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Preface

The main goal of our study is an attempt to understand and classify nonsmooth
structures arising within the optimization setting,

P( f ,F) : min f (x) s.t. x ∈M[F ],

where f : Rn −→ R is a smooth real-valued objective function, F : Rn −→ R
l is a

smooth vector-valued function, andM[F ]⊂Rn is a feasible set defined by F in some
structured way. The nonsmoothness is given by the structure that fits the smooth
function F to define the feasible set M[F ]. The following optimization problems
with particular types of nonsmoothness are considered (Chapters 2–5):

• mathematical programming problems with complementarity constraints,
• general semi-infinite programming problems,
• mathematical programming problems with vanishing constraints,
• bilevel optimization.

The basis of our study is the topological approach introduced in detail in Chapter
1. It encompasses the following questions:

(a) Under which conditions on F is M[F ] a Lipschitz manifold of an appropriate
dimension?

(b) Under which conditions on F is M[F ] stable (i.e., M[F ] remains invariant up
to a homomorphism w.r.t. smooth perturbations of F)?

(c) How does the homotopy type of lower-level set

M[ f ,F ]a := {x ∈M[F ] | f (x)≤ a}

change (as a ∈ R varies)?

Questions (a) and (b) deal with topological invariants of M[F ] and, more pre-
cisely, its structure. They lead to suitable constraint qualifications. Topological
changes of M[ f ,F ]a give rise to defining stationary points and developing critical
point theory for P( f ,F) in the sense of Morse. In so doing, we get new topologically
relevant optimization notions in terms of derivatives of f and F . It is worth pointing
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viii Preface

out that the same topological questions provide different (analytical) optimization
concepts when applied to the particular problems above. The difference between
these analytically described optimization concepts is a key point in understanding
and comparing different kinds of nonsmoothness.

In Chapter 6, we discuss the impact of the topological approach on nonsmooth
analysis. Topologically regular points of a min-type nonsmooth mapping F :Rn −→
R
l are introduced. The crucial property is that for a topologically regular value y ∈

R
l of F the nonempty set F−1(y) is an (n− l)-dimensional Lipschitz manifold.

Corresponding nonsmooth versions of Sard’s Theorem are given.
We point out that the topological approach in the optimization context was intro-

duced by H. Th. Jongen in the early 1980s ([61], [62]). The introduction of topolog-
ical issues turned out to be extremely fruitful for establishing an adequate optimiza-
tion theory in the smooth setting ([63]). The present book sheds light on nonsmooth
optimization from the topological point of view, continuing to exploit the ideas of
H. Th. Jongen.

I would like to thank my teacher H. Th. Jongen for sharing with me his insights
on optimization and steering my studies toward its topological nature. This book
originated mainly from a collaboration with him. I also thank my other coauthors,
D. Dorsch, F. Guerra-Vázquez, Jan-J. Rückmann, S. Steffensen, and O. Stein, for
fruitful collaborations. I am very grateful to H. Günzel, A. Ioffe, D. Klatte, B. Kum-
mer, B. Mordukhovich, Yu. Nesterov, and D. Pallaschke for many interesting and
helpful discussions.

Aachen, April 2011 Vladimir Shikhman
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Notation

Our notation is standard. The n-dimensional Euclidean space is denoted by Rn with
the norm ‖ · ‖, its nonnegative orthant by Hn, and its nonpositive orthant by Rn−.
R+ := {x ∈ R | x > 0}. For ε > 0 and x̄ ∈ Rn, the set Bε(x̄) (or B(x̄,ε)) stands for
the open Euclidean ball in Rn with radius ε and center x̄. A closed ball with radius
ε > 0 and center x̄ ∈ Rn is denoted by B̄(x̄,ε).

Given an arbitrary set K ⊂Rn, K, int(K), and ∂K denote the topological closure,
interior, and boundary ofK, respectively. span(K), conv(K) (or co(K)), and cone(K)
denote the set of all linear, convex, and nonnegative combinations of elements of K,
respectively.CK denotes the complement of K ⊂Rn. By span{a1, . . . ,at}we denote
the vector space over R generated by the finite number of vectors a1, . . . ,at ∈ Rn,
and dim{span{a1, . . . ,at}} stands for its dimension. The polar of K is defined by
K◦ := {v ∈ Rn |vTw ≤ 0 for all w ∈ K}. The distance from x ∈ Rn to K ⊂ Rn is
denoted by dist(x,K) = inf

y∈K
‖x− y‖ with the convention dist(x, /0) = ∞.

T : Rn⇒ R
k denotes a multivalued map defined on Rn with T (x)⊂ Rk, x ∈ Rn.

The graph of T is gph T = {(x,y) ∈ Rn×Rk |y ∈ T (x)}, and the inverse of T is
T−1 : Rk⇒ R

n, given by T−1(y) = {x ∈ Rn |y ∈ T (x)}.
Given a differentiable function F : Rn −→ R

k, DF denotes its k× n Jacobian
matrix. Given a differentiable function f : Rn −→ R, Df denotes its gradient as a
row vector, and DT f (or ∇ f ) stands for the transposed vector. Given a twice contin-
uously differentiable function f : Rn −→ R, D2 f stands for its Hessian. Cl(Rn,Rk)
denotes the space of l-times continuously differentiable functions from R

n to Rk.
C∞(Rn,Rk) denotes the space of smooth functions from R

n to Rk.Cl(Rn) stands for
Cl(Rn,R), andC∞(Rn) stands forC∞(Rn,R).
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Chapter 1

Introduction

We state mathematical programming problems with complementarity constraints,
general semi-infinite programming problems, mathematical programming problems
with vanishing constraints and bilevel optimization. The topological approach for
studying problems above is introduced. It encompasses the study of topological
properties of corresponding feasible sets, as well as the critical point theory in the
sense of Morse. Finally, we describe the application of the topological approach for
standard nonlinear programming problems.

1.1 Nonsmooth optimization framework

We consider the nonsmooth optimization framework

P( f ,F) : min f (x) s.t. x ∈M[F ], (1.1)

where f : Rn −→ R is a real-valued objective function, F : Rn −→ R
l is a vector-

valued function, and M[F ] ⊂ Rn is a feasible set defined by F in some structured
way.

Within this general framework, the nonsmoothness might be caused by

(a) the objective function f ,
(b) the defining function F , or
(c) the structure according to which F defines M[F ].

Here, we assume functions f , F to be sufficiently smooth, and we restrict our
study to the nonsmoothness given by (c). Thus, we focus rather on the underlying
nonsmooth structures that fit the smooth function F to define the feasible set M[F ].
We give some examples of particular optimization problems of type (1.1) to illus-
trate possible nonsmooth structures.

Example 1 (MPCC). The mathematical programming problem with complementar-
ity constraints (MPCC) is defined as

 ,

© Springer Science+Business Media, LLC 2012 
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2 1 Introduction

MPCC: min f (x) s.t. x ∈M[h,g,F1,F2]

with
M[h,g,F1,F2] := {x ∈ Rn | F1,m(x)≥ 0,F2,m(x)≥ 0,

F1,m(x)F2,m(x) = 0, m= 1, . . . ,k,
hi(x) = 0, i ∈ I, g j(x)≥ 0, j ∈ J},

where f , hi, i ∈ I, g j, j ∈ J, F1,i, F2,i, i = 1, . . . ,k are real-valued and smooth func-
tions, |I| ≤ n, |J|< ∞.

Here, the nonsmoothness comes into play due to the complementarity con-
straints:

F1,m(x)≥ 0,F2,m(x)≥ 0, F1,m(x)F2,m(x) = 0, m= 1, . . . ,k.

Indeed, the basic complementarity relation

u≥ 0, v≥ 0, u · v= 0,

defines the boundary of the nonnegative orthant in R2.

Example 2 (GSIP). Generalized semi-infinite programming problems (GSIPs) have
the form

GSIP: minimize f (x) s.t. x ∈M
with

M := {x ∈ Rn |g0(x,y)≥ 0 for all y ∈ Y (x)}
and

Y (x) := {y ∈ Rm |gk(x,y)≤ 0, k = 1, . . . ,s}.
All defining functions f ,gk,k = 0, . . . ,s, are assumed to be real-valued and smooth
on their respective domains.

Note that testing feasibility for x means that inf
y∈Y (x)

g0(x,y) ≥ 0. The appearance

of the optimal value function inf
y∈Y (x)

g0(x,y) causes nonsmoothness.

Example 3 (MPVC). We consider the mathematical programming problem with
vanishing constraints (MPVC)

MPVC: min f (x) s.t. x ∈M[h,g,H,G]

with

M[h,g,H,G] := {x ∈ Rn | Hm(x)≥ 0, Hm(x)Gm(x)≤ 0, m= 1, . . . ,k,
hi(x) = 0, i ∈ I, g j(x)≥ 0, j ∈ J},

where f , hi, i ∈ I, g j, j ∈ J, Hm, Gm, m= 1, . . . ,k are real-valued and smooth func-
tions, |I| ≤ n, |J|< ∞.

Here, the difficulty is due to the vanishing constraints:
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Hm(x)≥ 0, Hm(x)Gm(x)≤ 0, m= 1, . . . ,k.

Note that for those x with Hm(x) = 0 the sign of Gm(x) is not restricted.

Example 4 (Bilevel optimization). We consider bilevel optimization from the opti-
mistic point of view

U : min
(x,y)

f (x,y) s.t. y ∈ Argmin L(x),

where
L(x) : min

y
g(x,y) s.t. h j(x,y)≥ 0, j ∈ J.

Above we have x ∈ Rn, y ∈ Rm, and the real-valued mappings f ,g,h j, j ∈ J are
smooth, |J|< ∞. Argmin L(x) denotes the solution set of the optimization problem
L(x).

Here, the nonsmoothness comes from the fact that we deal with a parametric
nonlinear programming problem L(x) at the lower level. Moreover, to ensure feasi-
bility for (x,y) at the upper levelU, the problem L(x) should be solved up to global
optimality.

1.2 Topological approach

The main goal of our study is an attempt to understand and classify nonsmooth struc-
tures arising in (1.1) within the optimization setting. The basis of such a comparison
is the topological approach. It encompasses two objects of study:

the feasible set M[F ]

and

the lower-level sets M[ f ,F ]a := {x ∈M[F ] | f (x)≤ a}, a ∈ R.

These objects are considered along the levels of study due to topology, optimization
and stability issues as outlined in the following scheme (see Figure 1).



4 1 Introduction

Figure 1 Topological approach

On the topology and stability levels we deal with topological invariants of M[F ]
and M[ f ,F ]a, a ∈ R. The questions mainly arise from here. They lead to establish-
ment of an adequate theory on the optimization level. It is worth pointing out that
the same topological questions provide different (analytical) optimization concepts
when applied to particular problems (e.g., MPCC, GSIP, MPVC, and bilevel op-
timization). The difference between these analytically described optimization con-
cepts is a key point in understanding and comparing different kinds of nonsmooth-
ness. In what follows, we introduce the notions from the scheme in detail.

For the structure of M[F ], it is crucial to study under which conditions on F the
feasible set is a topological or Lipschitz manifold (with boundary) of an appropri-
ate dimension.

Definition 1 (Topological and Lipschitz manifolds [103]). A subset M ⊆ Rn is
called a topological (resp. Lipschitz) manifold (with boundary) of dimension m≥ 0
if for each x ∈M there exist open neighborhoodsU ⊆Rn of x and V ⊆Rn of 0 and
a homeomorphism H :U →V (resp. with H, H−1 being Lipschitz continuous) such
that

(i) H(x) = 0

and

(ii) either in the first case

H(M ∩U) = (Rm×{0n−m})∩V

or in the second case

H(M ∩U) = (H×Rm−1×{0n−m})∩V

occur.
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If for all x ∈M the first case in (ii) holds, then M is called a topological (resp.
Lipschitz) manifold of dimension m. In the second case, x̄ is said to be a boundary
point ofM (see Figure 2).

Figure 2 First and second cases for Lipschitz manifold

We shall use the tools of nonsmooth and variational analysis to tackle the ques-
tion of M[F ] being a Lipschitz manifold. In particular, the application of nonsmooth
versions of the implicit function theorem (see Section B.1) plays a major role.

Another issue for the structure of M[F ] is the (topological) stability of the fea-
sible set under smooth perturbations of F (see Figure 3).

Definition 2 (Topological stability). The feasible set M[F ] from (1.1) is called
(topologically) stable if there exists aC1-neighborhoodU of F inC1(Rn,Rl) (w.r.t.
the strong or Whitney topology; see [42, 63], and Sections 1.3 and A.2 of the present
volume) such that, for every F̃ ∈U , the corresponding feasible set M[F̃ ] is homeo-
morphic with M[F ].

Figure 3 Topological stability

The stability of the feasible set is tightly connected with its Lipschitz manifold
property. Addressing both of them will immediately lead us to suitable constraint

qualifications for M[F ].
Actually, the list of topological invariants for M[F ] that is worth studying usu-

ally depends on particular problem realization. For example, having in mind GSIPs



6 1 Introduction

and bilevel optimization, an important issue for the description of the feasible set
M[F ] becomes the so-called reduction ansatz. It deals with possibly infinite index
sets that can be equivalently reduced to their finite subsets, at least at stationary
points. Moreover, the feasible set in GSIPs need not be closed in general. This fact
leads to the topological study of its closure instead. Next, the MPVC feasible set is
not a Lipschitz manifold but a set glued together from manifold pieces of different
dimensions along their strata.

Regarding the behavior of the lower-level sets M[ f ,F ]a, we study changes of
their topological properties as a∈R varies. The smooth (un-) constrained case refers
to the classical Morse theory and is well-known (see [63, 93]). We illustrate it in
Figure 4.

Figure 4 Deformation and cell attachment

Here, f is the height function from the plane P to the smooth manifold M ⊂ R3.
Clearly, f has two local minima and one saddle point. We see that the topological
changes of Ma :=

{
x ∈ R2 | f (x)≤ a

}
, a ∈R happen only when passing these three

critical values. More precisely, new components of Ma are created passing local
minima and, in addition, two components are attached together passing the saddle
point. Note that the dimension of the cell attached corresponds to the number of
negative eigenvalues of the Hessian of f .

Coming to the nonsmooth case, an adequate stationarity concept of (topologi-

cally) stationary points will be introduced. The analytical description of this con-
cept depends certainly on a particular realization of (1.1). The definition of station-
ary points will be given in dual terms using Lagrange multipliers. Additionally, it
will be shown that local minimizers are stationary points under some suitable con-
straint qualifications.

Within this context, two basic theorems from Morse theory (see [63, 93] and
Section A.1) are crucial.



1.2 Topological approach 7

Theorem 1 (Deformation theorem). If for a < b the (compact) set M[ f ,F ]ba :=
{x ∈M |a≤ f (x)≤ b} does not contain stationary points, then the set M[ f ,F ]a is a
strong deformation retract of M[ f ,F ]b .

As a consequence, the homotopy types of the lower-level sets M[ f ,F ]a and
M[ f ,F ]b are equal. This means that the connectedness structure of the lower-level
sets does not change when passing from level a to level b. In particular, the number
of connected (path) components remains invariant.

For the second result, a notion of a nondegenerate stationary point, along with
its index, will be introduced. Note that a nondegenerate stationary point is a local
minimizer if and only if its index vanishes.

Theorem 2 (Cell-attachment theorem). If M[ f ,F ]ba contains exactly one nonde-
generate stationary point, then M[ f ,F ]b is homotopy-equivalent to M[ f ,F ]a with a
q-cell attached. Here, the dimension q is the so-called index of the nondegenerate
stationary point.

The latter two theorems on homotopy equivalence show that Morse relations,
such as Morse inequalities (see [63]), are valid. Roughly speaking, Morse relations
relate the existence of stationary points of various indices with the topology of the
feasible set. In fact, the cell attachment of a k-dimensional cell can either generate a
hole or cancel it (see Figure 5).

Figure 5 Generation or cancellation of holes

A global interpretation of the deformation and cell-attachment theorems is the
following. Suppose that the feasible set is compact and connected and that all sta-
tionary points are nondegenerate with pairwise different functional values. Then,
passing a level corresponding to a local minimizer, a connected component of the
lower-level set is created. Different components can only be connected by attach-
ing 1-cells. This shows the existence of at least (k−1) stationary points with index
equal to 1, where k is the number of local minimizers; see also [26, 63]. This is-
sue is closely related to the global aspects of optimization theory, in particular to
the existence of 0−1−0 and 0−n−0 graphs. The latter connect local minimizers
with stationary points having index equal to 1 and the former with local maximizers
[63]. Finally, we refer the reader to [2, 6, 92] for the results with Morse theory for
piecewise smooth functions.

The structural stability w.r.t. lower-level sets is defined via special equivalence
relation on P( f ,F) as follows.


