

PLASTICS AND ENVIRONMENTAL SUSTAINABILITY

ANTHONY L. ANDRADY

WILEY

CONTENTS

COVER
TITLE PAGE
PREFACE
<u>ACKNOWLEDGMENTS</u>
LIST OF PLASTIC MATERIALS
1 THE ANTHROPOCENE
1.1 ENERGY FUTURES
1.2 MATERIALS DEMAND IN THE FUTURE
1.3 ENVIRONMENTAL POLLUTION
REFERENCES
2 A SUSTAINABILITY PRIMER
2.1 THE PRECAUTIONARY PRINCIPLE
2.2 MICROECONOMICS OF SUSTAINABILITY: THE
BUSINESS ENTERPRISE
2.3 MODELS ON IMPLEMENTING SUSTAINABILITY
2.4 LIFE CYCLE ANALYSIS
2.5 THE EMERGING PARADIGM AND THE
PLASTICS INDUSTRY
<u>REFERENCES</u>
3 AN INTRODUCTION TO PLASTICS
3.1 POLYMER MOLECULES
3.2 CONSEQUENCES OF LONG-CHAIN
MOLECULAR ARCHITECTURE
3.3 SYNTHESIS OF POLYMERS
3.4 TESTING OF POLYMERS
3.5 COMMON PLASTICS

<u>REFERENCES</u>
4 PLASTIC PRODUCTS
4.1 PLASTICS: THE MIRACLE MATERIAL
4.2 PLASTIC PRODUCTION, USE, AND DISPOSAL
4.3 PROCESSING METHODS FOR COMMON
<u>THERMOPLASTICS</u>
4.4 THE ENVIRONMENTAL FOOTPRINT OF
PLASTICS
4.5 PLASTICS ADDITIVES
4.6 BIOPOLYMER OR BIO-DERIVED PLASTICS
REFERENCES
5 SOCIETAL BENEFITS OF PLASTICS
5.1 TRANSPORTATION APPLICATIONS OF
<u>PLASTICS</u>
5.2 BENEFITS FROM PLASTIC PACKAGING
5.3 PLASTICS IN AGRICULTURE
5.4 BUILDING INDUSTRY APPLICATIONS
5.5 ORIGINAL EQUIPMENT MANUFACTURE (OEM)
5.6 USING PLASTICS SUSTAINABLY
<u>REFERENCES</u>
6 DEGRADATION OF PLASTICS IN THE
ENVIRONMENT
6.1 DEFINING DEGRADABILITY
6.2 CHEMISTRY OF LIGHT-INDUCED
<u>DEGRADATION</u>
6.3 ENHANCED PHOTODEGRADABLE
POLYOLEFINS 6.4 PRODECRADATION OF POLYMERS
6.4 BIODEGRADATION OF POLYMERS
6.5 BIODEGRADABILITY OF COMMON POLYMERS
REFERENCES

7 ENDOCRINE DISRUPTOR CHEMICALS
7.1 ENDOCRINE DISRUPTOR CHEMICALS USED IN
PLASTICS INDUSTRY
7.2 BPA {2,2-BIS(4-HYDROXYPHENYL)PROPANE}
7.3 PHTHALATE PLASTICIZERS
7.4 POLYBROMINATED DIPHENYL ETHERS (PBDEs)
7.5 ALKYLPHENOLS AND THEIR ETHOXYLATES
(APE)
7.6 EDCs AND PET BOTTLES
REFERENCES
8 PLASTICS AND HEALTH IMPACTS
8.1 PACKAGING VERSUS THE CONTENTS
8.2 PACKAGE-FOOD INTERACTIONS
8.3 STYRENE AND EXPANDED POLYSTYRENE
FOOD SERVICE MATERIALS
8.4 RANKING COMMON PLASTICS
<u>REFERENCES</u>
9 MANAGING PLASTIC WASTE
9.1 RECOVERY OF WASTE
9.2 PYROLYSIS OF PLASTIC WASTE FOR
FEEDSTOCK RECOVERY
9.3 SUSTAINABLE WASTE MANAGEMENT CHOICES
9.4 MECHANICAL RECYCLING OF PLASTICS
9.5 RECYCLING BOTTLES: BEVERAGE BOTTLES
AND JUGS
9.6 DESIGNING FOR RECYCLABILITY
REFERENCES
10 PLASTICS IN THE OCEANS
10.1 ORIGINS OF PLASTICS IN THE OCEAN

10.2 WEATHERING OF PLASTICS IN THE OCEAN ENVIRONMENT

10.3 MICROPLASTIC DEBRIS

10.4 OCEAN LITTER AND SUSTAINABILITY

<u>REFERENCES</u>

INDEX

END USER LICENSE AGREEMENT

List of Tables

Chapter 01

<u>Table 1.1 Approximate Global Use of Selected Building Materials (2011 Data)</u>

<u>Table 1.2 Estimated Future Global Supply of Some</u> <u>Common Metals</u>

<u>Table 1.3 The Use Sectors, Global Reserves, and</u> Production of Selected Critical Materials

<u>Table 1.4 Classification of Environmental Pollution</u> Events

Chapter 03

<u>Table 3.1 Glass Transition Temperature of Common Plastics</u>

<u>Table 3.2 Structure of Common Addition Polymers</u> <u>and their Applications</u>

Table 3.3 Some Common Condensation Polymers

<u>Table 3.4 Characteristics of Common Classes of Polyethylenes</u>

<u>Table 3.5 Properties of Different Grades of Polystyrene</u>

<u>Table 3.6 A Comparison of Properties For Polyolefins</u> Chapter 04

<u>Table 4.1 Choices Available in Selecting a Polystyrene</u> <u>Resin in the US Market^a</u>

<u>Table 4.2 Commonly Used Processing Techniques for thermoplastics</u>

<u>Table 4.3 Commonly Used Processing Techniques for thermoset Materials</u>

<u>Table 4.4 Relative Energy intensity of Selected Plastic Processing Techniques</u>

<u>Table 4.5 Estimate of Plant Energy Distribution for Three Plastic Processes</u>

<u>Table 4.6 Comparison of EE Values and Carbon</u> <u>Emissions for Different Building Materials</u>

<u>Table 4.7 Energy-saving Opportunities in Plastics Processing</u>

<u>Table 4.8 Levels of Common Additives Used in</u> Common Plastics

<u>Table 4.9 Selected Examples of the Three Classes of Plastics</u>

<u>Table 4.10 Highest-capacity Bio-based Plastics by 2015</u>

Chapter 05

<u>Table 5.1 Density, Modulus, and Strength of Materials</u> <u>Used in Automobiles</u>

<u>Table 5.2 Common Plastics Components Used in Automobiles</u>

<u>Table 5.3 Estimate of EE and GWP (kg CO₂) Per 1 l</u> <u>Package</u> <u>Table 5.4 Embedded Energy, Solid Waste Generated,</u> and GWP Per 10,000 Units of 12 oz Packages Manufactured

<u>Table 5.5 Greenhouse Glazing Materials and their</u> Characteristics

<u>Table 5.6 A Comparison of Leading Materials Used in Window Frames</u>

<u>Table 5.7 The Thermal Conductivity and</u>
<u>Environmental Performance Rating of Common</u>
<u>Building insulation Materials</u>

<u>Table 5.8 Main Types of thermoplastics Used in Building Construction</u>

<u>Table 5.9 Candidate Wood Fibers for Wood-plastic Composites</u>

<u>Table 5.10 Main Types of Plastics Used in Equipment</u> and Household Goods Manufacture

Chapter 06

<u>Table 6.1 Most Damaging Range of Wavelengths in Sunlight for Common Thermoplastics</u>

Table 6.2 Location-dependent Enhancement in Photodegradation Obtained Using ECO Copolymer in Place of LDPE Laminate of Same Thickness (Andrady et al., 1993a)

<u>Table 6.3 Main Environments in Which Plastic Litter is Found</u>

<u>Table 6.4 A Listing of ASTM Test Methods Related to Degradation of Plastics</u>

<u>Table 6.5 Summary of Estimates of Biodegradation of Polyethylenes in Natural Environments by Weight Loss Method</u>

Chapter 07

Table 7.1 A Summary of EDCs of Concern Relevant to Plastics and their Adverse Impacts on Human Health and on Animal Life

<u>Table 7.2 Human Body Burden of BPA (only Studies with Sensitivity < ~0.1 Ng/g Reported)</u>

<u>Table 7.3 Examples of BPA Extraction by Different Liquids in Contact with Baby Bottles</u>

<u>Table 7.4 A Summary of Biological Effects of Exposure to BPA at Low Doses</u>

<u>Table 7.5 Common Phthalate Plasticizers and their</u> Characteristics

<u>Table 7.6 Typical Concentrations of DEHP in Water</u> and Air

<u>Table 7.7 A Summary of Effects of Human Exposure</u> <u>to Phthalates</u>

<u>Table 7.8 Some Examples of Nonphthalate</u> <u>Plasticizers For PVC</u>

Table 7.9 The Solubility and $Log K_{O/W}$ for Common Classes of BDEs

<u>Table 7.10 A Summary of Effects of Human Exposure</u> <u>to PBDEs</u>

Chapter 08

<u>Table 8.1 The Embedded Energy and GWP of</u> <u>Selected Packaged Food Items (1 Kg Portions)</u>

Table 8.2 Selected Barrier Properties of Common Plastic Packaging Films (25 μm Thick) Measured at 38°C

<u>Table 8.3 Some Examples of Multilayer Films Used in Food Packaging</u>

<u>Table 8.4 Some Common Additives in Plastics Used</u> <u>for Packaging Food and Beverages</u>

<u>Table 8.5 Levels of Phthalates, OP, NP, BPA and DEHA</u> (mean ± sd) in ng/L in the Different Food Packaging Items Considered in this Study

<u>Table 8.6 Toxicity Levels of Monomers in Common Plastics</u>

<u>Table 8.7 Percentage of Component in Cold-pressed</u> <u>Orange Oil Sorbed by Different Plastics it was in</u> <u>Contact with for a 4-day Period</u>

<u>Table 8.8 Hazard Levels of Common Plastics</u> <u>Estimated from Monomer Characteristics</u>

Chapter 09

<u>Table 9.1 The Plastic Types Mostly Encountered in the MSW Stream</u>

<u>Table 9.2 Breakdown of Different Classes of Plastics in MSW and their Recovery</u>

Table 9.3 Yield of Products from Pyrolysis of Mixed Plastic Waste^a at 440°C (dehydrochlorination Step was at 300°C for 30 Min)

Table 9.4 The Main Reactions Involved in Gasification

<u>Table 9.5 Environmental Features of Plastic Waste</u> <u>Management Options</u>

<u>Table 9.6 Selected Examples of Thermolysis of</u>
<u>Common Plastics Yielding Monomer and Mixed Fuel</u>
<u>Gas/liquids</u>

<u>Table 9.7 Average Emissions from 87 WTE Plants in the United States</u>

<u>Table 9.8 Calculated GHG Emissions from incineration of Different Plastic Resins</u>

<u>Table 9.9 Indicators of Principal Environmental</u> <u>Impact Categories, as Evaluated for Five Plastic</u> <u>Waste Management Approaches</u>

<u>Table 9.10 A Comparison of Energy Used, GHG</u> <u>Emissions, and Solid Waste Generation to Produce</u> <u>Virgin and Recycled Resins</u>

Chapter 10

Table 10.1 Plastics Commonly Found in Ocean Debris

Table 10.2 Summary of Impacts on Marine Animals

<u>Table 10.3 Degradation Agencies Available in</u> <u>Different Zones in the Marine Environment</u>

Table 10.4 Summary of Results for Degradation of LDPE Control Samples, ECO Copolymer, and Metal-catalyzed Polyethylene Exposed in Air and Floating in Water at Different Locations

Table 10.5 Estimated Values of $Log K_{PE/sw}$, $Log K_{PP/sw}$, and $Log K_{PS/sw}$ for Selected Model POPs

<u>Table 10.6 A Summary of Selected Studies on the</u> ingestion of Microparticles by Marine invertebrates

List of Illustrations

Chapter 01

<u>Figure 1.1 Projected world population and population increments.</u>

<u>Figure 1.2 Rio Tinto (Red River) in Southwestern</u> <u>Spain devastated and tinted red from copper mining</u> <u>over several thousand years.</u>

<u>Figure 1.3 The ecological footprint of nations</u> (<u>hectares required per person</u>) <u>versus the per capita</u> GDP of the nation.

<u>Figure 1.4 Global energy use (open bars) and US energy use (filled bars) by source.</u>

<u>Figure 1.5 Hubbert's original sketch of his curve on world oil production.</u>

<u>Figure 1.6 Sprawling solar energy complex in San Luis Valley, CO.</u>

Figure 1.7 Comparison of the embodied energy (J/kg) and CO₂ footprint for different materials.

Figure 1.8 Estimated embodied energy (left) and carbon emissions (right) of classes of building materials globally consumed in 2011. See http://www.circularecology.com/ice-database.html.

Figure 1.9 Critical elements likely to be in short supply in the near future. The shaded boxes are those identified by the US DOE study (2010). The others are additional critical elements identified by a European Commission (2010).

Figure 1.10 Illustration of the life cycle of a product showing different steps. Residues are the externalities associated with each phase. Each phase also requires the input of energy.

<u>Figure 1.11 Global average temperature variation</u> and global CO₂ emissions over time.

Chapter 02

Figure 2.1 Linear flow of materials supporting an expanding consumer base.

<u>Figure 2.2 Sustainable development depicted in simple diagrams.</u>

<u>Figure 2.3 Schematic illustration of the emphasis in business planning and implementation.</u>

<u>Figure 2.4 Production possibilities frontier with illustrative placement of business entities.</u>

<u>Figure 2.5 Improving the environment quality of product also increases profit.</u>

Figure 2.6 Investment in better technology allows the choice of simultaneous gains in both goods to be secured but at a short-term cost.

Figure 2.7 Definition of "life cycle" in LCA exercises.

Figure 2.8 An example of a polygon plot summarizing LCA results on three products, based on 15 attributes.

<u>Figure 2.9 Sustainability matrix for assessing environmental sustainability.</u>

<u>Figure 2.10 Downgauging of polyethylene film in plastic garbage bag applications.</u>

Chapter 03

<u>Figure 3.1 The polymerization reaction of ethylene</u> <u>yielding polyethylene</u>.

Figure 3.2 Left: A ball and stick model of a section of a PP chain. Right: An AFM image of a single polymer chain suggesting flexibility. Reprinted with permission from Kiriy et al., (2002). Copyright (2002). American Chemical Society.

<u>Figure 3.3 Approximate simulation of a polymer chain</u> with freely jointed chain model. The value of *r* is the end-to-end distance.

Figure 3.4 *Left*: Schematic drawing of the molecular weight distribution of a polymer indicating the two averagesMn andMw. *Right*: Schematic diagram of the

molecular weight distribution for polymer samples with low and high PDI.

Figure 3.5 Illustration of the stereochemistry in a vinyl polymer. Below each structural formula is an illustration of the stereochemistry with a "ball and stick model" for polypropylene.

<u>Figure 3.6 Left: An illustration of crystallites</u> <u>embedded in an amorphous polymer matrix. Right:</u> <u>Crystallites in plastic crystals imaged by AFM.</u>

Figure 3.7 The change in elastic modulus E of a semicrystalline and amorphous polymers with the temperature.

Figure 3.8 Illustration of different types of copolymers. Sections of polymer chains are shown and each circle represents a repeat unit. (a)

Alternating copolymer, (b) random copolymer, (c) block copolymer, and (d) branched block copolymer.

<u>Figure 3.9 Upper: Standard dog-bone-shaped test</u> <u>piece used in tensile tests. Lower: Tensile</u> <u>deformation of a rectangular test piece. Notice</u> <u>shrinking of the width. Direction of strain shown by the double-headed arrow at right.</u>

Figure 3.10 *Left*: Change in shape of the dog-bone test piece. *Right*: Tensile stress-strain curves for glass bead-filled LDPE at different volume fractions of beads.

Figure 3.11 *Left*: Basic features of a DSC instrument. *Right*: A generalized DSC tracing.

Figure 3.12 DSC tracings of two blends of atactic and isotactic PP showing the area under the melting curve. The designations indicate the weight fraction of isotactic and atactic PP in the blend.

<u>Figure 3.13 Flow chart illustrating the manufacture of polyethylenes and polypropylenes.</u>

Figure 3.14 *Left*: An electron micrograph of a thin section of HIPS showing the rubber microdomains. *Right*: An electron micrograph of a thin section of SBR copolymer.

Chapter 04

<u>Figure 4.1 The timeline for development of the common classes of thermoplastic polymers.</u>

<u>Figure 4.2 Upper: world plastic production in recent years. Lower: pie diagram of world thermoplastic resin capacity 2008.</u>

<u>Figure 4.3 Plastic resin production in different regions of the world.</u>

<u>Figure 4.4 A generalized flow diagram of the plastics industry showing the three phases of activity.</u>

Figure 4.5 Schematic diagram of an injection molding machine showing the reciprocating screw and different heating zones.

Figure 4.6 An injection molding machine and examples of molded products.

Figure 4.7 Upper: schematic diagram of a single-screw extruder. Lower: a sheet extrusion die for plastics.

Figure 4.8 A diagram of the bottle blow molding process. 1. Heated parison. 2. Mold closing. 3. Blowing air into mold 4. Cooling and opening mold. 5. Molded bottle.

<u>Figure 4.9 Embodied energy for selected classes of plastic resin. The top part of each bar is for</u>

manufacturing energy (including recovered energy), and the bottom part is for material energy.

Figure 4.10 Percentage energy used as raw materials (the lower segment of the bar), in manufacturing operations (middle, grey segment), and in transportation of raw materials (upper black segment) in the manufacture of different plastic resins in the United States.

<u>Figure 4.11 Total direct environmental damage as a percentage of revenue for several selected industries.</u>

<u>Figure 4.12 Major classes of additives used in plastics industry.</u>

Figure 4.13 Dependence of the modulus of PVC on plasticizer content. DODP and DIDP are types of phthalates TPU is a thermoplastic PU.

<u>Figure 4.14 Basic pathways to derive chemical</u> <u>feedstocks from renewable and fossil fuel raw</u> materials.

<u>Figure 4.15 A comparison of fossil resources and carbon footprint of conventional plastics with PLA and PHA.</u>

Figure 4.16 Schematic of PHA production facility illustrating the recycling of solid and water waste into sugarcane field. Source: Based on information from Nonato et al. (2001).

<u>Figure 4.17 Schematic diagram of poly(lactic acid)</u> manufacture froml-lactic acid.

Chapter 05

<u>Figure 5.1 Fractions of different materials used in a 2011 light vehicle.</u>

Figure 5.2 Effect of substituting plastic packaging materials with other packaging that provides the same functionality. Unfilled bars are for plastic packaging, and the filled bars are for a mix of other packaging. Life cycle energy consumption (scale on left) and life cycle GHG emissions (scale on right).

Figure 5.3 Plastic films used as mulch in agriculture.

<u>Figure 5.4 Main uses of plastics in building applications.</u>

Figure 5.5 A deck made of wood-plastic composites.

Chapter 06

<u>Figure 6.1 Principal agents of plastics degradation in</u> the environment.

<u>Figure 6.2 Regions of the solar spectrum reaching</u> the Earth's surface.

<u>Figure 6.3 The cyclic autoxidation reactions for a polyolefin RH.</u>

Figure 6.4 Development of surface cracks on PP surfaces on exposure to a filtered xenon light source (600 W/m²) at 42°C and at different durations of exposure.

<u>Figure 6.5 Action spectrum for the light-induced</u> <u>yellowing of mechanical pulp.</u>

Figure 6.6 Effect of different solar radiation wavebands on the yellowness index of unstabilized Lexan polycarbonate film (0.70 mm) exposed to natural sunlight facing 26° South in Miami, FL.

<u>Figure 6.7 Simplified schematic of the mechanism of UV stabilization by HALS. P refers to polymer chain.</u>

Figure 6.8 Weathering of unstabilized LDPE films (open symbols) and enhanced photodegradable ECO copolymer (filled symbols) exposed outdoors in Miami, FL.

Figure 6.9 Two sets of data showing the relationship between number-average molecular weight and the percent retention of extensibility of degraded polyethylene. The upper set is for data on high-density polyethylene oxidized in oxygen at 100°C (Klemchuk and Horng, 1984). The lower set is for poly(ethylene-co-carbon monoxide) exposed outdoors at ambient temperature in air (Andrady et al., 1993a).

Figure 6.10 A schematic diagram of biodegradation of a solid polymer showing the two main stages of primary abiotic degradation to embrittlement followed by biodegradation of fragmented residue.

Figure 6.11 Diagram illustrating the potential enhanced biodegradability of only some bio-based plastics.

Figure 6.12 Weight loss curves for PHB and PHBV (films and pellets) incubated in tropical garden soil at two exposure sites in Russia: (a) Hoa Lac and (b) Dam Bai.

Figure 6.13 Respirometry experiment for measuring evolved CO₂ in biodegradation studies.

<u>Figure 6.14 A biometer flask respirometer for carrying out mineralization studies. A respirometry curve for cellophane (regenerated cellulose sheet) compared to that of oak leaves.</u>

Figure 6.15 Gas evolution data (filled symbols)
plotted as percent mineralization for the
biodegradation of bleached paperboard packaging

material in a respirometer. Soil media (70 wt% humidity) with sewage sludge inoculum was used. Also included is a plot of the data (open symbols) as suggested by Equation 6.2.

Figure 6.16 Electron micrographs (a-c) showing the diversity of microbial flora on polyolefin debris surfaces exposed to marine environments.

Micrograph (d) shows pitting around the microbes.

All scale bars are 10 µm.

Chapter 07

Figure 7.1 Approximate mean BPA concentrations in baby bottles and canned food or beverages compared to that in plasma and the placenta (Schönfelder et al., 2002).

Figure 7.2 Examples of non-monotonic dose-response curves. Above: Effect of tumor volume in mice on the BPA levels in drinking water shows an inverted-U response. Numbers on the horizontal axis refer to μg BPA/I of drinking water available to the mice. These correspond to 0–500 pg of BPA/kg body weight. Below: Suppression of adiponectin release from human breast adipose explants by BPA and estradiol (E₂). (Hugo et al., 2008).

Figure 7.3 Baby bottles and can liners may leach polycarbonate into food.

Figure 7.4 Modulus versus plasticizer (dioctyl phthalate) concentration for PS films. Two different techniques, indentation and strain-induced elastomer buckling instability for mechanical measurements (SIEBIMM), were used to estimate the modulus of the material. The latter technique is SIEBIMM, an optical technique for assessing the modulus of thin films of material.

Figure 7.5 Chemical structures of some common phthalates with their CAS numbers in parenthesis. DEHP, di(2-ethylhexyl) phthalate; DIDP, diisodecyl phthalate; BBP, butyl benzyl phthalate; DBP, dibutyl phthalate; DnPP, di-n-pentyl phthalate.

Figure 7.6 Intake of DEHP by source for an adult. Ingestion with food is by far the most important mechanism of exposure.

Chapter 08

Figure 8.1 Bottled water sales in the United States is on the increase with a per capita consumption of 29 US gallons in 2011.

Figure 8.2 The energy use and GWG emissions associated with the production of material and fabrication of containers for milk (~1 l). The first segment of bar is for material production, and the second is for manufacturing. Drawn from data in Ghenai (2012).

<u>Figure 8.3 Summary of interactions between plastic packaging and the food or beverage contents.</u>

<u>Figure 8.4 Plastic pyramid originally proposed in 1998 by Van der Naald and Thorpe.</u>

Chapter 09

<u>Figure 9.1 The composition of the USMSW stream of 250 million tons generated in the year 2010.</u>

<u>Figure 9.2 Generation and recovery of the plastics in municipal solid waste stream in the United States.</u> Source: USEPA.

Figure 9.3 A comparison of the heating value of plastics and conventional fuels.

Figure 9.4 Waste management options in United States (2010). The numbers in select boxes are for percentage of plastic waste in the MSW.

<u>Figure 9.5 Different available recovery options for plastics waste.</u>

<u>Figure 9.6 Schematic representation of a pyrolysis process for plastics.</u>

<u>Figure 9.7 Basic recovery options available for plastics waste.</u>

<u>Figure 9.8 Chemolysis of poly(ethylene terephthalate)</u> (PET) into chemical feedstock.

Figure 9.9 The general structure for PSDD, PCDF, and PCB are shown in the first row. An example of a congener derived from each of these is shown in the second row.

<u>Figure 9.10 Relative environmental merit of different plastic waste management techniques.</u>

Figure 9.11 The avoided energy and carbon emissions per kilogram of PET mechanically recycled. GWP (Global warming potential in CO₂ equivalents). The numbers from other LCA studies can vary slightly.

Figure 9.12 A general scheme for recycling of plastics recovered from MSW, illustrating closed- and open-loop pathways.

<u>Figure 9.13 Recycling symbols. PETE is polyester</u> (PET), V is vinyl plastics, and the "other" category covers all other resins.

Figure 9.14 Calculated concentration profile of the flavor compound limonene in PET derived from a postconsumer bottle of wall thickness 300 µm,

containing a beverage with 1000 ppm of limonene, after 365 days of exposure at 23°C.

Figure 9.15 An illustration of open-loop recycling of PET into fiberfill.

Chapter 10

Figure 10.1 *Upper:* Change in percent original tensile extensibility of polypropylene laminate exposed in air and floating in seawater at a beach location Biscayne Bay, FL. *Lower:* A floating rig used to expose plastics to surface water environment (in Miami Beach, FL).

Figure 10.2 A comparison of the rate of loss in extensibility of latex rubber balloons in Beaufort, NC (left) polypropylene tape in Biscayne Bay, FL (right) exposed outdoors in air and in sea water.

Figure 10.3 SEM images of different surface textures on plastic beach debris samples. (a) Flaking of surface, (b) vermiculite texture, (c) microfracture of surface, (d) surface pitting, (e) signs of initial degradation, (f) regions of preferential degradation, (g) horizontal notching from cracks, (h) deep cracks and fractures.

PLASTICS AND ENVIRONMENTAL SUSTAINABILITY

ANTHONY L. ANDRADY, Ph.D

Adjunct Professor of Chemical and Biomolecular Engineering North Carolina State University

Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Andrady, A. L. (Anthony L.)

Plastics and environmental sustainability / Anthony L. Andrady, PhD. pages cm

Includes bibliographical references and index.

ISBN 978-1-118-31260-5 (cloth)

1. Plastics-Environmental aspects. 2. Plastics-Health aspects. 3. Plastics-Biodegradation. I. Title.

TD798.A53 2015 628.4'4-dc23

2014042233

Cover image courtesy of iStockphoto@Devonyu

This book is dedicated to my children and my grandchildren.

PREFACE

How quickly a concept is grasped, adopted, and assimilated into the general culture is indicative of how germane a human need it addresses. If that is indeed the case, the notion of sustainable development seemed to have struck a vibrant sympathetic chord with the contemporary society. Since its emergence in the 1980s, the general tenet of sustainability has gained rapid worldwide salience and broad global appeal in some form or the other. Though it is easy to identify with and even subscribe to it in general terms, the goal of sustainability and how to achieve it remain unclear. In addition to being a dictionary term, "sustainability" has also become a buzzword in the business world. Today's message of sustainability reaches way beyond that of the early environmental movements of the 1960s and 1970s in that it includes an ethical component based on social justice for future generations.

With the global carrying capacity already exceeded, energy/materials shortages looming in the medium term, and the climate already compromised by anthropogenic impacts, many believe that we have arrived at decisive crossroads with no time to spare. The only way out of the quagmire is a radical change in thinking that encompasses the core values of sustainable growth. The message of sustainable growth has also reached chemical industry at large including the plastics industry. In a recent global survey of consumer packaged goods companies by DuPont in 2011, a majority (40%) of the respondents identified attaining sustainability (not costs or profits) as the leading challenge facing their industry today. Environmental movements including the call for sustainability have hitherto evolved along strict conservationist pathways over

the decades that saw economic development inextricably linked with polluting externalities and tragedy of the commons. This invariably pitted business enterprise against the health of global environment. Industry was still identified a significant polluter and generator of waste. This has lead to the plethora of environmental regulations promulgated in the United States during those decades aiming to "regulate" their operations. The knee-jerk response has been greenwashing, a mere defensive stance by industry, seeking to make small visible changes to nudge existing practices and products into a form that might be construed as being sustainable.

The entrenched belief that business and technological development must necessarily adversely impact the environment remained entrenched in the 1970s and 1980s. In 1992, at the UN Conference in Rio, this notion was finally challenged and the dictum that economic development (so badly needed to eradicate world poverty) can occur alongside environmental preservation was finally proposed. But preservation means maintaining the environmental quality and services at least in its current state for the future generations to enjoy. Without a clearly articulated mechanism of how to achieve this rather dubious goal or the metrics to monitor the progress along the path to sustainability, the notion blossomed out into a popular sociopolitical ideal. Consumers appear to have accepted the notion and are demanding sustainable goods and services from the marketplace.

The allure of sustainable development is that it promises to somehow disengage the market growth from environmental damage. It frees up businesses from having to continually defend and justify their manufacturing practices to the consumer and the environmentalists who continually criticize them. Industry and trade associations still continue under this old paradigm perhaps by the force of

habit but the rhetoric and dialogue with environmentalists are slowly changing. Accepting in principal that the need for a certain metamorphosis in their operation that reshuffles their priorities is a prerequisite to fruitful collaboration with environmental interests. The effort toward sustainability is one where industry, the consumer, and the regulators work together, ideally in a nonadversarial relationship. In this awkward allegiance, the business will move beyond meeting the regulatory minima or "room to operate" in terms of environmental compliance and respond positively to burgeoning "green consciousness" in their marketplace. It frees up the environmental movements to do what it does best, and facilitates stewardship of the ecosystem in collaboration with business interest, rather than be a watchdog. This is not an easy transformation in attitudes to envision. Yet it is a change that needs to be achieved to ensure not only continued growth and profitability but the very survivability of the planet and life as we know it.

The Consumer

Primarily, it is the mindset of traditional consumption that determines the demand for market goods, that needs to change. Businesses do not exist to preserve the environment; they exist to make profit for their owners. But to do so, they must meet the demands in the marketplace. With the rich supply of easily-accessible (albeit sometimes erroneous) information via the internet, interested consumers are rapidly becoming knowledgeable. The consumer demand for sustainable goods will grow rapidly, automatically driving business into sustainable modes of operation. Consumers need to be well informed and educated so that they are aware of the need and know what exactly to change.

In such a future scenario, the industry will be called upon to justify not only their economic objectives but also explicitly consider environmental (and social) objectives. This shift from the solely fiscally-driven business plans to the triple bottom-line business plan will propel the marked shift in corporate function. To be successful, the change in corporate orientation must encompass the entire value chain with free flow of communication across the traditional boundaries and interphases with suppliers, customers, and waste managers. This cannot be achieved by a few analysts embedded within a single department but requires champions that represent all aspects of the value chain.

Plastics Industry and Change

Why would a growing, robust, and profitable industry providing a unique class of material that is of great societal value want to change? The plastic industry certainly is not an inordinate energy user (such as cement production or livestock management) and does not place a significant demand on nonrenewable resources. The benefits provided by plastics justify the 4% fossil fuel raw materials and another 3-4% energy resources devoted to manufacturing it. In building applications, plastics save more energy that they use. In packaging (where the energy/material cost can be high), plastics reduce wastage and afford protection from spoilage to the packaged material with savings in healthcare costs. Plastics are a very desirable invention in general. However, the customer base and operating environment are changing rapidly; responding to the challenge posed by these changes is a good business strategy.

The plastics industry has its share of environmental issues. It is based on a linear flow of nonrenewable fossil fuel resources via useful consumer goods into the landfills. Lack

of cradle-to-cradle corporate responsibility and design innovations to allow conservation of resources is responsible for this deficiency. For instance, there is not enough emphasis on design options for recovery of post-use waste. The move toward bio-based plastics, an essential component of sustainability, is too slow with not enough incentive to fully implement even what little has been achieved. Though good progress has been made, overpackaging and over-gauging are still seen across the plastics product range. While the plastics litter problem is at its root a social-behavioral issue, the industry is still held at least partially accountable. The issue of endocrine disruptors and other chemicals in plastics potentially contaminating human food still remains a controversial issue. Complaints on plastics in litter, microplastics in the ocean, endocrine disruptors in plastic products, and emissions from unsafe combustion have been highlighted in popular press as well as in research literature. Proactive stance by industry to design the next generation production systems is clearly the need of the day.

Any effort toward sustainability must reach well beyond mere greening of processes and products. Not that greening is bad (unless it is "greenwashing" which is unethical) but because it alone will not be enough to save the day. Sustainability starts at the design stage. Visionaries in the industry need to reassess the supply of energy, materials, and operational demands of the products. Can the present products still remain competitive, profitable, and acceptable despite perhaps more stringent regulatory scrutiny in a future world? What are the ways to increase the efficiency of energy use, materials use, and processes for the leading products? What potential health hazards (perceived as well as real) can the product pose? What technologies are missing that need to be adapted to achieve sustainability? Sustainable

growth is a process (not a goal) that has a high level of uncertainty as we are planning for the present as well as for a clouded undefined future. This uncertainty has forced it to be grounded on precautionary strategies.

This Volume

This work is an attempt to survey the issues typically raised in discussions of sustainability and plastics. The author has attempted to separate scientific fact from overstatement and bias in popular discussions on the topics, based on research literature. Strong minority claims have also been presented. Understandably, there are those where plastics have been unfairly portrayed in the media and those where sections of the industry in aggressively protecting their domain have understated the adverse environmental impacts of plastics. The author has attempted to remain neutral in this exercise and he was not funded either by the plastics industry or by any environmental organization in writing this volume.

A work of this nature can never expect to satisfy all stakeholders on all topics covered. Depending on his or her affiliation, the reader will either feel environmental impacts of plastics are exaggerated or that they are too conservatively portrayed and do not capture their full adverse impact. Despite this anticipated criticism, a discussion of the science behind personal judgments and public policy is critical to the cause of sustainability. If the work serves as a catalyst for engagement between industrial and environmental interests or at least generates enough interest in either party to dig deeper into the science behind the claims, the author's objective would have been served.

Raleigh, NC 2014