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Preface

This book is written for behavioral scientists who want to consider adding R to their
existing set of statistical tools, or want to switch to R as their main computation tool.
We aim primarily to help practioners of behavioral research make the transition to
R. The focus is to provide practical advice on some of the widely used statistical
methods in behavioral research, using a set of notes and annotated examples. We
also aim to help beginners learn more about statistics and behavioral research. These
are statistical techniques used by psychologists who do research on human subjects,
but of course they are also relevant to researchers in others fields that do similar
kinds of research.

We assume that the reader has read the relevant parts of R manuals on the CRAN
website at http://www.r-project.org, such as “An Introduction to R”, “R
Data Import/Export”, and “R Installation and Administration”. We assume that the
reader has gotten to the point of installing R and trying a couple of examples.
We also assume that the reader has relevant experiences in using other statistical
packages to carry out data analytic tasks covered in this book. The source code and
data for some of the examples in the book can be downloaded from the book’s
website at: http://idecide.mskcc.org/yl home/rbook/. We do not
dwell on the statistical theories unless some details are essential in the appropriate
use of the statistical methods. When they are called for, theoretical details are
accompanied by visual explanations whenever feasible. Mathematical equations are
used throughout the book in the hopes that reader will find them helpful in general,
and specifically in reaching beyond the scope of this book. For example, matrix
notations are used in the chapters covering linear regression and linear mixed-effects
modeling because they are the standard notations found in statistics journals. A basic
appreciation of mathematical notations may help the readers implement these new
techniques before a packaged solution is available. Nevertheless, the main emphasis
of this book is on the practical data analytic skills so that they can be quickly
incorporated into the reader’s own research.

The statistical techniques in this book represent many of statistical techniques in
our own research. The pedagogical plan is to present straightforward solutions and
add more sophisticated techniques if they help improve clarity and/or efficiency.

v
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vi Preface

As can be seen in the first example in Chap. 1, the same analysis can be carried
out by a straightforward and a more sophisticated method. Chapters 1–4 cover basic
topics such as data import/export, statistical methods for comparing means and pro-
portions, and graphics. These topics may be part of an introductory text for students
in behavioral sciences. Data analysis can often be adequately addressed with no
more than these straightforward methods. Chapter 4 contains plots in published
articles in the journal Judgment and Decision Making (http://journal.sjdm.org/).
Chapters 5–7 cover topics with intermediary difficulty, such as repeated-measures
ANOVA, ordinary least square regression, logistic regression, and statistical power
and sample size considerations. These topics are typically taught at a more advanced
undergraduate level or first year graduate level.

Practitioners of behavioral statistics are often asked to estimate the statistical
power of a study design. R provides a set of flexible functions for sample size
estimation. More complex study designs may involve estimating statistical power
by simulations. We find it easier to do simulations with R than with other statistical
packages we know. Examples are provided in Chaps. 7 and 11.

The remainder of this book cover more advanced topics. Chapter 8 covers Item
Response Theory (IRT), a statistical method used in the development and validation
of psychological and educational assessment tools. We begin Chap. 8 with simple
examples and end with sophisticated applications that require a Bayesian approach.
Such topics can easily take up a full volume. Only practical analytic tasks are cov-
ered so that the reader can quickly adapt our examples for his or her own research.
The latent regression Rasch model in Sect. 8.4.2 highlights the power and flexibility
of R in working with other statistical languages such as WinBUGS/OpenBUGS.
Chapter 9 covers missing data imputation. Chapters 10–11 cover hierarchical linear
models applied in repeated-measured data and clustered data. These topics are
written for researchers already familiar with the theories. Again, these chapters
emphasize the practical data analysis skills and not the theories.

R evolves continuously. New techniques and user-contributed packages are
constantly evolving. We strive to provide the latest techniques. However, readers
should consult other sources for a fuller understanding of relevant topics. The R
journal publishes the latest techniques and new packages. Another good source for
new techniques is The Journal of Statistical Software (http://www.jstatsoft.org/).
The R-help mailing list is another indispensable resource. User contributions
make R a truly collaborative statistical computation framework. Many great texts
and tutorials for beginners and intermediate users are already widely available.
Beginner-level tutorials and how-to guides can be found online at the CRAN
“Contributed Documentation” page.

This book originated from our online tutorial “Notes on the use of R for psychol-
ogy experiments and questionnaires.” Many individuals facilitated the transition.
We would like to thank them for making this book possible. John Kimmel, former
editor for this book at Springer, first encouraged us to write this book and provided
continuous guidance and encouragement. Special thanks go to Kathryn Schell and
Marc Strauss and other editorial staff at Springer on the preparation of the book.
Several annonymous reviewers provided suggestions on how to improve the book.
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We are especially indebted to the individuals who helped supply the data used in the
examples, including the authors of the R packages we use, and those who make the
raw data freely accessible online.
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Chapter 1
Introduction

1.1 An Example R Session

Here is a simple R session.

> help(sleep)
> x1 <- sleep$extra[sleep$group == 1]
> x2 <- sleep$extra[sleep$group == 2]
> t.test(x1, x2)
> sleep[c(1:3, 11:13), ]
> with(sleep, t.test(extra[group == 1],
+ extra[group == 2]))
> q()

The help() command prints documentation for the requested topic. The sleep
dataset is a built-in dataset in R. It comes from William Sealey Gosset’s article
under the pseudonym Student (1908). It contains the effects of two drugs, measured
as the extra hours of sleep as compared to controls. The vectors x1 and x2 are
assigned the values of the extra hours of sleep in drugs 1 and 2, respectively.
(a less than sign followed by a minus sign, <-, represents assignment) Two equal
signs, ==, represent the logical equal operator. The t.test(x1, x2) carries out
an independent sample t-test of the sleep time between the two groups. The same
analysis can be done using with(sleep, t.test(extra[group == 1],
extra[group == 2])). sleep[c(1:3, 11:13), ] prints observations
1 through 3 and 11 through 13. To exit the R program, type q(). Typing q without
the parentheses prints out the contents of the function to quit R. Most functions are
visible to the user in this way. The advantage of using built-in datasets is that they
have already been imported. The next example describes how to import data from a
text file.

The sleep data can be entered into a text file, the variable names on the first
row, and the variables are separated by spaces.

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 1, © Springer Science+Business Media, LLC 2012
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extra group ID
0.7 1 1

-1.6 1 2
-0.2 1 3
-1.2 1 4
-0.1 1 5
3.4 1 6
3.7 1 7
0.8 1 8
0.0 1 9
2.0 1 10
1.9 2 1
0.8 2 2
1.1 2 3
0.1 2 4

-0.1 2 5
4.4 2 6
5.5 2 7
1.6 2 8
4.6 2 9
3.4 2 10

Suppose the data entries are saved in a file named t1.dat in the directory
C:\\Documents and Settings\\usr1\\My Documents, then this
command imports the data and assigns it a name called sleep.df.

> sleep.df <- data.frame(read.table(file =
+"C:/Documents and Settings/usr1/My Documents/t1.dat",
+header = TRUE))

On a Windows platform, the double back slashes (nn) in a path name can be
replaced with one forward slash (/). On Unix/Linux and Mac OS, one forward
slash works fine. The read.table() function reads the data in file. It uses the
first line of the raw data file (header = TRUE) to assign variable names to the
three columns. Blank spaces in the raw data file are ignored. The data.frame()
function converts the imported data into a data frame. The sleep.df data is now
available for analysis (type objects() to see it). The example above shows some
of the unique features of R. Most data analytic tasks in R are done through functions,
and functions have parameters such as the options of file and header in the
read.table() function. Functions can be nested, the output of one function can
be fed directly into another. Some other basic R features are covered in the next
section. These features make R flexible but more challenging to learn for beginners.

Some things are more difficult with R especially if you are used to using menus.
With R, it helps to have a list of commands in front of you. There are lists in the on-
line help and in the index of An introduction to R by the R Core Development Team,
and in the reference cards listed in http://finzi.psych.upenn.edu/.
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Some things turn out to be easier in R. Although there are no menus, the on-line
help files are very easy to use, and quite complete. The elegance of the language
helps too, particularly those tasks involving the manipulation of data. The purpose
of this book is to reduce the difficulty of the things that are more difficult at first.
Next we will go over a few basic concepts in R. The remainder of this chapter covers
a few examples on how to take advantage of R’s strengths.

1.2 A Few Useful Concepts and Commands

1.2.1 Concepts

In R, most commands are functions. The command is written as the name of
the function, followed by parentheses, with the arguments (inputs) of the func-
tion in parentheses, separated by commas when there is more than one, e.g.,
plot(swiss) to plot a pairwise scatterplot of the swiss data. When there is no
argument, the parentheses are still needed, e.g., q() to exit the program. A function
is said to “return” its output when the output is printed or when we can set a variable
equal to the output. For example, sqrt(4) returns (prints) 2 on the screen; and if
we say v1 <- sqrt(4), v1 is set equal to the output of the function, or 2.

Some basic concepts in R are surprising to beginners. For example, the square ofp
7 is not 7.

> 7 == sqrt(7)ˆ2
[1] FALSE

That is because floating point arithmetic is not exact.

> options(digits = 22)
> sqrt(7)ˆ2
[1] 7.000000000000000888178

A solution is to compare all.equal(sqrt(7)ˆ2, 7).
In this book, we generally use names such as x1 or file1, that is, names

containing both letters and a digit, to indicate variable names that the user makes up.
Really, these can be of any form. We use the number simply to clarify the distinction
between a made up name and a key word with a predetermined meaning in R. R is
case sensitive; for example, X and x can stand for different things. We generally use
upper-case data objects like X, Y, and M to represent matrices or arrays; and lower-
case objects to represent vectors. Although most commands are functions with the
arguments in parentheses, some arguments require specification of a key word with
an equal sign and a value for that key word, such as source("myfile1.R",
echo = T), which means read in myfile1.R and echo the commands on the
screen. It helps to add spaces between input parameters, so that the extra spaces
in echo = T make it easier to read than echo=T. But that is not necessary.
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Key words can be abbreviated (e.g., e = T). In addition to the idea of a function,
R has objects and modes. Objects are anything that you can give a name. There
are many different classes of objects. The main classes of interest here are vector,
matrix, factor, list, and data frame. The mode of an object tells what kind of
things are in it. The main modes of interest here are logical, numeric, and
character.

We sometimes indicate the class of object (vector, matrix, factor, etc.) by using
v1 for a vector, m1 for a matrix, and so on. Most R functions, however, will either
accept more than one type of object or will “coerce” a type into the form that it
needs.

The most interesting object is a data frame. It is useful to think about data frames
in terms of rows and columns. The rows are subjects or observations. The columns
are variables, but a matrix can be a column too. The variables in a data frame can be
of different classes.

The behavior of any given function, such as plot(), aov() (analysis of
variance), or summary() depends on the object class and mode to which it is
applied. A nice thing about R is that you almost do not need to know this, because
the default behavior of functions is usually what you want. One way to use R is
just to ignore completely the distinction among classes and modes, but check every
step (by typing the name of the object it creates or modifies). If you proceed this
way, you will also get error messages, which you must learn to interpret. Most of
the time, again, you can find the problem by looking at the objects involved, one by
one, typing the name of each object.

Sometimes, however, you must know the distinctions. For example, a factor is
treated differently from an ordinary vector in an analysis of variance or regression.
A factor is what is often called a categorical variable. Even if numbers are used to
represent categories, they are not treated as ordered. If you use a vector and think
you are using a factor, you can be misled.

1.2.2 Commands

As a reminder, here is a list of some of the useful commands that you should be
familiar with, and some more advanced ones that are worth knowing about. Some
of the more basic commands help you organize your work.

1.2.2.1 Working Directory

It helps to get into the habit of separating R sessions into different working
directories specific to different projects or data analytic tasks. Here is why. On
Windows, R starts in the user’s default HOME directory (e.g., getwd() returns
C:/Documents and Settings/usr1/My Documents). On exiting R,
the user is prompted to save the current session in a .RData file under that
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directory by default. Eventually, this .RData file collects too many objects
to be managed efficiently. You may organize R sessions into subdirectories,
for example, called project1, project2, and project3 under your home
directory C:/Documents and Settings/usr1/My Documents/. If you
are working on project1, you double click the R icon on your Windows
desktop to launch R, then you immediately type setwd("C:/Documents and
Settings/usr1/My Documents/project1/") to switch your working
directory to project1. Then you can type load(".RData") to retrieve a
previously saved session. This is probably the first thing you do each time you run
R on Windows. These changes can also be set interactively using the menu. Note
that R recognizes the forward slashes in the path name.

The setwd() command is usually not necessary if you are running R from
a Unix/Linux command line. Typically, you are already in the working directory
before R is called from the command line.

On a computer running the Mac OS, it depends on whether or not your R is a
binary version with a graphical user interface or a version compiled from source
code. R compiled from source on a Macintosh computer works like a Unix/Linux R
from a command line terminal and setwd() is not necessary.

Another advantage of separating R sessions in different working directories
is that it allows easier tracking of the command history file. All the commands
typed in an R session are saved upon exit in a file called .Rhistory under the
working directory. You can use a text editor to edit the .Rhistory file into a
command syntax script. Then you can run R in batch mode. For example, suppose
the .Rhistory file under project1 contains these lines:

> help(sleep)
> x1 <- sleep$extra[sleep$group == 1]
> x2 <- sleep$extra[sleep$group == 2]
> t.test(x1, x2)
> sleep[c(1:3, 11:13), ]
> t.test(extra ˜ group, data = sleep)
> with(sleep, t.test(extra[group == 1],
+ extra[group == 2]))
> q()

We can take out the first and last lines and save the edited file as sleep.R. Then we
can run R in batch mode by calling R CMD BATCH sleep.R. The ouput is saved
in sleep.Rout under the project1 directory. The output in sleep.Rout file
then can be shared with others.

1.2.2.2 Getting Help

help.start() starts the browser version of the help files. (But you can use
help() without it.) With a fast computer and a good browser, it is often simpler
to open the html documents in a browser while you work and just use the



6 1 Introduction

brower’s capabilities. help(plot) prints the help available about plot, or
help(command1) to print the help for command1. Sometimes you only need
the names of the parameters, which can be printed by args(command1).
help.search("keyword1") searches keywords for help on this topic.

apropos(topic1) or apropos("topic1") finds commands relevant to
topic1, whatever it is. example(command1) prints an example of the use
of the command. This is especially useful for graphics commands. Try, for
example, example(contour), example(dotchart), example(image),
and example(persp).

1.2.2.3 Installing Packages

The R base system is lean. It contains only the essential components. Additional
packages can be installed when needed. For example, install.packages
(c("ltm","psych")) installs the packages called ltm and psych from an
archive of your choice, if your computer is connected to the internet. You do not
need the c() if you just want one package. You should, at some point, make
sure that you are using the CRAN mirror page that is closest to you. If you
live in the U.S., you should have a .Rprofile file with options(CRAN =
"http://cran.us.r-project.org") in it. There are other mirror sites in
the U.S. On Windows, you have the option to interactively select a mirror site from a
list in a menu if one is not already set. Other useful functions for managing packages
include installed.packages() to show details of all installed packages and
update.packages() to update the packages that you have installed to their
latest version.

To install packages from the Bioconductor set (tools and resources for computa-
tional biology), see the online instructions (http://www.bioconductor.org/install/,
last accessed, September, 2011).

When packages are not on CRAN, you can download them and use R CMD
INSTALL package1.tar.gz from a Unix/Linux command line. On Win-
dows, you would need to open a DOS command prompt, change directory to
where package1.tar.gz is saved, then type the command C:n"Program
Files"nRnR-2.13.0nbinnR.exe CMD BATCH package1.tar.gz.

1.2.2.4 Assignment, Logic, and Arithmetic

One of the most frequently typed commands is the assignment command, <-. It
assigns what is on the right of the arrow to what is on the left. (If you use ESS, the _
key (underscore) will produce this arrow with spaces, a great convenience.) Typing
the name of the object prints the object. For example, if you say:

> t1 <- c(1, 2, 3, 4, 5)
> t1
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you will see 1 2 3 4 5. The object t1 gets a numeric vector of five numbers, put
together by the c() function. Beginners sometimes do c <- c(1,2,3). R will
let you do it, and will not generate an error if you next do x <- c(4, 5, 6).
R knows what to do with x because your local copy of c is a numeric vector and
the system copy of c is a function. However, it is better not to assign values to c()
or any other system functions to minimize confusions.

Logical objects can be true or false. Some functions and operators return TRUE
or FALSE. For example, 1 == 1, is TRUE because 1 does equal 1. Likewise,
1 == 2 is FALSE, and 1 < 2 is TRUE. But beware, sqrt(2)ˆ2 == 2 is
FALSE because they have different internal floating-point representations in R. A
better test for the equality between two floating-point numbers is provided by the
function all.equal(), all.equal(sqrt(2)ˆ2, 2) is TRUE.

Use all(), any(), |, ||, &, and && to combine logical expressions, and use
! to negate them. The difference between the | and the || form is that the shorter
form, when applied to vectors, etc., returns a vector, while the longer form stops
when the result is determined and returns a single TRUE or FALSE. Set functions
operate on the elements of vectors: union(v1,v2), intersect(v1,v2),
setdiff(v1,v2), setequal(v1,v2), is.element(element1,v1)
(or, element1 %in% v1). Arithmetic works. For example, -t1 yields -1
-2 -3 -4 -5. It works on matrices and data frames too. For example,
suppose m1 gets the matrix m1 <- matrix(c(1,2,3,4,5,6), nrow=2,
byrow=T).

1 2 3
4 5 6

Then m1 * 2 is

2 4 6
8 10 12

Matrix multiplication works too. Suppose m2 is the matrix
m2 <- matrix(c(1,1,1,2,2,2), ncol=2)

1 2
1 2
1 2

then m1 %*% m2 is

6 12
15 30

and m2 %*% m1 is

9 12 15
9 12 15
9 12 15
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You can also multiply a matrix by a vector using matrix multiplication, vectors are
aligned vertically when they come after the %*% sign and horizontally when they
come before it. This is a good way to find weighted sums, as we shall explain.

For ordinary multiplication of a matrix times a vector, the vector is vertical and
is repeated as many times as needed. For example m2 * 1:2 yields

1 4
2 2
1 4

Ordinarily, you would multiply a matrix by a vector when the length of the vector is
equal to the number of rows in the matrix.

1.2.2.5 Loading and Saving

Additional functions not activated at startup have to be loaded by library(pkg)
or require(pkg), where pkg is the unquoted name of the package. A list of
packages can be found online at cran.r-project.org. A useful library for
psychology is mva (multivariate analysis). To find the contents of a library such
as mva before you load it, say library(help = mva). The ctest library is
already loaded when you start R. Other useful functions include:

• source("file1") runs the commands in file1.
• sink("file1") diverts output to file1 until you say sink().
• save(x1,file="file1") saves object x1 to file file1.
• To read in the file, use load("file1").
• q() quits the program. q("yes") saves everything.
• write(object, "file1")writes a matrix or some other object to file1.
• write.table(object1, "file1") writes a table and has an option to

make it comma delimited, so that a spreadsheet program can read it. See the
help file, but to make it comma delimited, say write.table(object1,
"file1", sep=",") or simply write.csv(object1, "file1")

• round() produces output rounded off, which is useful when you are cutting and
pasting R output into a manuscript (e.g.,round(t.test(v1)$statistic,
2) rounds off the value of t to two places). Other useful functions are format
and formatC. For example, if we assign t1 <- t.test(v1) then the
following command prints out a nicely formatted result, suitable for dumping
into a paper:

> x1 <- sleep$extra[sleep$group == 1]
> x2 <- sleep$extra[sleep$group == 2]
> t1 <- t.test(x1, x2)
> print(paste("(t_{",t1[[2]],"}=",
+ formatC(t1[[1]],format="f",digits=2),", p=",
+ formatC(t1[[3]],format="f"),")",sep=""),
+ quote=FALSE)
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This works because the output of the t.test() assigned to t1 is actually a
list, and the numbers in the double brackets refer to the elements of the list.

• read.table("file1") reads in data from a file. The first line of the file can
(but need not) contain the names of the variables in each column.

1.2.2.6 Dealing with Objects

All objects created by the user are stored in an R environment called .GlobalEnv
(can also be accessed by globalenv(). The ls() and objects() functions
lists all the active objects in .GlobalEnv. Other system files, such as the built-
in datasets and statistical functions, are stored in various packages. A list of the
loaded packages can be found by search(). Note that search() numbers the
packages.

> search()
[1] ".GlobalEnv"
[2] "package:stats"
[3] "package:graphics"
[4] "package:grDevices"
[5] "package:utils"
[6] "package:datasets"
[7] "package:methods"
[8] "Autoloads"
[9] "package:base"

Thus,ls(pos = 2) or simply ls(2) shows all objects in the package:stats
(or by objects(2)). To remove one or more data objects, do rm(object1) to
remove only object1 or rm(x1, x2, v1, v2, object2, object3)
to remove multiple objects. Type rm(list=ls()) to remove all objects
in the current environment. Be careful with this because the rm() function
assumes you know what you are doing so it does not prompt you for
a confirmation. attach(df1) makes the variables in the data frame
df1 active and available generally. Sometimes you are working in one
directory but you need to access data saved in another directory, type
attach("/another/directory/.RData") to gain access to data objects
saved in that directory. names(obj1) prints the names, e.g., of a matrix or data
frame. typeof(), mode(), and class() tell you about the properties of an
object.

1.3 Data Objects and Data Types

One of the most basic data objects in R is a vector. A vector can be put together by
the function c(). We can calculate its length, mean, and other properties.
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> x <- c(1, 2, 3, 4, 5, 6, 7)
> length(x)
[1] 7
> mean(x)
[1] 4

We can refer to the elements of a vector in various ways.

> x[6]
[1] 6
> x[-6] # all elements except the 6th
[1] 1 2 3 4 5 7
> x[2:4] # : represents a sequence
[1] 2 3 4
> x[c(1, 4, 7)]
[1] 1 4 7

A colon, :, is a way to abbreviate a sequence of numbers, e.g., 1:5 is equivalent
to 1,2,3,4,5. A sequence of evenly spaced numbers can be generated by seq(from
= 1, to = 6, length = 20) (20 evenly spaced numbers from 1 to 6)
or seq(from = -3, to = 3, by = 0.05) (from �3 to C3 in increment
of 0.05). c(number.list1) makes the list of numbers (separated by commas)
into a vector object. For example, c(1,2,3,4,5) (but 1:5 is already a vector, so
you do not need to say c(1:5)). rep(v1,n1) repeats the vector v1 n1 times.
For example, rep(c(1:5),2) is 1,2,3,4,5,1,2,3,4,5. rep(v1,v2)
repeats each element of the vector v1 a number of times indicated by the
corresponding element of the vector v2. The vectors v1 and v2 must have the
same length. For example, rep(c(1,2,3),c(2,2,2)) is 1,1,2,2,3,3.
Notice that this can also be written as rep(c(1,2,3),rep(2,3)). (See also
the function gl() for generating factors according to a pattern.)

1.3.1 Vectors of Character Strings

R is not intended as a language for manipulating text (unlike Perl, for example), but
it is surprisingly powerful. If you know R you might not need to learn Perl. Strings
are character variables that consist of letters, numbers, and symbols. A c("one",
"two", "3") is a vector of character strings. You can use

> paste("one", "two", "3", sep = ":")
[1] "one:two:3"

to paste three character strings together into one long character string. Or to unpaste
them by

> strsplit(paste("one", "two", "3", sep = ":"), ":")
[[1]]
[1] "one" "two" "3"
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grep(), sub(), gsub(), and regexpr() allow you to search for, and
replace, parts of strings.

The set functions such as union(), intersect(), setdiff(), and
%in% are also useful for dealing with databases that consist of strings such as names
and email addresses.

Calculating date and time differences needs special care because of leap years
and other complications. Raw data in character strings of date and time should
be converted into the POSIX date time classes using the strptime() function.
Suppose, we have the birth dates of two children and today’s date.

> bdate <- strptime(c("2/28/2002", "3/05/2006"),
+ format = "%m/%d/%Y")
> today <- strptime(c("2/28/2008"),
+ format = "%m/%d/%Y")

The option format="%m/%d/%Y" specifies how the date character string is
formatted, by month, day, and the four-digit year (separated by forward slashes). The
first child was born on 2/28/2002, precisely six years old on 2/28/2008. The second
child’s age in years is 1 because the child has not yet reached 2 years of age. You
might be tempted to calculate age by:

> difftime(today, bdate, units="days")/365.25

But you get 5.999 and 1.985, which cannot be easily fixed by rounding. As of
R-2.13.1, difftime() does not yet offer a "years" unit. Decimal age values of
5.999 and 1.985 may be acceptable for practical purposes, for example, in describing
the average age of research study participants. However, they do not match the way
we typically treat age as an non-negative integer.

A solution uses the components of a POSIX date.1

> age <- today$year - bdate$year
> age
[1] 6 2
> t1 <- bdate$mon + bdate$mday/31; t1
[1] 1.56 2.10
> t2 <- today$mon + today$mday/31; t2
[1] 1.56
> ti <- t2 < t1
> age[ti] <- age[ti] - 1
> age
[1] 6 1

The $mon component of a date variable takes on numeric values of 0, 1, 2, ..., 11
for January, February, March, and December, respectively. The $mday component

1Provided by Brian Ripley in R-help mailing list, https://stat.ethz.ch/pipermail/r-help/2007-
September/141440.html, last accessed April 20, 2011.
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represents the day of the month. So the children are 1.56 and 2.10 months from
January 1, 2006; and today is 1.56 months from January 1, 2008. The division by
31 yields an approximated fraction of a month. So that the first child is 6 years of
age and the second child is 1 year of age. The difftime() function provides time
units in seconds, minutes, hours, days, and weeks. The resolution of weeks is usually
enough for a time to event analysis. However, we are not limited by the restrictions
of existing functions when we take advantage of the POSIX date components. The
strptime() function is especially useful when date variables are entered into a
spreadsheet program as character strings.

There are many other powerful features of R’s character strings. You can even
use these functions to write new R commands as strings, so that R can program
itself. Just to see an example of how this works, try eval(parse(text =
"t.test(1:5)")). The parse() function turns the text into an R expression,
and eval() evaluates and runs the expression. So this is equivalent to typing
t.test(1:5) directly. But you could replace t.test(1:5) with any string
constructed by R itself.

1.3.2 Matrices, Lists, and Data Frames

The call to matrix(v1, nrow = 2, ncol = 3) makes the vector v1 into a
2x3 matrix. You do not need to specify both nrow and ncol. You can also use key
words instead of using position to indicate which argument is which, and then you
do not need the commas. For example, matrix(1:10, ncol=5) represents the
matrix �

1 3 5 7 9

2 4 6 8 10

�
:

Notice that the matrix is filled column by column. To fill the matrix by rows, do
matrix(1:10, ncol = 5, byrow = TRUE).
cbind(v1,v2,v3) puts vectors v1, v2, and v3 (all of the same length)

together as columns of a matrix. You can of course give this a name, such as mat1
<- cbind(v1,v2,v2).

Many R functions require that you collect variables in a data.frame()
object, for example, datc <- data.frame(v1, v2, v3). Note that v1,
v2, and v3 must be of the same length. A data frame can include vectors of
factors as well as numeric vectors.

> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,
+ 5.33,5.14)
> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,
+ 4.32,4.69)
> group <- gl(2,10,20, labels=c("Ctl","Trt"))


