certainly is not

an inordinate energy user (such as cement production or

livestock management) and does not place a significant

demand on nonrenewable resources. The benefits provided

by plastics justify the 4% fossil fuel raw materials and

another 3–4% energy resources devoted to manufacturing

it. In building applications, plastics save more energy that

they use. In packaging (where the energy/material cost can

be high), plastics reduce wastage and afford protection

from spoilage to the packaged material with savings in

healthcare costs. Plastics are a very desirable invention in

general. However, the customer base and operating

environment are changing rapidly; responding to the

challenge posed by these changes is a good business

strategy.

The plastics industry has its share of environmental issues.

It is based on a linear flow of nonrenewable fossil fuel

resources via useful consumer goods into the landfills. Lack



of cradle-to-cradle corporate responsibility and design

innovations to allow conservation of resources is

responsible for this deficiency. For instance, there is not

enough emphasis on design options for recovery of post-use

waste. The move toward bio-based plastics, an essential

component of sustainability, is too slow with not enough

incentive to fully implement even what little has been

achieved. Though good progress has been made, over-

packaging and over-gauging are still seen across the

plastics product range. While the plastics litter problem is

at its root a social-behavioral issue, the industry is still held

at least partially accountable. The issue of endocrine

disruptors and other chemicals in plastics potentially

contaminating human food still remains a controversial

issue. Complaints on plastics in litter, microplastics in the

ocean, endocrine disruptors in plastic products, and

emissions from unsafe combustion have been highlighted in

popular press as well as in research literature. Proactive

stance by industry to design the next generation production

systems is clearly the need of the day.

Any effort toward sustainability must reach well beyond

mere greening of processes and products. Not that

greening is bad (unless it is “greenwashing” which is

unethical) but because it alone will not be enough to save

the day. Sustainability starts at the design stage.

Visionaries in the industry need to reassess the supply of

energy, materials, and operational demands of the

products. Can the present products still remain

competitive, profitable, and acceptable despite perhaps

more stringent regulatory scrutiny in a future world? What

are the ways to increase the efficiency of energy use,

materials use, and processes for the leading products?

What potential health hazards (perceived as well as real)

can the product pose? What technologies are missing that

need to be adapted to achieve sustainability? Sustainable
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growth is a process (not a goal) that has a high level of

uncertainty as we are planning for the present as well as

for a clouded undefined future. This uncertainty has forced

it to be grounded on precautionary strategies.

This Volume

This work is an attempt to survey the issues typically raised

in discussions of sustainability and plastics. The author has

attempted to separate scientific fact from overstatement

and bias in popular discussions on the topics, based on

research literature. Strong minority claims have also been

presented. Understandably, there are those where plastics

have been unfairly portrayed in the media and those where

sections of the industry in aggressively protecting their

domain have understated the adverse environmental

impacts of plastics. The author has attempted to remain

neutral in this exercise and he was not funded either by the

plastics industry or by any environmental organization in

writing this volume.

A work of this nature can never expect to satisfy all

stakeholders on all topics covered. Depending on his or her

affiliation, the reader will either feel environmental impacts

of plastics are exaggerated or that they are too

conservatively portrayed and do not capture their full

adverse impact. Despite this anticipated criticism, a

discussion of the science behind personal judgments and

public policy is critical to the cause of sustainability. If the

work serves as a catalyst for engagement between

industrial and environmental interests or at least generates

enough interest in either party to dig deeper into the

science behind the claims, the author’s objective would

have been served.
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