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Preface

This book arose out of a conversation that took place in a bookshop in Berkeley,
California, almost a decade ago. The original motivation was to provide a text on
continuum thermodynamics that would allow a systematic derivation and discussion
of free-energy functionals for materials with memory, including in particular explicit
expressions for the minimum and related free energies, which were being developed
at the time.

Progress was very slow, due to other commitments. The vision of what the book
would explore broadened considerably over the years, in particular to include min-
imal states and a new single-integral free-energy functional that explicitly depends
on the minimal state. Also, it was decided to include a detailed description of an al-
ternative approach to the analysis of the integrodifferential equations describing the
evolution of viscoelastic materials under varying loads, using minimal states and
free-energy functionals depending on the minimal state. This is a novel approach to
a well-known topic.

Our desire was to make the work as self-contained as possible, so chapters deal-
ing with the general theory of continuum mechanics were included, with sections
devoted to classical materials, specifically elastic bodies and fluids without explicit
memory-dependence. These provided essential background to the more general and
modern developments relating to materials with memory.

It was furthermore felt that certain other topics had not been covered previously
in book form and should be included, in particular control theory and the Saint-
Venant and inverse problems, as well as some discussion of nonsimple behavior, for
materials with memory.

The book is divided into four parts. The mathematical presentation in the first
three parts is largely accessible not only to applied mathematicians but also to math-
ematically oriented engineers and scientists. However, a higher standard is required
for some of the chapters in the final part.

The authors wish to thank S. Chirita, A. Lorenzi, M.G. Naso, and V. Pata for
their aid in writing Chapters 19 (Naso), 20 (Chirita), 22 (Pata), and 23 (Lorenzi).
One of the authors gratefully acknowledges support for research travel from the
Dublin Institute of Technology during the period of preparation of this work. All of
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us express our thanks to Gennaro Amendola for his very useful advice and help on
certain deeper aspects of I&TEX.

Pisa, Bologna, Dublin, Giovambattista Amendola
February 2011 Mauro Fabrizio
Murrough Golden
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Introduction

In this work, we consider materials the constitutive equations of which contain a
dependence upon the past history of kinetic variables. In particular, we deal with the
constraints imposed upon these constitutive equations by the laws of thermodynam-
ics. Such materials are often referred to as materials with memory or with hereditary
effects.

The study of materials with memory arises from the pioneering articles of Boltz-
mann [20, 21] and Volterra [211, 212, 213], in which they sought an extension of the
concept of an elastic material. The key assumption of the theory was that the stress
at a time ¢ depends upon the history of the deformation up to 7. The hypothesis that
the remote history has less influence than the recent history is already implicit in
their work. This assumption, later termed the fading memory principle by Coleman
and Noll [40], is imposed by means of a constitutive equation for the stress, of in-
tegral type, which in the linear case involves a suitable kernel (relaxation function)
that is a positive, monotonic, decreasing function.

In the classical approach to materials with memory, the state is identified with the
history of variables carrying information about the input processes. We show in this
book how Noll’s definition of state [188] is more convenient for application to such
materials. Indeed, Noll takes the material response as the basis for the definition
of state: if an arbitrary continuation of different given histories leads to the same
response of the material, then the given histories are equivalent and the state is
represented as the class of all such equivalent histories. We refer to this class as the
minimal state.

The concept of a minimal state is developed and applied in [116] to the case of
linear viscoelasticity with scalar relaxation functions given by a sum of exponen-
tials. A subsequent paper [57] presents a treatment in three dimensions and in the
more general context of thermodynamically compatible (tensor-valued) relaxation
functions, taking into account weak regularity of histories and processes.

A generalization of minimal states to materials under nonisothermal conditions is
discussed in Section 6.4 of the present work. A functional I is introduced, given by
(6.4.2) with the crucial property expressed by (6.4.3). This quantity characterizes the
minimal state. Special cases of it are used in a variety of contexts in later chapters. It

G. Amendola et al., Thermodynamics of Materials with Memory: Theory and Applications, 1
DOI 10.1007/978-1-4614-1692-0_0, © Springer Science+Business Media, LLC 2012



2 Introduction

is closely related to the response of the material after time 7, where the input variable
is null for a finite period after this time on the material element (i.e., a “small”
neighborhood of a fixed and arbitrary point of the body) under consideration. This
characterization of the state is an interesting alternative to the usual one based on
knowledge of the deformation history.

It seems more appropriate to refer to materials with states characterized in this
way as materials with relaxation rather than materials with fading memory.

For the usual definition of state, a fading-memory property of the response func-
tional [36] is required, as opposed to the case in which the minimal state is adopted,
where indeed the relaxation property of the response functional suffices. Obviously,
whenever the stress-response functional is such that knowledge of the minimal state
turns out to be equivalent to knowledge of the past history, the property of relaxation
of the stress response implies fading memory of the related functional. In this sense,
the class of materials with relaxation is larger than the one described by constitutive
equations with fading memory.

A significant advantage of the response-based definition of state relates to the
physical features of the state itself. Indeed, the “future stress” I'(t) can be deter-
mined through measurements and does not require knowledge of the past history at
all.

For materials with memory, there are in general many different functional forms
with the required properties for a free energy. Some of these are functions of the
minimal state, while others do not have this property (see, e.g., [57]).

In Part II1, these functional forms are explored for different categories of mate-
rials with memory. We note that for materials whose constitutive relation for the
response functional has a linear memory term, all free energies associated with this
material have memory terms that are quadratic functionals.

A new class of single-integral-type free energies, for certain categories of re-
laxation functions, is introduced in Section 9.1.3 as a quadratic form of the time
derivative of the state variable I (see, e.g., [128, 129] for discussion and analy-
sis of single-integral type free energies that are quadratic forms of histories). For
exponentially decaying relaxation functions, it can be shown that the dissipation as-
sociated with such energies is bounded below by a time-decay coefficient multiplied
by the purely memory-dependent part of the free energy. This property turns out to
be crucial in the analysis of PDEs relating to linear viscoelastic materials, which is
developed in Part I'V.

An analogous property holds for a family of multiple-integral free-energy func-
tionals that are the generalization of the previous single-integral-type free energy.
We may refer to such a family as the n-family. For n = 1 one recovers the single-
integral case.

In Chapters 10-14, explicit forms of the minimum free energy are derived both
in the general nonisothermal case and, more specifically, for viscoelastic solids,
fluids, and rigid heat conductors. Different forms of relaxation functions are also
considered. The minimum free energy is always a function of the minimal state.
Indeed, an explicit formula is derived in Section 11.2 for this quantity as a quadratic
functional of minimal-state variables related to I'.
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In Chapters 15 and 16, relaxation functions consisting of sums of decaying ex-
ponentials multiplying polynomials are considered. A family of free energies, in-
cluding the minimum, maximum, and intermediate forms, are given explicitly. All
of these are functions of state and derivable from an optimization procedure.

In Part IV, we observe that the new approach outlined above and the new free
energies, in both cases adapted to the theory of viscoelasticity, have interesting ap-
plications to the PDEs governing the motion of a suitable class of viscoelastic bod-
ies. In particular, the use of the new free energies given by quadratic forms of the
minimal state variables yields results relating to well-posedness and stability for
the IBVP. This formulation allows for initial data belonging to broader functional
spaces than those usually considered in the literature, which are based on histories.

Indeed, the response-based definition of state is useful for both the study of IBVP
on the one hand and the evolution of linear viscoelastic systems on the other hand.

Furthermore, an application of semigroup theory to this class of materials is pre-
sented. Here, besides having the system of equations in a more general form than for
the classical approach, results on asymptotic stability are again obtained for initial
data belonging to a space broader than the one usually employed when states and
histories are identified.

The book is divided into four parts, Part I dealing with the general principles of
continuum mechanics and with elastic materials and classical fluids, which of course
provide the foundation for developments in later chapters. A general treatment of
continuum thermodynamics is presented in Part II.

In Part III, materials that are described by constitutive equations with linear mem-
ory terms are discussed in some detail. The specific cases included are viscoelastic
solids and fluids, together with rigid heat conductors. Also, as noted earlier, the
derivation of explicit forms of free energies is considered in depth. Part IV deals
with the application of results and ideas from Part III to the equations of motion of
linear viscoelastic materials.

Notation conventions are described at the beginning of Appendix A. Relevant
mathematical topics are summarized in Appendices A, B, and C.



Part I

Continuum Mechanics and Classical
Materials



Chapter 1
Introduction to Continuum Mechanics

1.1 Introduction

In this initial chapter, we introduce various fundamentals: description of deforma-
tion, definition and interpretation of the strain and stress tensors, balance laws, and
general restrictions on constitutive equations. These provide the foundation for later
developments.

A number of excellent, indeed hardly to be bettered, presentations of these basic
topics exist in the literature, notably in [209, 210, 127, 139] and [168]. Several
formulations of standard arguments in this chapter and the next are based on those
in [127, 168].

An introduction to some notation and results relating to finite-dimensional vector
spaces required in this and later chapters is given in Section A.2.

1.2 Kinematics

1.2.1 Continuous Bodies. Deformations. Strain Tensors

We will consider bodies the mass of which is distributed continuously. Moreover, a
given body will occupy different regions at different times, but none of these regions
will be intrinsically associated with the body. Thus, formally, a continuous body B
is a set of material points X, Y,...endowed with a structure defined by a class @ of
one-to-one mappings ¢ : B — &, where € is the three-dimensional Euclidean space,
such that:

(1) ¢(B) is a Kellogg regular region;*

* By a Kellogg regular region we mean a domain of the Euclidean space € bounded by a union
of a finite number of surfaces of class C'. A more formal definition of a subbody is given in
[15, 169, 189] (see also [1]).

G. Amendola et al., Thermodynamics of Materials with Memory: Theory and Applications, 7
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8 1 Introduction to Continuum Mechanics

(ii) if ¢, ¥ € @, then the function 1 = goy™! : Y(B) = @(B) € C' (Y (B)) is called
a deformation (of class C') of B from y(B) to ¢(B);

(iii) if ¢ € @ and A : @(B) — & is a deformation of class C!, then the mapping
Adoyisalsoin @.

The functions ¢ are referred to as localizations of B, and they determine the
possible configurations of the body in the space €. A localization provides at any
material point X € B the corresponding geometric point x = ¢(X) € €.

The hypotheses (i)—(iii) introduce a unique structure of a differential variety on
B.7

The set @ of all possible localizations of B allows us to locate B in &, as well as
to define the internal constraints of material systems. We consider as an example a
rigid body for which the class @ must be defined so that for each pair ¢, ¢ € @
we have

d (p1(X), ¢1(Y)) = d (2(X), p2(Y))

for all X, Y € B, where d is the metric of the Euclidean space €.
Moreover, for any continuous body B, it is possible to determine a class 8§ of
subbodies A, B, C,...of B, characterized by the following properties:

(a) Bes;
(b) any element A € § is such that ¢(A) is a Kellogg regular region of &, for any
pedi

On the class & of subbodies it is possible to define a measure that allows us to give
a definition of the density and of the mass.

Definition 1.2.1. The mass is a measure M : § — R* absolutely continuous with
respect to the ordinary volume measure; that is, for each ¢ € @ there is an integrable
function p, : ¢(B) — R*, the density of mass, such that the mass relative to A is

M(A) = f Pp(x)dv,
(A)

forall A € 8.
A motion of B with respect to a fixed observer O is a sufficiently regular function®
X:BxI-E, (1.2.1)

where I C R is a time interval.

T In other words, the body B does not identify itself with a particular configuration, but with the
set of all possible configurations it can assume and hence with a differential variety.

¥ The given definition for a subbody is independent of the chosen localization . In fact, if  is
another localization, then the transformation 1 = @ o y~! : Y(B) — @(B) possesses an inverse of
class C'. Therefore, if ¢(A) is a regular region, then y(A) will be a regular region of €.

§ With respect to each context the condition of being sufficiently regular may have various senses.
For our purposes the function y is assumed to be twice continuously differentiable in the domain
of existence.
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Fig. 1.2.1 The deformation of a body from ¢((B) to ¢,(B).

In what follows we will identify the body B with one of its particular configu-
rations, namely the reference configuration ¢y (B) (see Figure 1.2.1). Moreover, the
function jy is such that for each # € I, the new function y, : ¢o(B) — ¢,(B), which
represents the deformation of the body B from ¢y(B) to ¢,(B), has an inverse, that
is, there exists a function

B @ B) - o(B). (12.2)

Hence j, is assumed to be one-to-one. This hypothesis expresses the require-
ment that the body not penetrate itself. Thus, two distinct points of the configuration
©o(B) must be distinct in all other configurations.

It is possible to write the transformations (1.2.1) and (1.2.2) in the following
forms:

x = y(X, 1),

1.2.3
X =y '(x,0. ( )

The function defined by (1.2.3); represents the position occupied by the particle X
at the instant ¢, while relation (1.2.3), locates the particle X that occupies the point
x at the instant 7. The variables (X, ) are the Lagrangian or material coordinates,
while (x, ¢) are the Eulerian or spatial coordinates. The relations (1.2.3) demonstrate
that it is possible to express any physical quantity F in terms of material or spatial
coordinates by

FX, 0 =F ' x,0,0 = Fx,0). (1.2.4)
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Definition 1.2.2. The Lagrangian description is the description of motion in terms
of the variables (X, ), while the Eulerian description is that referring to the variables

(x,1).

As an example we consider the velocity of a particle X at the instant ¢, defined as
ox
viX, 1) = =X, 1);
V(X1 o X, 1

on the basis of relation (1.2.3); it is possible to express such a quantity in terms of
the Eulerian variables as
Vx, 1) = V(y L (x, 1), 0). (1.2.5)

Remark 1.2.3. The time derivative of a quantity J has different expressions, depend-
ing on the description. In fact, by direct differentiation with respect to ¢ of (1.2.4),
we obtain ~ .

0F 90T N

_=_+VX?' R 126

ot ot v ( )

where Vy is the spatial gradient operator. The partial derivative on the left is taken
holding X fixed, while in that on the right, x is fixed.

The derivative ‘96;? is the material derivative (or total derivative), denoted by
aF  0F
—_— = —. 1.2.7
dt ot ( )

If we choose as J the velocity v, then, by virtue of (1.2.6), we have that the acceler-
ation is given by

A

< ov .
a= EV(X, tH= E(X’ 1)+ VyV(x, 1) v.
Definition 1.2.4. The material gradient of deformation is the tensor

Wi

F(X.0) = Vx(X.0). thatis, Fyj= ==,
J

(1.2.8)

where Vyx is the material gradient operator . The velocity gradient is the tensor
L(X, 1) = L(y(X, 1), 1) = VxV(x, ). (1.2.9)
Remark 1.2.5. If we set F = %—f, then
F=LF. (1.2.10)

In fact, we have
F = Vx¥ = V,¥Vx¥. (1.2.11)

Remark 1.2.6. The requirement that the body not penetrate itself is expressed by the
assumption that
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det (F) = det (Vxf) # 0.

Further, a deformation with det(Vxj) < 0 cannot be reached by a continuous pro-
cess of deformation starting from the reference configuration, that is, by a contin-
uous one-parameter family ¥, (0 < o < 1) of deformations with j, the identity,
X1 = X, and det(Vxj,) never zero. Indeed, since det (Vx¥,,) is strictly positive at
o = 0, it must be strictly positive for all o. Thus, we require that

detF > 0. (1.2.12)
The above discussion motivates the following definition.

Definition 1.2.7. By a deformation of B we mean a smooth, one-to-one mapping ¥,
that maps B onto a closed region in € and satisfies (1.2.12). The vector

uX,n=yX,n-X

represents the displacement of X. A deformation with F constant is called homoge-
neous .

The geometric significance of the tensor F becomes clear on observing that

X', 1) = 7(X, 1) = Vx (X, (X = X) + o

X' -X]),
for all X’ in a neighborhood of X, so that we can write
dx = FdX. (1.2.13)

Thus, the tensor F transforms the small quantity dX of the configuration ¢y(B) into
the small displacement dx of the configuration ¢,(B) (see Figure 1.2.2). Let

F=RU = VR (1.2.14)

be the polar decomposition of F at a given point, where R represents the rotation
tensor, U is the right stretch tensor, and V is the left stretch tensor for the deforma-
tion y. Thus, R(P) measures the local rigid rotation of points near P, while U(P)
and V(P) measure local stretching from P. The tensors U(P), V(P) are symmet-
ric. Since U = VFF and V = VFF’ involve the square roots of F’F and FF”,
their computation is often difficult. For this reason we introduce the right and left
Cauchy—-Green strain tensors C and B, defined by

C=U’=F'F, B=V?’=FF, (1.2.15)

and note that
V=RUR’, B=RCR".

In components, we have
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I3 A
Pi(A)
ol )
T
xl
Fig. 1.2.2 The quantities dX and dx related by (1.2.13).
3 ~ ., 3
C”_Za/\/m Xl 6/\/]
Y 0X; X 0Xm'

Since Cu-v = Fu-Fv forallu,v € Vand Cu-u = Fu - Fu > 0 for all u € V\{0}, it
follows that C is a symmetric and positive definite tensor (Section A.2.1).

In view of the relation (1.2.12), it follows that F admits an inverse denoted by
F~!, the spatial gradient of deformation, given by

-1 -1 GN_I
F ' =VX, or Fl-j 6xj'

With this we can introduce the right and left Cauchy strain tensors, ¢ and b, defined
by
T T
c=(F')F', b=F'(F'), (1.2.16)

or, in components,

1 ~_] 3 ~_1 a~—1

6xm

If dX and 6X are two displacement elements related to the point X that at the
instant ¢ are transformed into two displacements dx and 0x, respectively, related to
the point x = ¥(X, ?), so that
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dx = FdX, ox=FoX, (1.2.17)

then
dx - 6x = dX - FTFsX = dX - C6X. (1.2.18)

If the continuous body is rigid, then from the relation (1.2.18) we get necessarily
C =1, the unit second-order tensor. When the body is not rigid we can determine
the elongation of the element dX, associated with the tensor C, by

ldx|* = dx - dx = dX - CdX, (1.2.19)
so that the relative elongation is
ldx|> — |dX|> = 2EdX - dX = 2edx - dx,

where | 1
E:E(C—l), e:z(l—C), (1220)

are Green’s strain tensor and Almansi’s strain tensor, respectively. Obviously, for a
rigid deformation of the body, we have E = 0 and e = 0. Thus, the tensor E appears
as a measure of Lagrangian deformation, while the tensor e represents a measure of
Eulerian deformation .

In terms of the displacement vector u(X, 1) = y(X,)—X oru(x, ) = x— ,\7_1 (x,1),
the gradients of deformation are

F=Vxu+1, F'l=1-V,u,

and hence, from (1.2.20), the strain tensors are

1
E=7 [qu + (Vxu)” + (Vxu)” qu] i

| (1.2.21)
e= [qu + (Vau)! — (Veu)” qu] .

The relations (1.2.21) are known as the strain—displacement (or geometrical) rela-
tions.

Remark 1.2.8. (Geometric significance of the strain tensors) The components
E\\, E», and E3;3 of the strain tensor E characterize the relative elongations in the
directions of iy, i», and i3, respectively, while the components E;;, with i # j, repre-
sent a measure of the variation of angles due to the process of deformation.

To see this, we first note that the relation (1.2.19) can be written in the form

d 2
| XI2 _N.CN.
ldX|

where N = &% If we set A = %, then we have
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An = (N-CN)? = \/N-(1+2E)N.

We further introduce the unit elongation E(y) in the direction of unit vector N, by

B gy lAxI=1dX]

so that when N = ij, for example, then

E(il) = Vl +2E]| - 1,

and hence E|; appears as a measure for the elongation in the direction of i;.

Let us further consider the vectors dX; = dX;i; and dX; = dX,i, and let dx; =
FdX; and dx, = FdX; be the corresponding vectors in the current configuration.
Obviously, we have dX; - dX; = 0, that is, the angle @, between these vectors is g
On the other hand, the corresponding angle 6, between the vectors dx; and dx; is
given by

dX] 'dX2 C]z 2E|2

cosbp = = = s
2T laxilldx)l GG N+ 2E) (£ 265

and hence E|, appears as a measure of the variation of the angle @, due to the
deformation.

We now recall that given a tensor S € Lin(R?), the determinant of § — A1 admits
the representation (the Cayley—Hamilton theorem)

det(S — A1) = =2 + [;(S)A% = [;(S)A + I5(S)
for every A € R, where
LS)=trS=8S11+S» + 9533,
1 2 2
) = 3 |(@r$)? - 1r(8?)] (1.2.22)
I;(S) = det S.

We call I,(S), I(S), I5(S) the principal invariants of S and observe that they are
invariant under changes of reference frames. We also note that any other invariant
of S is a function of its principal invariants. When S is symmetric, the principal
invariants are completely characterized by the spectrum {1, 1, A3} of S. Indeed,

Il(S) =A1+ A + 13,
L(S) = Lid2 + oAz + 34,
I3(S) = L1 45.
By substituting S by C, ¢, E, or e in the above relations we can determine expres-

sions for the principal invariants of these tensors and relationships between them.
Thus, from (1.2.20) and (1.2.22), we obtain
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L(C)=3+2L(E), L(C)=3+4L(E)+4L(E),
L(C)=1+2L(E)+4L((E) + 8I3(E),

Ii(¢) =3 =2I1(e), I(c)=3-4l(e)+4le),
I5(¢) = 1 — 21, (€) + 4L(e) — 814(e).

Moreover, we observe that the relations (1.2.15), (1.2.16);, and (1.2.22)3 give

I(C) = (detF)?, IL(c) = ——,
3(C) = (detF) 3(0) (QoF)

and hence
I3(C)I3(C) =1.

Definition 1.2.9. The stretching D (or velocity of deformation) is

D= % (L+L7)= % [V + (V). (1.2.23)

where L is defined by (1.2.9), while the spin  is

Q= % (L-L")= % \ASNAE (1.2.24)

Thus, the stretching and the spin represent the symmetric and skew parts of the
spatial gradient of velocity, respectively. Moreover, we have

L=D+Q. (1.2.25)
Note that
d d d
— |dxP* = — (dx - dx) = 2— (dx) - d
dlIXI dl(x X) dt(X) X
= 2d (FdX) - dx = 2d F)dX-dx
T Tdr C Tdt ’
and hence, in view of relation (1.2.10),

d
- ldx|> = 2LFdX - dx = 2Ldx - dx = 2dx - LT dx

LaL’ (1.2.26)

= 2dx - ( )dx = 2dx - Ddx.

Thus, the stretching D is a measure of the variation per unit time of the arc (dx)>.
Therefore, when D = 0 then there is no change in |dx|*> over time.

Theorem 1.2.10. A necessary and sufficient condition for a motion to be locally
rigidis D = 0.

Proof. From Taylor’s formula, the velocity in a neighborhood of the point xg is



