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Preface

The introduction, in 1988, of two new ionization methods for mass spectrometry

(MS) has greatly changed the application areas of MS, especially in the biochem-

ical and biological fields. Electrospray ionization (ESI) and matrix-assisted laser

desorption ionization (MALDI) enabled the efficient analysis of highly polar

biomolecules as well as complex biomacromolecules in an easy and user-friendly

way and with excellent sensitivity. Multiple charging of proteins in ESI-MS

enables the use of simple and relatively cheap mass analyzers in the analysis

of peptides and proteins and even opened the way to study intact noncovalent

complexes of proteins and drugs or other molecules, including protein–protein

complexes. In addition, ESI provided an excellent means to perform online

coupling of liquid chromatography (LC) to MS. MALDI-MS with its high level

of user-friendliness and excellent sensitivity also boosted the applications of

MS in studying biomacromolecules, being more recently even extended to the

characterization of complete microorganisms. These developments encouraged

further instrumental developments toward highly advanced (and more expen-

sive) mass spectrometers, which provide additional possibilities in the study of

biomolecules and their interactions.These new technologies opened a wide range

of new application areas, of which perhaps proteomics and all derived strategies

and applications belong to the most marked accomplishments. ESI-MS and

MALDI-MS changed the way biochemists and biologists perform their research

into molecular structures and (patho)physiological processes. Along similar lines,

it also changed the ways drug discovery and development is being performed

within the pharmaceutical industries. And in the slipstream of this, it changed

analytical chemical research efforts in many other application areas.

The ability to study intact biomacromolecules and especially noncovalent com-

plexes between biomolecules as well as other developments in the field, initiated

by the introduction of ESI-MS and MALDI-MS, opened extensive research into

the way MS can be used in the study of biomolecular interactions. Different dis-

tinct areas for analysis of bioaffinity interactions, and for analysis of biologically

active molecules in general, can be recognized in this regard. These areas include

precolumn-based ligand trapping followed by MS analysis, affinity chromatogra-

phy following MS, and postcolumn online affinity profiling. Other methodolo-

gies are more indirect and relate to separately performed bioassays and (LC)-MS
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analysis, such as effect-directed analysis, metabolic profiling, and antivenomics

approaches. Besides these, direct approaches without the use of chromatogra-

phy are nowadays also used in several research areas. These include direct MS-

based bioassays and native MS studies in which the latter looks at intact protein

complexes in the gas phase. Affinity techniques for trapping proteins and pro-

tein complexes toward bottom-up proteomics analysis could also be mentioned

in this regard although these techniques are actually specific sample preparation

strategies for proteomics research.

With so many new approaches and technologies being introduced in this area

in the past 10–15 years, it seems appropriate to compile a thorough review of the

current state of the art in the analysis of biomolecular interactions by MS. That is

what this book provides in 12 chapters. Apart from a tutorial chapter onMS in the

beginning and a conclusive overview at the end of the book, the various chapters

are grouped into four themes:
• Native MS, that is, the study of liquid-phase and gas-phase protein–protein

interactions by MS and ion-mobility MS
• The use of LC–MS to study biomolecular interactions via indirect assays, as,

for instance, applied in effect-directed analysis and related approaches, MS-

based binding and activity assays, and other ways to study and identify bioactive

molecules, for example, via metabolic profiling or antivenomics.
• Precolumn and on-column technologies to assess bioaffinity, involving frontal

and zone affinity chromatography, ultrafiltration and size exclusion chromatog-

raphy, affinity capillary electrophoresis, and biosensor affinity analysis coupled

to MS.
• Online postcolumn continuous-flow bioassays to study bioactivity or bioaffinity

of compounds after chromatographic separation.

The contributors to this book did a great job in writing very good reviews and

providing beautiful artwork to illustrate the principles and applications of their

specific areas within the analysis of biomolecular interactions by MS. For us, it

was a pleasure to work with them in this project. We would like to thank them all

for their work and for their patience with us in finalizing the final versions of the

various chapters.

We hope the readers will benefit from this book, value the overview provided

in the various chapters, and perhaps even get stimuli for new research areas or

new approaches to perform their research, for instance, by combining ideas and

approaches from various chapters of the book into new advanced technologies.

Enjoy reading and get a high affinity with MS!

August 2014 Jeroen Kool and Wilfried Niessen

VU University Amsterdam, Faculty of Science,

Amsterdam Institute for Molecules,

Medicines and Systems, Division of BioAnalytical,

Chemistry/BioMolecular Analysis

Amsterdam,

Netherlands
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GC–MS Gas chromatography mass spectrometry

GC-O Gas chromatography olfactometry

GCxGC Comprehensive two dimensional gas chromatography

GPC Gel permeation chromatography

GPCR G protein-coupled receptor

GSI Global snakebite initiative

GST Glutathione-S-transferase

HBH Histidine–biotin–histidine

HDX Hydrogen–deuterium exchange

HEK Human embryonic kidney cells

HPLC High performance liquid chromatography

HRS High-resolution screening

HTLC High-temperature liquid chromatography

HTS High throughput screening

I.D. Inner diameter

IA-CE Immunoaffinity capillary electrophoresis
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IC50 Half maximal inhibitory concentration

ICP Inductively coupled plasma

ICP-MS Inductively coupled plasma MS

ID Inner diameter

IMS Ion mobility spectrometry

ISD In-source decay

IT Ion-trap MS

IT-TOF Tandem ion-trap – time-of-flight MS

K a Association constant

Kd Dissociation constant

Kd Equilibrium dissociation constant

kDa kilodalton (103 Da)

K i Affinity constant

koff Rate constant of complex dissociation

kon Rate constant of complex formation

L Ligand

LC Liquid chromatography

LC–MS Liquid chromatography mass spectrometry

LC–MSE Liquid chromatography mass spectrometry in an

alternating energy mode

LIF Laser induced fluorescence

LLE Liquid liquid extraction

LLOQ Lower limit of quantification

MALDI Matrix assisted laser desorption ionization

MS Mass spectrometry/mass spectrometer

MS/MS Tandem mass spectrometry

MTS 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

2-(4-sulfophenyl)-2H-tetrazolium

MTT 3-(4,5-Dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium

bromid

nAChR Nicotinic acetylcholine receptor

NECEEM Non-equilibrium capillary electrophoresis of equilibrium

mixtures

NHS N-Hydroxysuccinimide

NMR Nuclear magnetic resonance

NMR Nuclear magnetic resonance spectrometry

np-HPLC Normal phase high performance liquid chromatography

p38 p38 mitogen-activated protein kinase

PAHs Poly aromatic hydrocarbons

PDE Phosphodiesterase

PEEK Polyether ether ketone

PEG Polyethylene glycol

PLE Pressurized liquid extraction

POCIS Polar organic chemical integrative sampler

PTFE Polytetrafluoroethylene



XXII Abbreviations

QSAR Quantitative structure–activity relationships

QTAX Quantitative analysis of tandem affinity purified in vivo

cross-linked protein complexes

Q-TOF Quadrupole time-of-flight

q-TOF Tandem quadropule – time-of-flight MS

R Receptor

rhSHBG Recombinant human sex hormone binding globulin

RL Receptor–ligand complex

RP Reverse-phase

RP-HPLC Reverse-phase high-performance liquid chromatography

RP-LC Reversed phase LC

rTTR Recombinant transthyretin

SAFE Solvent assisted flavor extraction

SAXS Small-angle X-ray scattering

SBSE Stir bar sorptive extraction

SD Standard deviation

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEC Size exclusion chromatography

sEH Soluble epoxide hydrolase

SERT Serotonin transporter

SID Surface-induced dissociation

SILAC Stable isotope labeling of amino acids in cell culture

SLC6 Solute carrier family 6

SPE Solid phase extraction

SPMD Semi permeable membrane device

SPME Solid phase microrxtraction

SRM Selected reaction monitoring mode

T4 Thyroxin

T4
* Radiolabeled thyroxin

TAP Tandem affinity purification

TCA Tricyclic antidepressants

TFA Trifluoroacetic acid

TIC Total ion chromatograms

TIE Toxicity identity evaluation

TLC Thin layer chromatography

TOF Time-of-flight

TP Transformation product

TTR Transthyretin

UPLC Ultra performance liquid chromatography

UV Ultraviolet

UV/vis Ultra violet/visible spectroscopy

WHO World Health Organization

YAS Yeast androgen screen

YES Yeast estrogen screen
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Introduction to Mass Spectrometry, a Tutorial

Wilfried M.A. Niessen and David Falck

1.1

Introduction

In the past 30 years, mass spectrometry (MS) has undergone a spectacular devel-

opment, in terms of both its technological innovation and its extent of applica-

tion. On-line liquid chromatography–mass spectrometry (LC–MS) has become

a routine analytical tool, important in many application areas. The introduction

of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization

(MALDI) has enabled theMS analysis of highly polar and largemolecules, includ-

ing biomacromolecules. MS is based on the generation of gas-phase analyte ions,

the separation of these ions according to their mass-to-charge ratio (m/z), and the

detection of these ions. A wide variety of ionization techniques are available to

generate analyte ions (Section 1.3). Mass analysis can be performed by six types

ofmass analyzers (Section 1.4), although quite frequently tandemmass spectrom-

eters, featuring the combination of twomass analyzers, are used (Section 1.5).The

data acquired by MS allow quantitative analysis of target analytes, determination

of the molecular mass/weight, and/or structure elucidation or sequence determi-

nation of (unknown) analytes (Section 1.6).

This chapter provides a general introduction to MS, mainly from a functional

point of view. Next to basic understanding of operating principles of ionization

techniques and mass analyzers, the focus is on data interpretation and analytical

strategies required in the study of biomolecular interactions using MS.

1.2

Figures of Merit

1.2.1

Introduction

AnMS experiment typically consists of five steps: (i) sample introduction, (ii) ana-

lyte ionization, (iii) mass analysis, (iv) ion detection, and (v) data processing and

Analyzing Biomolecular Interactions by Mass Spectrometry, First Edition.
Edited by Jeroen Kool and Wilfried M.A. Niessen.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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interpretation of the results. Sample introduction may involve individual samples

or may follow (on-line) chromatographic separation. Mass analysis and ion detec-

tion require a high vacuum (pressure≤ 10−5 mbar). Analyte ionization may take

place either in high vacuum or at atmospheric pressure. In the latter case, a vac-

uum interface is required to transfer ions from the atmospheric-pressure ioniza-

tion (API) source into the high-vacuum mass analyzer region.

In its basic operationwith on-line chromatography or other forms of continuous

sample introduction, the mass spectrometer continuously acquires mass spectra,

that is, the instrument is operated in the full-spectrum (or full-scan) mode. This

means that a three-dimensional data array is acquired, defined by three axes: time,

m/z, and ion intensity (counts). This data array can be visualized in different ways

(Figure 1.1). In the total-ion chromatogram (TIC), the sum of the ion counts in the

individual mass spectra are plotted as a function of time. Amass spectrum repre-

sents a slice of the data array of the ion counts as a function ofm/z at a particular

time point. Summed, averaged, and/or background subtracted mass spectra can

be generated. Mass spectra may be searched against libraries, when available, to

assist in compound identification. In an extracted-ion chromatogram (XIC), the

counts for the ion with a selected m/z are plotted as a function of time. The m/z

selection window may be adapted to the resolution of the mass spectrometer. In

instruments providing unit-mass resolution, the selectionwindow inmost cases is

±0.5m/z units (u), whereas with high-resolution mass spectrometry (HRMS, see

below) selection windows as small as ±10mu can be used (narrow-window XIC).

In a base-peak chromatogram (BPC), the ion count recorded for the most abun-

dant ion in each spectrum is plotted as a function of time. BPCs are especially

useful for peak searching in chromatograms with relatively high chemical back-

ground. More advanced tools of data processing are discussed in Section 1.6.1.

Three figures of merit are relevant: mass spectrometric resolution, mass accu-

racy, and the acquisition speed, that is, the time needed to acquire one spectrum

(or one data point in a chromatogram).

1.2.2

Resolution

Despite the fact that mass spectrometrists readily discuss (and boast) on the res-

olution of their instruments, it seems that there is no unambiguous definition

available. The IUPAC (International Union of Pure and Applied Chemistry) rec-

ommendations [1] and ASMS (American Society for Mass Spectrometry) guide-

lines [2] are different in that respect [3, 4]. Most people in the MS community

define resolution as m/Δm, where m is the mass of the ion (and obviously should

be read as m/z) and Δm is either the peak width (mostly measured at full-width

half-maximum, FWHM) or the spacing between two equal-intensity peaks with

a valley of, for instance, 10% [1]. The FWHM definition is generally used with all

instruments, except sector instruments where the valley definition is used. The

resolving power is defined as the ability to distinguish two ions with a small differ-

ence in m/z However, resolving power has also been defined as m/Δm and the
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Figure 1.1 Visualization of the three-

dimensional data array acquired in a full-

spectrum MS experiment. (a) Total-ion chro-

matogram (TIC), (b) base-peak chromatogram

(BPC), (c) extracted-ion chromatogram

(XIC), and (d) mass spectrum. Data for an

N-glycopeptide from the LC–MS analysis of a

tryptic digest of a commercial immunoglobu-

lin G (IgG) standard, analyzed using a Dionex

Ultimate 3000 nano-LC coupled via ESI to a

Bruker Maxis Impact Q-TOF MS in the labora-

tory of one of the authors (D. Falck).

resolution as the inverse of resolving power [3]. The IUPAC definition is used

throughout this text.

In a simple and straightforward way, mass analyzers can be classified as

either unit-mass-resolution or high-resolution instruments (see Table 1.1). For

unit-mass-resolution instruments such as quadrupoles and ion traps, calculation

of the resolution as m/Δm is not very useful, as the FWHM is virtually constant

over the entire mass range.
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Table 1.1 Characteristics and features of different mass analyzers.

Analyzer Resolutiona) Mass

accuracy

Full-spectrum

performanceb)
Selected-ion

performanceb)
Pressure

(mbar)

Quadrupole Unit-mass ±0.1 + ++ <10−5

Ion-trap Unit-mass ±0.1 ++ + 10−5

Time-of-flight ≤70 000 <3 ppm ++ − <10−7

Orbitrap ≤140 000 <1 ppm ++ − <10−9

FT-ICR ≤400 000 <1 ppm ++ − <10−9

Sector ≤60 000 <3 ppm + ++ <10−7

a) Resolution based on FWHM definition, except for sector (5% valley definition).

b) ++, instrument highly suitable for this operation; +, instrument less suitable for this

operation; and −, instrument not suitable for this operation (post-acquisition XIC possible).

1.2.3

Mass Accuracy

In MS, the mass of a molecule or the m/z of an ion is generally expressed as a

monoisotopic mass (molecular mass) or m/z, referring to the masses of the most

abundant natural isotopes of the elements present in the ion ormolecule. In chem-

istry, the average mass or molecular weight is used, based on the average atomic

masses of the elements present in the molecule. The exact mass (or betterm/z) of

an ion is its calculatedmass, that is, its theoretical mass. In this respect, the charge

state of the ion is relevant, because the electronmass (0.55mDa)may not be negli-

gible.The accurate mass (or betterm/z) of an ion is its experimentally determined

mass, measured with an appropriate degree of accuracy and precision. The accu-

rate mass is the experimental approximation of the exact mass.The nominal mass

(or better m/z) is the mass of a molecule or an ion calculated using integer val-

ues for the masses of the most abundant isotopes of the elements present in the

molecule or ion.Themass defect is the difference between the exact mass and the

nominal mass of ion or molecule [1, 5].

The achievable mass accuracy in practice depends on the resolution of the mass

analyzer and the quality and stability of the calibration of them/z axis. An instru-

ment providing unit-mass resolution generally allows m/z determination for

single-charge ions with an accuracy of ±0.1 u (nominal mass determination). In

HRMS, themass accuracy is generally expressed either as an absolute mass error

(accurate mass− exact mass, in mu) or as a relative error (in ppm), calculated

from

(accurate mass–exact mass)
(exact mass)

× 106

In HRMS of small molecules, the error in m/z determination will typically be in

the third decimal place (accurate mass determination).

From the accurate m/z of an ion, one can use software tools to calculate its

possible elemental compositions. The number of hits from such a calculation
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obviously depends on the m/z value, the number of elements considered, and

the mass accuracy achieved [6]. The number of hits may also be reduced by

taking an accurately measured isotope pattern of the ion into consideration

[7, 8]. For a given ion with m/z M, the relative abundances of the ions with m/z

M+1, M+2, and M+3 reveal the presence (or absence) and even the number

of specific elements, for example, Cl, Br, and S from the M+2 ion. For small

molecules (<1 kDa), the maximum number of carbon atoms in the molecule can

be estimated by dividing the relative abundance (in percent) of the M+1 peak by

1.1. Ultra-HRMS instruments have additional possibilities to derive elemental

composition, as they can even separate the contributions of different atoms

to the M+2 isotope peak. This is illustrated for an unknown compound with

C13H24N3O6S2 in an onion bulb in Figure 1.2 (see also [9]).

As discussed in Section 1.6.6, mass accuracy also has a distinct influence on

the ease and quality of protein identification from peptide-mass fingerprints or

peptide-sequence analysis approaches.

1.2.4

General Data Acquisition in MS

The general mode of data acquisition of a mass spectrometer is the full-spectrum

(or full-scan)mode. In thismode,mass spectra are continuously acquired between
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Figure 1.2 Demonstration of high-

resolution mass spectrometry. Simulated

isotopic pattern for an unknown com-

pound with C13H24N3O6S2 in an onion bulb

with isotopic fine structure exhibited at

a resolution of 380 000. (Reprinted with

permission from Prof. Kazuki Saito (RIKEN

Plant Science Center, Yokohama, Japan) and

Bruker Daltonics Application Note # LC-MS

85, ©2013, Bruker Daltonics, 1822187.)
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a lowm/z and a highm/z within a preset period of time (mostly ≤1 s). Obviously,

the information content of the spectrum depends on (i) the selected ionization

technique, (ii) the resolution of the instrument, and (iii) data system parameters.

The mass spectra are acquired in continuous or profile mode, that is, with a num-

ber of data points perm/z value. For unit-mass-resolution instruments, ∼10 data
points perm/z suffice, whereas inHRMS farmore data points perm/z are required

to provide the appropriate resolution andmass accuracy. Either the profile data are

saved by the data system, eventually after some data reduction such as apodiza-

tion to reduce the data file size (see, e.g., [10]), or centroiding is performed, where

only a weighted average of the mass peak is saved [4]. The latter greatly reduces

the data file size. Post-acquisition data processing tools may require either profile

or centroid data.

Some mass analyzers (see Table 1.1) can also acquire data in the selected-ion

mode, which means that the mass analyzer is programmed to select a particular

m/z for transmission to the detector during a preset period (the so-called dwell

time, typically 5–200ms) and to subsequently jump to other preselectedm/z val-

ues; after monitoring all selected m/z values, the same function is repeated for

some time, for example, during (part of ) the chromatographic run time. Thus,

compared to the full-spectrum mode, the MS has a longer measurement time of

the selected ion, and thus provides enhanced signal-to-noise ratio (S/N).The data

can be displayed in terms of XICs. This acquisition mode is especially applied in

targeted quantitative analysis. With HRMS instruments not capable of a selected-

ion mode, improved S/N and targeted quantitative analysis can be achieved post-

acquisition in narrow-window XICs (see Section 1.2.1).

For a proper understanding of the possibilities and limitations ofMS, one should

be aware of the fact that a mass spectrometer can generally perform only one

experiment at a time. However, various experiments can be performed consec-

utively. Functions may be defined to perform various experiments repeatedly. As

outlined in Section 1.6.1, decisions for the next experiment may be based on the

data acquired in the previous experiment (data-dependent acquisition, DDA).The

time required for individual MS experiments very much depends on the type of

instrument used (and its purchase date). Because of the huge progress in faster

electronics, modern instruments can perform faster than older instruments.

1.3

Analyte Ionization

1.3.1

Introduction

More than 50 analyte ionization techniques are available for MS. An ion-

ization technique has to generate gas-phase analyte ions, either in (high)

vacuum or transferable from atmospheric pressure into high vacuum, to enable


