
System Safety 215 V 8

Third Edition

Jeffrey W. Vincoli

Basic Guide to System Safety

Third Edition

Jeffrey W. Vincoli

Manager of Compliance Assurance and Support Services Bechtel Global Corporation

WILEY

Copyright © 2014 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Vincoli, Jeffrey W., author.

Basic guide to system safety / Jeffrey W. Vincoli. -- Third edition.

p.; cm.

Includes index.

ISBN 978-1-118-46020-7 (hardback)

I. Title

[DNLM: 1. Occupational Health. 2. Safety. 3. Safety Management. WA 485] T55

658.3′82--dc23

2013051270

To my loving wife, Rosemary

Of all my accomplishments in this life, my greatest achievement was convincing you to be my wife. After more than 30 years together, I do not know how people go through life alone. I am blessed in many ways, but none more than having you as my wife. Thank you for always being there with your patience, your charm, your perspective, and your love. You are and will always be the most cherished thing about my life.

Contents

<u>Preface</u>
<u>Acknowledgments</u>
Part I: The System Safety Program
Chapter 1: System Safety: An Overview
<u>Background</u>
The Difference Between Industrial Safety and System Safety
System Safety and the Assessment of Risk
Chapter 2: System Safety Concepts
<u>Fundamentals</u>
<u>The System Safety Process</u>
System Safety Criteria
Cost and Risk Acceptance
Management Commitment
<u>Chapter 3: System Safety Program Requirements</u>
<u>The Safety Charter</u>
Selling Safety to Management
The System Safety Effort
Life Cycle Phases and the System Safety Process
<u>Chapter 4: The Industrial Safety Connection</u>
The Occupational Safety and Health Act
The Human Factors Element
Accident Prevention Through System Design
The Process of Task Analysis
The Job Safety Analysis and System Safety
Guidelines for Preparing a Job Safety Analysis

System Safety: An Integral Part of the Overall
<u>Organization</u>
<u>Chapter 5: Probability Theory and Statistical Analysis</u>
<u>Introduction</u>
<u>Probability</u>
<u>Statistics</u>
<u>Summary</u>
Part II: System Safety Analysis: Techniques and Methods
<u>Chapter 6: Preliminary Hazard Analysis</u>
<u>Introduction</u>
PHA Example
<u>Summary</u>
Chapter 7: Subsystem and System Hazard Analyses
<u>Introduction</u>
SSHA Example
<u>Summary</u>
Chapter 8: Operating and Support Hazard Analysis
<u>Introduction</u>
<u>Ergonomics</u>
When to Perform the O&SHA
O&SHA Example
<u>Summary</u>
Chapter 9: Energy Trace and Barrier Analysis
<u>Introduction</u>
Etba Example
<u>Summary</u>
Chapter 10: Failure Mode and Effect Analysis
<u>Introduction</u>

FMEA Example
<u>Summary</u>
Chapter 11: Fault or Functional Hazard Analysis
<u>Introduction</u>
FHA Example
<u>Summary</u>
Chapter 12: Fault Tree Analysis
<u>Introduction</u>
<u>Summary</u>
Chapter 13: Management Oversight and Risk Tree
<u>Introduction</u>
The MORT Event Tree
<u>Procedure for MORT Analysis</u>
<u>Summary</u>
Chapter 14: HAZOP and What-If Analyses
<u>Introduction</u>
<u>Background</u>
<u>Team Members</u>
Reference Data Requirements
THE CONCEPT OF "NODES"
CONDUCTING THE WHAT-IF ANALYSIS
Conducting The Hazop Study
<u>The Analysis Report</u>
<u>Summary</u>
Chapter 15: Special Use Analysis Techniques
<u>Introduction</u>
Sneak Circuit Analysis
<u>Summary</u>

Epilogue
Appendix A: Sources of Additional Information/Training
Appendix B: Acronyms and Abbreviations
Glossary of Terms
Bibliography
Index

List of Tables

End User License Agreement

Chapter 2 Table 2.1 Table 2.2 Table 2.3 Chapter 4 Table 4.1 Chapter 6 <u>Table 6.1</u> Chapter 8 <u>Table 8.1</u> Table 8.2 Chapter 10 <u>Table 10.1</u> Chapter 12 <u>Table 12.1</u> Chapter 14 <u>Table 14.1</u> <u>Table 14.2</u>

<u>Table 14.3</u>

<u>Table 14.4</u>

Chapter 15

Table 15.1

List of Illustrations

Chapter 1

Figure 1.1 The "fly-fix-fly" approach, or more accurately "safety-by-accident," focused on fixing design issues after an accident event rather than focusing on accident prevention through design.

<u>Figure 1.2 The system safety engineering process</u> (Source: Larson and Hann 1990).

<u>Figure 1.3 The systems approach to the consideration of safety from the design phase through product disposal or project termination.</u>

Figure 1.4 The "OSHA Cowboy" as first depicted by J.N. Devin in 1972.

Chapter 2

Figure 2.1 The elements of the system safety process (Source: Stephenson 1991).

<u>Figure 2.2 Hazard reduction order of precedence process flow.</u>

Figure 2.3 Expected loss index.

Chapter 3

<u>Figure 3.1 Typical system safety program process</u> flow.

Figure 3.2 Sample hazard report form.

Figure 3.3 Typical closed-loop hazard tracking system flow.

<u>Figure 3.4 Project life cycle phases and the system safety process.</u>

Chapter 4

Figure 4.1 The U.S. NIOSH Prevention through
Design (National Initiative) concept, modified to show
system safety integration into the process.

Figure 4.2 Typical Job Safety Analysis (JSA) form.

Figure 4.3 Example of a partially completed JSA form.

Chapter 5

Figure 5.1 Histogram of distribution values.

Figure 5.2 Curve of empirical distribution.

Figure 5.3 Curve of normal distribution ("bell curve").

Figure 5.4 Human life cycle curve.

Figure 5.5 Reliability curve ("bathtub curve").

Chapter 6

<u>Figure 6.1 Sample generic hazard evaluation</u> checklist.

<u>Figure 6.2 Sample energy source evaluation</u> checklist.

<u>Figure 6.3 Sample preliminary hazard list (PHL)</u> <u>worksheet.</u>

<u>Figure 6.4 Sample preliminary hazard analysis (PHA)</u> worksheet (*Note:* Worksheet will provide for hazards identification, evaluation, and resolution).

Figure 6.5 Sample preliminary hazard matrix (*Note:* Examples have been used under "Potential Areas For Failure").

<u>Figure 6.6 Proposed vapor degreasing operation</u> <u>work area: planar view.</u>

<u>Figure 6.7 Proposed vapor degreasing operation</u> work area: dimensional view.

<u>Figure 6.8 Vapor degreaser: generic hazard evaluation checklist.</u>

<u>Figure 6.9 Vapor degreaser: generic energy source evaluation checklist.</u>

<u>Figure 6.10 Vapor degreaser: preliminary hazard list worksheet.</u>

<u>Figure 6.11 Vapor degreaser: preliminary hazard analysis worksheet.</u>

Chapter 7

<u>Figure 7.1 Sample subsystem/system hazard analysis (SSHA) worksheet.</u>

<u>Figure 7.2 Hydraulic elevator system.</u>

Figure 7.3 Plunger joint.

<u>Figure 7.4 Elevator plunger subsystem/system hazard analysis worksheet.</u>

Chapter 8

Figure 8.1 Sample operating and support hazard analysis (O&SHA) worksheet.

<u>Figure 8.2 Close-up of existing crane operator's control console.</u>

<u>Figure 8.3 Close-up of modified crane operator's control console after the O&SHA analysis.</u>

<u>Figure 8.4 Crane operator's control console O&SHA</u> worksheet.

Chapter 9

<u>Figure 9.1 Sample energy trace and barrier analysis</u> (ETBA) worksheet.

<u>Figure 9.2 Schematic diagram of Memorial Hospital oxygen system.</u>

<u>Figure 9.3 Completed energy trace and barrier analysis worksheet for oxygen system.</u>

Chapter 10

<u>Figure 10.1 Sample failure mode and effect analysis</u> (FMEA) worksheet.

<u>Figure 10.2 The combination 10-ton/1.5-ton overhead bridge crane system.</u>

Figure 10.3 Runway and bridge travel distances for the combination 10-ton/1.5-ton overhead bridge crane.

<u>Figure 10.4 The partially completed failure mode and effect analysis worksheet for the crane system.</u>

Chapter 11

<u>Figure 11.1 Sample system functional/fault hazard analysis (FHA) worksheet.</u>

Figure 11.2 Simple automobile brake/master cylinder system design (Source: Larson and Hann, 1990).

Figure 11.3 The completed system FHA for the automobile brake system (Source: Larson and Hann, 1990).

Figure 11.4 Automobile brake/master cylinder system redesign following FHA (Source: Larson and Hann, 1990).

Figure 11.5 Close-up view of the redesigned master cylinder, showing dual hydraulic chambers (*Source:* Larson and Hann, 1990).

Chapter 12

Figure 12.1 The fault tree concept.

<u>Figure 12.2 Standard Fault Tree Analysis (FTA)</u> <u>symbology.</u>

<u>Figure 12.3 The use of exclusive OR gates when proper conditions exist.</u>

Figure 12.4 Sample fault tree analysis (FTA) showing structure, event and symbol placement, and cut-set identification.

Figure 12.5 Demonstrating the use of AND gates and OR gates in the building of a simple fault tree.

Figure 12.6 The concept of joint probability of events. (Source: Spurr and Bonini 1973).

<u>Figure 12.7 The top events of a fault tree analyzing</u> safe work behavior.

Figure 12.8 Probability values in fault tree analysis.

Chapter 13

<u>Figure 13.1 The management oversight and risk tree</u> (MORT) process.

Figure 13.2 MORT Symbology (Source: DOE).

<u>Figure 13.3 The top branches of the MORT analytical event tree (Source: DOE).</u>

<u>Figure 13.4 Sequence of work through a MORT Analysis Chart (Source: DOE).</u>

Chapter 14

Figure 14.1 Sample What-If Analysis worksheet.

<u>Figure 14.2 Partially completed What-If analysis</u> worksheet for the vapor degreaser system.

Figure 14.3 Sample HAZOP worksheet.

<u>Figure 14.4 Partially complete HAZOP worksheet for the vapor degreaser system.</u>

Chapter 15

<u>Figure 15.1 Sample sneak circuit analysis worksheet.</u>
<u>Epilogue</u>

Figure E.1 Summary of the system safety process.

Preface

The third edition of the *Basic Guide to System Safety* contains all of the content of the previous editions, updated (where applicable) to reflect current industry practice. The first edition of the *Basic Guide to System Safety* was the first volume issued in a series of *Basic Guide* books that focused on the topics of interest to the practicing occupational safety and/or health professional. Other books in the Series include the *Basic Guide to Environmental Compliance, Basic Guide to Accident Investigation and Loss Control,* and *Basic Guide to Industrial Hygiene.* Each book has been designed to provide the reader with a fundamental understanding of the subject and attempt to foster a desire for additional information and training.

In addition to updated content of the previous editions, the revised third edition of the *Basic Guide to System Safety* introduces some system safety concepts not previously discussed to further expand upon the basic knowledge that is the cornerstone of the Basic Guide Series. In this regard, the third edition contains a discussion on the concept of Design for Safe Construction where the methods and techniques associated with the system safety discipline can be effectively utilized to identify, analyze, eliminate, or control system hazards during the design phase of a construction project. As with all analytical methods and techniques presented in this text, it is suggested that the concept of design for construction safety has definite application to general industry operations.

Also, information on the use of the various methods and techniques associated with the use of system safety has been expanded in the third edition to include guidance on the evaluation and verification of compliance efforts following the implementation of system safety analysis. This additional information will attempt to close-the-loop on the effective use of system safety analysis in the industrial safety environment.

It should be noted from the onset that it is not and never has been the intention of the Basic Guide to System Safety to provide any level of expertise beyond that of novice. Those practitioners and users who desire complete knowledge of the subject will not be satisfied with the information contained on these pages. It is not practical or feasible to expect a "basic guidebook" to contain all possible technical information on any subject, especially one as complex as system safety. However, those that require or perhaps only desire a basic understanding of a field similar but distinctly separate from their current area of specialization will find the third edition of *Basic Guide to System Safety* a valuable reference source and introductory primer. It is also assumed that those currently involved in the practice of system safety engineering and analysis might find this material somewhat enjoyable and, at the very least, refreshing. Also, professionals not directly involved in the system safety effort but who must work in association with those that are, will also find this text useful.

Finally, although the books in the *Basic Guide Series* were always originally intended for the practicing safety professional, the *Series* has been proven to be quite useful as textbooks for introductory courses in numerous colleges and universities. In this regard, the third edition will provide some additional fodder for enhancing existing primer courses on the subject.

It has long been known by practicing safety and health professionals that organizations with excellent safety performance records have a well-rounded corporate policy or at least a firmly established administrative posture that consistently emphasizes the importance and value of working safely. The leadership of such organizations has provided their strong (and intelligent) commitment in support of the safety effort. Therefore, this text concentrates especially upon the concepts that all executives should understand concerning the role that safety programs play in the successful operation of a business. No less of a commitment is necessary to properly implement system safety into an already established occupational/industrial safety and health program.

It is also recognized that, in order to achieve operationally safe system performance, system safety programs must be conducted with defined purpose, proficiency, skill, and a sense of well-rounded responsibility to the needs of the organization that the system safety program is intended to serve. In such a supportive environment, the system safety effort can and will become a vital contributor to the overall success of the enterprise.

This text places considerable emphasis on the integration of system safety principles and practices into the total framework of the organization. Anything less would constitute unsound business management. In the 20 years since the publication of the first edition of *Basic Guide to System Safety*, this very concept has been tested and proven viable numerous times by the author and other safety and health practitioners. There are examples of the successful integration of system safety methodologies into the practice of safety and health assurance in general industry, construction, rail, maritime, and aviation. It works, as long as there is understanding and commitment.

In short, the third edition of *Basic Guide to System Safety* follows tradition of the previous two editions. Safety and health professionals, as well as managers, engineers,

technicians, designers, and college professors and their students should obtain some benefit from the information contained in this book.

Acknowledgments

In the preparation of the third edition of *Basic Guide to System Safety*, I would like to thank and acknowledge those individuals and organizations that assisted in the initial, as well as revised, versions of this text.

First, I do not want to forget the valuable advice and assistance of those colleagues and associates who helped in the development and review of the first edition. Specifically, Steven S. Phillips, Frank Beckage, Douglas J. Tomlin, George S. Brunner, and Susie Adkins.

Second, I wish to recognize and acknowledge the training firm of Technical Analysis, Inc. (TAI) in Houston, Texas for permitting me to use some of their materials in the first and subsequent editions of this text, and for developing and providing exceptional training seminars on the subject of System Safety Engineering. Their contributions to the advancement of the System Safety discipline are commendable and appreciated.

Third, I would like to thank all those who participated in bringing this third edition of *Basic Guide to System Safety* to fruition including all the reference sources used herein, and the reviewers who helped identify specific areas for improvement over the previous editions. Thanks also to Fred Manuele for his leadership as Chair of the ANSI Z590.3-2011 Committee.

Fourth, a special thanks to Bob Esposito and Michael Leventhal of John Wiley & Sons for their support in making this third edition a reality. Finally, I want to thank my wife, Rosemary, for her patience, understanding, and encouragement during my work to complete this process, and for her dedicated support of all that I do, always.

Part I The System Safety Program

In the practice of occupational safety and health in industry today, the primary concern of any responsible organization is the identification and elimination of hazards that threaten the life and/or health of employees, as well as those which could cause damage to facilities, property, equipment, products, and/or the environment. When such risk of hazard cannot be totally eliminated, as is often the case, it becomes a fundamental function of the safety professional to provide recommendations to control those hazards in an effort to reduce the associated risk to the lowest acceptable levels.

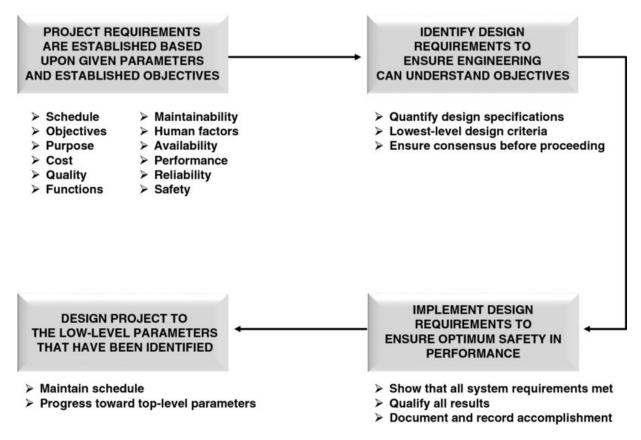
It is the intention of this *Basic Guide to System Safety* to demonstrate the effectiveness of the system safety process in identifying and eliminating hazards, recommending risk reduction techniques, and methods for controlling residual hazard risk.

Part I will introduce the reader to the system safety process, how it evolved, how it can be managed, and how it relates to the current practice of the industrial safety and health professional. In fact, upon completion of Part I, the reader shall have developed a clear understanding of this relationship and, quite possibly, have developed an interest in the further pursuit of the system safety profession. As noted in the Preface, the information provided here is introductory in scope, intended to merely acquaint the reader with the system safety approach to hazard analysis and hazard risk reduction.

As a separate discipline, system safety had its origins in the aviation and aerospace industries. Systems safety has

proven its worth in the dramatic improvements in aviation safety over the past 60 years. It is not by chance that flying is demonstrably the safest mode of travel and this accomplishment has led to an undeniable understanding that all modern systems require a more logical, focused approach to identifying and controlling hazards. System safety is no longer a discipline reserved for the aerospace designer and nuclear engineer; it is the most effective method of improving the safety of any modern operation. As it has developed and matured, system safety has moved away from being the exclusive domain of design engineers and has become less mathematical or abstract and is now more practical and realistic. Modern concepts of system safety can be used by any organization or person who wants a logical, visible, and traceable method of identifying and controlling safety hazards and this is the objective of the Basic Guide to System Safety.

1 System Safety: An Overview


Background

The idea or concept of system safety can be traced to the missile production industry of the late 1940s. It was further defined as a separate discipline by the late 1950s (Roland and Moriarty 1983) and early 1960s, used primarily by the missile, aviation, and aerospace communities. Prior to the 1940s, system designers and engineers relied predominantly on a trial-and-error method of achieving safe design. This approach was somewhat successful in an era when system complexity was relatively simple compared with those of subsequent development. For example, in the early days of the aviation industry, this process was often referred to as the "fly-fix-fly" approach to design problems (Roland and Moriarty 1983; Stephenson 1991) or, more accurately, "safety-by-accident." Simply stated, an aircraft was designed based upon existing or known technology. It was then flown until problems developed or, in the worst case, it crashed (Figure 1.1). If design errors were determined as the cause (as opposed to human, or "pilot" error), then the design problems would be fixed and the aircraft would fly again. Obviously, this method of after-thefact design safety worked well when aircraft flew low and slow and were constructed of wood, wire, and cloth. However, as systems grew more complex and aircraft capabilities such as airspeed and maneuverability increased, so did the likelihood of devastating results from a failure of the system or one of its many subtle interfaces. This is clearly demonstrated in the early days of the aerospace era (the 1950s and 1960s). As the industry

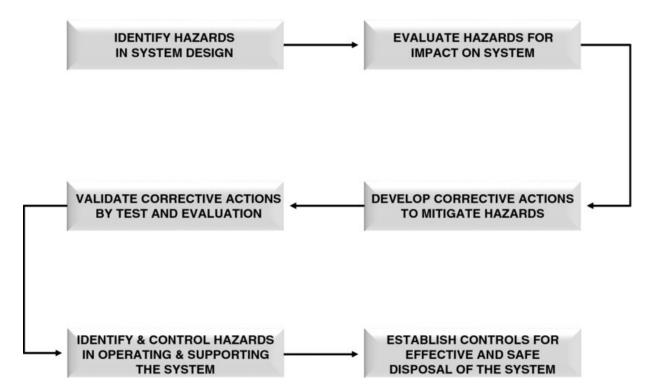

began to develop jet powered aircraft and space and missile systems, it quickly became clear that engineers could no longer wait for problems to develop; they had to anticipate them and "fix" them before they occurred. To put it another way: the "fly-fix-fly" philosophy was no longer feasible. Elements such as these became the catalyst for the development of systems engineering, out of which eventually grew the concept of system safety. The need to anticipate and fix problems before they occurred led to a new approach—a consideration of the design as a "system." This means that all aspects of the design of operation (e.g., machine, operator, and environment) must be considered in identifying potential hazards and establishing appropriate controls. Another important part of this "systems" approach to safety is the realization that resources for safety are limited and there must be some logical, reasoned way to apply resources to the most serious potential problems. Systems safety provides this capability. Figure 1.2 shows a simplification of the basic elements of the systems engineering process. It is noted that safety comprises only one part of this integrated engineering design approach (Larson and Hann 1990). Taken one step further, <u>Figure 1.3</u> demonstrates how the systems approach associated with the initial element of the systems safety engineering process—the design aspect—can support the identification of hazards in the earliest phases of a project life cycle. Only after the accurate identification of hazards can proper elimination or control measures be determined.

Figure 1.1 The "fly-fix-fly" approach, or more accurately "safety-by-accident," focused on fixing design issues after an accident event rather than focusing on accident prevention through design.

Figure 1.2 The system safety engineering process (*Source:* Larson and Hann 1990).

Figure 1.3 The systems approach to the consideration of safety from the design phase through product disposal or project termination.

The dawn of the manned spaceflight program in the mid-1950s also contributed to the growing necessity for safer system design. Hence, the growing missile and space systems programs became a driving force in the development of system safety engineering. Those systems under development in the 1950s and early 1960s required a new approach to controlling hazards such as those associated with weapon and space systems (e.g., explosive components and pyrotechnics, unstable propellant systems, and extremely sensitive electronics). The Minuteman Intercontinental Ballistic Missile (ICBM) was one of the first systems to have had a formal, disciplined, and defined system safety program (Roland and Moriarty 1983). In July of 1969, the US Department of Defense (DOD) formalized system safety requirements by publishing MIL-STD-882 entitled "System Safety Program Requirements." This Standard has since undergone a number of revisions.

The US National Aeronautics and Space Administration (NASA) soon recognized the need for system safety and has since made extensive system safety programs an integral part of space program activities. The early years of our nation's space launch programs are full of catastrophic and quite dramatic examples of failures. During those developing years, it was a known and quite often stated fact that "our missiles and rockets just don't work, they blow up." The many successes since those days can be credited in large part to the successful implementation and utilization of a comprehensive system safety program. However, it should be noted that the Challenger disaster in January 1986 and the loss of the orbiter Columbia upon reentry in February of 2003 stand as historic reminders to us all that, no matter how exact and comprehensive a design or operating safety program is considered to be, the proper *management* of that system is still one of the most important elements of success. This fundamental principle is true in any industry or discipline.

Eventually, the programs pioneered by the military and NASA were adopted by industry in such areas as nuclear power, refining, mass transportation, chemicals, healthcare, and computer programming.

Today, the system safety process is still used extensively by the various military organizations within the DOD, as well as by many other federal agencies in the United States such as NASA, the Federal Aviation Administration, and the Department of Energy. In most cases, it is a required element of primary concern in the federal agency contract acquisition process.

Although it would not be possible to fully discuss the basic elements of system safety without comment and reference

to its military/federal connections, the primary focus of this text shall be placed upon the advantages of utilizing system safety concepts and techniques as they apply to the general safety arena. In fact, the industrial workplace can be viewed as a natural extension of the past growth experience of the system safety discipline. Many of the safety rules, regulations, statutes, and basic safety operating criteria practiced daily in industry today are, for the most part, the direct result of a real or perceived need for such control doctrine. The requirement for safety controls (written or physical) developed either because a failure occurred or someone with enough foresight anticipated a possible failure and implemented controls to avoid such an occurrence. Even though the former example is usually the case, the latter is also responsible for the development of countless safe operating requirements practiced in industry today. Both, however, are also the basis upon which system safety engineers operate.

The first method, creating safety rules *after* a failure or accident, is likened to the "fly-fix-fly" approach discussed earlier. The second method, anticipating a potential failure and attempting to avoid it with control procedures, regulations, and so on, is exactly what the system safety practitioner does when analyzing system design or an operating condition or method. However, when possible or practical, the system safety concept goes a step further and actually attempts to engineer the risk of hazard(s) out of the process. With the introduction of the system safety discipline, the fly-fix-fly approach to safe and reliable systems was transformed into the "identify, analyze, and eliminate" (Abendroth and Grass 1987) method of system safety assurance.

We have established the basic connection between the system safety discipline and its relationship to the general industry occupational safety practice. This conceptual relationship will be examined in more detail throughout this text.

The Difference Between Industrial Safety and System Safety

Industrial safety, or occupational safety, has historically focused primarily on controlling injuries to employees on the job. The industrial safety engineer usually is dealing with a fixed manufacturing design and hazards that have existed for a long time, many of which are accepted as necessary for operations. Traditionally, more emphasis is often placed on training employees to work within this environment rather than on removing the hazards.

To perform their charter, industrial safety engineers collect data during the operational life of the system and eliminate or control unacceptable hazards where possible or practical. When accidents occur, they are investigated and action is taken to reduce the likelihood of a recurrence—either by changing the plant or by changing employee work rules and training. The hazards associated with high-energy or dangerous processes are usually controlled either by

- Disturbance control algorithms implemented by operators or an automated control system or
- Transferring the plant to a safe state using a separate protection system.

Safety reviews and compliance audits are conducted by industrial safety organizations within a company or, less frequently, by safety committees to ensure that unsafe conditions in the workplace are corrected and that employees are following the work rules specified in

manuals, directives, and operating instructions. Lessons learned from accidents are incorporated into design standards, and much of the emphasis in the design of new plants and work rules is on implementing these standards. Often, the standards are enforced by the government through occupational safety and health legislation.

In contrast, system safety has been traditionally concerned primarily with new systems. The concept of "loss" is treated much more broadly as relevant losses may include

- Injury to nonemployees;
- Damage to equipment, property, or the environment;
- Loss of mission.

As has been previously established, instead of making changes as a result of operational experience with the system, system safety attempts to identify potential hazards before the system is designed, to define and incorporate safety design criteria, and to build safety into the design before the system becomes operational. Although standards are used in system safety, they usually are "process standards" rather than "product standards" as reliance on design or product standards is often inadequate for new types of systems, and more emphasis is placed on upfront analysis and designing for safety. There have been attempts to incorporate system safety techniques and approaches into traditional industrial safety programs, especially when new plants and processes are being built. Although system safety techniques are considered "overkill" for many industrial safety problems, larger organizations and increasingly dangerous processes have raised concern about injuries to people outside the workplace (e.g., pollution) and have therefore made system safety approaches more relevant. Furthermore, with the increase in size and cost of plant equipment, changes and