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Foreword

Each period and part of the globe has its landmark sites, the ones that seem to define what a
particular period is all about or the nature of some important step or threshold in the cultural
and biological evolution of our species. For the Plio-Pleistocene, all eyes of course are fixed
on Africa, the continent where the human story began. And two sites in particular, FLK-Zinj
in Olduvai and FxJj50 in Koobi Fora, are clearly the archaeological standards, the reference
points for our understanding of this remote page in our evolutionary history, and the ones to
which every other site of the same period is compared.

But once hominins began to leave Africa and spread into the rest of the Old World, a pro-
cess that began about 1.8 Myr, the archaeological record of Israel moves center stage, and
for almost every subsequent major development in the human career one or another site in
Israel has become a standard by which such developments are characterized and evaluated. For
example, for many years the earliest undisputable human habitation outside of Africa was the
1.4 Ma site of ‘Ubeidiya in the Jordan Valley, only recently surpassed by the spectacular and
somewhat earlier remains discovered at Dmanisi in Georgia and the redating of the famous
paleontological localities in Java where in the nineteenth century the first Homo erectus fossils
were discovered.

Similarly, in the intense and fascinating debates that surround the origins of anatomically
and behaviorally modern humans, there is hardly a student of prehistory anywhere who hasn’t
heard of the Middle Paleolithic caves of Skhul and Qafzeh. These classic sites occupy a cen-
tral position in our ongoing attempts to understand where people with modern anatomy and
cognitive capacities came from, and what role they may have played in the demise of Eurasia’s
beetle-browed Neanderthals.

The 21 ka site of Ohalo II, exposed during an extended drought by the retreat of the Sea
of Galilee, provides us with startlingly early evidence for the beginning stages of the har-
vesting, grinding, and baking of wild cereal grains, marking the first of a series of dramatic
steps toward the “broad spectrum revolution” and the emergence of the world’s first sedentary
farming villages.

And now the nearly 800 ka Israeli site of Gesher Benot Ya‘aqov (GBY), also located in
the Jordan Valley and not all that far from ‘Ubeidiya, is emerging as a unique and spectacu-
lar record of human lifeways during this remote period of the early Middle Pleistocene. GBY,
the focus of this timely and important study, not only provides evidence for a second major
wave of human expansion out of Africa but, thanks to the painstaking work of project-director
Naama Goren-Inbar, together with Rivka Rabinovich, Sabine Gaudzinski-Windheuser, Lutz
Kindler, and their many collaborators, GBY is also yielding a record of unparalleled detail
about the lifeways and capabilities of these ancient and hitherto poorly known hominins. For
example, systematic plots of the spatial distribution of literally thousands of tiny burned flint
microchips at GBY revealed the presence of “phantom” hearths, thereby providing some of the
most compelling evidence that hominins already had control of fire more than three-quarters
of a million years ago. Thanks to its largely waterlogged condition, GBY also preserves an
unparalleled wealth of organic remains, including thousands of fruits, seeds, and pieces of
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wood, some burned, as well as delicate fossil crabs, amphibians, fish, and molluscs. As the
work on this marvelous organic record progresses, we are learning not only about the ancient
lakeside environment in which these hominins lived, an invaluable framework in its own right,
but we are gaining insights into the unexpectedly varied resource base available to these archaic
human foragers. Through ongoing collaborative research with other archaeologists, paleontol-
ogists, paleobotanists, geologists, zoologists, isotope chemists, and a host of other specialists,
the GBY team led by Naama Goren-Inbar is steadily piecing together a picture of this early
period in human history that will serve as a standard for the Eurasian early Middle Pleistocene
for many years to come.

The present volume, a detailed look at the bones of some 15 different taxa of medium- to
large-sized mammals recovered during seven seasons of excavation at GBY, is an extremely
important contribution to our knowledge about the lifeways of these Lower Paleolithic for-
agers. The site preserves a marvelous record of the animals that hominins procured and
butchered on or near the shore of paleo-lake Hula nearly 800 ka. And there are some important
insights and surprises here that readers will find of great interest. For example, while most
scholars have long abandoned the idea that Middle Paleolithic humans (i.e., Neanderthals and
their contemporaries elsewhere) were scavengers rather than hunters, opinion is much more
divided about how their Lower Paleolithic predecessors obtained meat. Through the present
study, GBY adds its voice to a steadily growing chorus of zooarchaeologists arguing that early
Middle Pleistocene hominins, too, were capable hunters, at least by about a million years ago,
if not before. At GBY this conclusion is drawn from several lines of evidence, most notably
the presence of the full array of skeletal elements for a number of the more important taxa,
suggesting that GBY’s foragers had early access to whole carcasses, as well as the fact that
many of the taxa are well represented by adults, even the elephants (Palaeoloxodon antiquus).

There is also a widespread view among paleoanthropologists that Lower Paleolithic sites
tend to be heavily dominated by bones of megafauna and that regular use (hunting) of medium-
sized ungulates like deer did not become commonplace until much later, perhaps as recently
as 300 ka or 400 ka. While the remains of megafauna, both elephants and hippo, are clearly
present at GBY, the smaller fallow deer (Dama sp.) was the principal mammalian resource
exploited by the site’s inhabitants, very likely hunted, not scavenged, and probably brought
to the site intact, or nearly so. GBY’s inhabitants were clearly familiar with the anatomy of
their prey and, judging by the abundance of cutmarks and percussion marks, they thoroughly
butchered and processed these animals for both meat and marrow.

As is necessary in any comprehensive, contemporary zooarchaeological study, the authors
devote a lot of effort to taphonomic issues. This is absolutely essential for several reasons.
Obviously, any study that wishes to contribute to our understanding of human behavior must
first demonstrate that the bones preserved in an archaeological site of such great antiquity
reflect the activities of humans and not the foraging proclivities of hyenas and other carnivores,
or the selective transport and winnowing by the moving waters of the nearby lake. Moreover,
while there are plenty of bona fide cutmarks and humanly induced impact fractures on the
GBY bones, there are also lots of curious striations that are probably not a product of butcher-
ing or subsequent food processing. In order to figure out how these faunal assemblages came
into being, and what produced the striations, the authors conducted an interesting series of
tumbling, trampling, and burial experiments which are clearly described in the volume. The
gist of their findings is that the GBY assemblages are largely the product of human activities.
They find very little evidence that carnivores played more than a minor role in the formation of
the assemblages and that density-mediated attrition of the more fragile bones has not seriously
impacted the faunal remains. They also show quite convincingly that, despite GBY’s proximity
to an ancient lake, running water had little or no effect on the composition or spatial arrange-
ment of the remains. As to the striations, they conclude that trampling of bones lying on or in
the muddy matrix of the shoreline, by the site’s human inhabitants and by animals coming to
the lakeshore to drink, were the principal agents responsible for the damage.
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This is an interesting and important volume, and an extremely valuable contribution to our
growing understanding of the lifeways of Eurasian hominins in the more remote periods of
the Paleolithic. Gesher Benot Ya‘aqov adds to a steadily growing view that sees hunting of
medium- to large-sized prey as an ancient human foraging strategy, emerging not in the Late
Pleistocene or late Middle Pleistocene, but much earlier, perhaps as much as a million years
ago, and possibly even earlier.

University of Michigan, Ann Arbor, Michigan John D. Speth
February 2009



Preface

Human colonization of the Old World is generally viewed to have been feasible due to the
emergence of larger-brained hominins characterized by more advanced abilities than those of
their ancestors. Homo erectus is considered to be the first hominin to have left Africa, and
hence responsible for the earliest sorties “Out of Africa.” The presence of early hominins in
Eurasia, documented by hominin skeletal material and, more frequently, by the remains of their
material culture, is evidence of their mobility along dispersal routes, of which corridors have
been the most widely investigated.

While the dispersal routes and the mechanisms that enabled hominin colonization are still
a matter of intensive debate, the evidence emerging from the Levantine Corridor and from the
Acheulian site of Gesher Benot Ya‘aqov is of undisputable importance. Recent excavations
at the site, among the earliest in Eurasia (ca. 780 ka), uncovered a stratigraphic archive that
aids in the reconstruction of the paleohabitats of the early occupants of Eurasia, along with
providing unique insight into their behavior.

The site of Gesher Benot Ya‘aqov is a unique phenomenon because of its cultural similarity
to the African Acheulian Technocomplex—the only one of its kind in the Levant—expressed
by techno-typological markers, and because of the waterlogged nature of its deposits that pre-
served early organic remains such as wood, bark, fruits and seeds. These aspects and others
are further complemented by the impressive preservation of mammal bones, which will be
described in this volume.

Though at times meager, the site’s mammal paleontological collection is of great importance
as it contributes to the study of the diverse biogeography of the Pleistocene Levant, as well as
to the paleoecology of the northern Jordan Valley and the Hula Valley and its vicinity (segment
of the Great African Rift System). By utilizing the Early and Middle Pleistocene data retrieved
from Gesher Benot Ya‘aqov and its subsequent analyses, we are now better able to reconstruct
the paleo-Lake Hula environment and its unique ecological niche, along with shedding new
light on the processes that allowed for the excellent bone preservation at the site.

Modern human interference serves as the greatest risk to the site. Boat trips stop here daily,
as the excavation area acts as a ramp for dragging the boats out of the water. Despite this
and destructive, unnecessary drainage activities that extensively destroyed the landscape (and
which are slated to continue), the two remarkable excavation layers (V-5 and V-6; see below)
remain exposed on the river bank. Over the course of our excavations, they have yielded a
wealth of bones and stone artifacts. Such rich assemblages are undoubtedly due to the still
mainly undecipherable social modes of hominin behavior and activities.

The site of Gesher Benot Ya‘aqov stretches for some 3.5 km along the Jordan River.
Recent excavations of its eastern bank are the first to have uncovered an extensive deposi-
tional sequence featuring several Acheulian archaeological horizons. This volume is dedicated
to analysis and interpretation of the faunal assemblages that originated in two of these hori-
zons, Layers V-5 and V-6. Stratigraphically and conformably located one above the other, they
yielded the richest and most abundant fossil bone assemblages at the site. More precisely, it
is the older of the two, Layer V-6, that contains the exceptionally well-preserved and varied
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mammal assemblage, as it has been protected by the overlying layer (V-5), comprised of a
multitude of shells (coquina) that had become thoroughly cemented by the river waters.

By the time excavation of the Layers V-5 and V-6 layers began, we had already accumu-
lated substantial experience and moderate understanding of the nature of the site’s Acheulian
horizons. Despite this, what was revealed upon exposure of the two layers was unmatched by
any other previous experience at the site nor by our own naïve and oversimplified predictions;
here was an exceptionally high concentration of mammal and other animal bones, reflecting
a rich biodiversity and a high degree of human-caused fragmentation and damaged-induced
markings (cut marks, percussion marks, etc.).

Due to the different nature of the two layers’ content in comparison to the rest of the exca-
vated site, efforts were made to excavate them as extensively as possible, but when what was
supposed to be the final season culminated in August 1997, it became clear that we were far
from achieving our goal. As a result, we decided to add a previously unplanned field season
in September 1997, that would become the seventh and final season, during which extensive
effort were made to expose as much as possible of Layer V-6. While we never fully reached our
objective of excavating the entire two layers, we succeeded in progressing further and gained
a wealth of data.

The good bone preservation and the high number of damage marks seen on them, both nat-
ural and hominin-induced, call for the launching of a project aimed at their detailed study.
It was only natural that we collaborate with Prof. Sabine Gaudzinski-Windheuser of the
Römisch-Germanisches Zentralmuseum, who had served as the sole taphonomy analyst of
the large mammal assemblage from the older ‘Ubeidiya site. The Gesher Benot Ya‘aqov team,
composed of the authors of this volume, designed a project that ended up as both a zooarchaeo-
logical and an experimental taphonomic study. The aim was to gain insight into site-formation
processes, and in particular to learn about the role of post-depositional processes. We do not
claim to fully understand the extent of the social and subsistence drives that led to the assem-
blages’ formation, but we do see this study as a thorough presentation of the data and its
interpretation.
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