


Springer Optimization and Its Applications

VOLUME 59

Managing Editor
Panos M. Pardalos (University of Florida)

Editor–Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques
have been developed, the diffusion into other disciplines has proceeded at a
rapid pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization
is the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics, and other sciences.

The series Springer Optimization and Its Applications publishes under-
graduate and graduate textbooks, monographs and state-of-the-art exposi-
tory work that focus on algorithms for solving optimization problems and
also study applications involving such problems. Some of the topics covered
include nonlinear optimization (convex and nonconvex), network flow
problems, stochastic optimization, optimal control, discrete optimization,
multi-objective programming, description of software packages, approxima-
tion techniques and heuristic approaches.

For further volumes:
http://www.springer.com/series/7393

http://www.springer.com/series/7393




Messaoud Bounkhel

Regularity Concepts
in Nonsmooth Analysis

Theory and Applications

123



Messaoud Bounkhel
Department of Mathematics
College of Science
King Saud University
11451 Riyadh
Saudi Arabia
bounkhel@ksu.edu.sa

ISSN 1931-6828
ISBN 978-1-4614-1018-8 e-ISBN 978-1-4614-1019-5
DOI 10.1007/978-1-4614-1019-5
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011938686

© Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

bounkhel@ksu.edu.sa


To the soul of my dear father, Ahmed, who
died in 1994 and who always believed in me
and encouraged me to study mathematics.

To my dear mother Fatma, who has always
stood behind all my successes.

To my wife Leila, my children Saged,
Kawtar, and Yakine, and to my brothers and
sisters and all the members of my family.





Preface

The term nonsmooth analysis theory had been used in the 1970s by F. Clarke when
he studied and applied the differential properties of functions and sets that are
not differentiable in the usual sense. Since Clarke’s work, the field of nonsmooth
analysis theory has known a considerable expansion, namely with the appearence of
an important concept which is the concept of “regularity ” (regularity of functions
and regularity of sets). The primary motivation for introducing regularity notions
is to obtain equalities in calculus rules involving various constructs in nonsmooth
analysis. The first notion of regularity appeared in Clarke’s work (in the 1970s) to
ensure equality form in the calculus rules of the Clarke subdifferential for Lipschitz
continuous functions.

Many investigators (Rockafellar, Mordukhovich, Thibault, Poliquin et al.) have
since then introduced and used many other notions of regularity in the development
of nonsmooth analysis theory.

In the last decades, regularity concepts played an increasing role in the applica-
tions of nonsmooth analysis such as differential inclusions, optimization, variational
inequalities, as well as in nonsmooth analysis itself. Consequently, it is becoming
more and more desirable to introduce regularity, at an early stage of study, to
graduate students and young researchers in order to familiarize them with the
basic concepts and their applications. This book is devoted to the study of various
regularity notions in nonsmooth analysis and their applications. To the best of my
knowledge, the present work is the first thorough study of the regularity of functions,
sets, and multifunctions as well as their important applications to differential
inclusions and variational inequalities.

This book is divided into three parts. In the first part, we present an accessible
and thorough introduction to nonsmooth analysis theory. Main concepts and some
useful results are stated and illustrated through examples and exercises.

In Part II, the most important and recent results of various regularity concepts
of sets, functions, and set-valued mappings, in nonsmooth analysis theory are
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presented. These results include some that have been demonstrated in different
works that were published either singly (see [39, 44, 45, 48]), or in collaboration
with Thibault (see [58–63]).

Part III contains six chapters, each of which addresses a different application
of nonsmooth analysis theory. These applications are the fruit of research that I
conducted either singly (see [42,43]) or in collaboration with various researchers in
the field (see [53–55, 58, 64]).

Batna, Algeria Messaoud Bounkhel
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Fig. 1.9 Instability of Fréchet normal cone for S in Example 1.5 Part (2a) . 26
Fig. 1.10 Case of nonconvex basic normal cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Fig. 1.11 A set with NP(S; x̄) �⊂ ̂N(S; x̄) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Fig. 2.1 Tangential regularity of convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Fig. 2.2 A set which is (FNR) but not (PNR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Fig. 2.3 A set with a strict inclusion in (2.8) (Example 2.3) . . . . . . . . . . . . . . . . . 42
Fig. 2.4 Relationships between various concepts of regularity of sets . . . . . . . 54

xv





Part I
Nonsmooth Analysis Theory



Chapter 1
Nonsmooth Concepts

1.1 Introduction

This book assumes a basic knowledge of topological vector space and functional
analysis. Moreover, we recall in this section several concepts and fundamental
preliminaries which will be used in what follows. The following notation is used
throughout this book.

X is a real topological vector space or a real normed vector space or a Banach
space with norm ‖ · ‖ and H is a real Hilbert space. The inner product between
elements of H is denoted by

〈·, ·〉, the same notation is also employed for the
pairing between X and its topological dual space X∗ (the space of continuous linear
functionals defined on X). The closed unit ball in X or H centered at some point x̄
and with radius r > 0 is denoted by B(x̄,r). For x̄ = 0 and r = 1 we will use the
standard notation B instead of B(0,1). The notation B∗ is used for the closed unit
ball in X∗ centered at the origin and with radius 1. Whenever needed, we use the
notation BZ for the closed unit ball centered at the origin of a given normed vector
space Z. We will denote by N (x̄) the set of all neighborhoods of x̄. For a given set S,
the following expressions: intS,clS,bdS, signify the interior, closure, and boundary
of S, respectively.

Definition 1.1. Let X be a real vector space. A set S is said to be convex provided
that for every pair of element (x,y) of S the segment [x,y] = {αy+(1−α)x : α ∈
[0,1]} is contained in S. The convex hull of a nonconvex set S is defined as the
intersection of all the sets containing S. It is denoted by coS and has the following
characterization:

coS =

{

n

∑
i=1

αixi : n ∈ N,
n

∑
i=1

αi = 1, αi ≥ 0, xi ∈ S

}

.

The closure of coS is called the closed convex hull and denoted by coS.

M. Bounkhel, Regularity Concepts in Nonsmooth Analysis: Theory and Applications,
Springer Optimization and Its Applications 59, DOI 10.1007/978-1-4614-1019-5 1,
© Springer Science+Business Media, LLC 2012
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4 1 Nonsmooth Concepts

Definition 1.2. Let f be an extended real valued function, i.e., f : X → R∪{+∞}.
We call the sets

dom f = {x ∈ X : f (x) <+∞} and epi f = {(x,r) ∈ X×R : f (x) ≤ r},

the effective domain of f and the epigraph of f , respectively.

1. f is said to be a convex function on an open convex set Ω ⊂ X provided that

f (αx+(1−α)y)≤ α f (x)+ (1−α) f (y), for all x,y ∈Ω , and all α ∈ [0,1].

When Ω is the whole space X we will say that f is convex.
2. f is said to be lower semicontinuous (in short l.s.c.) at some point x̄ in dom f

provided that
f (x̄)≤ liminf

x→x̄
f (x).

We will say that f is l.s.c. on X if it is l.s.c. at any point of X .

Exercise 1.1.

1. Prove that f is l.s.c. on X if and only if its epigraph epi f is closed in X×R.
2. Prove that f is l.s.c. on X if and only if the r-level set {x∈ X : f (x)≤ r} is closed

for any r ∈ R.
3. Prove that f is convex if and only if its epigraph epi f is convex. As a

consequence the effective domain of convex functions is always convex.
4. Prove that the convexity of f implies the convexity of all the r-level sets. Prove

by giving a counter example that the converse in the last question is not true in
general.

1.2 From Derivatives to Subdifferentials

In this section, we begin with some classical concepts of differentiability (direc-
tional, Gâteaux, and Fréchet) and we will try via optimization problems to explain
the evolution of the concept of differentiability from the Fréchet derivative to the
generalized gradient concept (also called Clarke subdifferential).

Let X be a real topological vector space, f : X → R∪{+∞} be an extended real
valued function and x̄ ∈ dom f .

1. The directional derivative of f at x̄ in the direction v ∈ X is given by

f ′(x̄;v) = lim
δ↓0

δ−1 [ f (x̄+ δv)− f (x̄)] , (1.1)

when the limit exists.
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2. We say that f is Gâteaux differentiable at x̄ provided f ′(x̄;v) exists for all v ∈
X and f ′(x̄; ·) is linear continuous, that is, there exists an element (necessarily
unique) f ′G(x̄) ∈ X∗ (called the Gâteaux derivative) satisfying

〈

f ′G(x̄),v
〉

= f ′(x̄;v), for all v ∈ X . (1.2)

3. If the convergence in (1.1) is uniform with respect to v in bounded subsets of X ,
we say that f is Fréchet differentiable at x̄, and we write f ′(x̄) instead of f ′G(x̄).

Remark 1.1.

1. A function may admit a directional derivative f ′(x̄;v) at x̄ in every direction v ∈
X , but fails to admit a Gâteaux derivative f ′G(x̄) at x̄. For example, let X be a
Banach space, f (x) = ‖x‖, and x̄ = 0. This function has a directional derivative
f ′(x̄;v) for every direction v∈ X and f ′(x̄;v) = ‖v‖, while the Gâteaux derivative
of this function at x̄ does not exist because the function v �→ f ′(x̄;v) = ‖v‖ is not
linear.

2. The Fréchet and Gâteaux differentiability concepts are not equivalent in gen-
eral even in finite dimensional cases. It is not hard to check that Fréchet
differentiability at a point implies its continuity at that point, which is not the
case for Gâteaux differentiability. For example, a l.s.c. function f (which is
not necessarily continuous) may have a Gâteaux derivative f ′G at a point of
discontinuity.

3. If X is a normed vector space and f is a locally Lipschitz, that is, for any point
x̄ ∈ X there exists some neighborhood V of x̄ and some constant L > 0 such that

| f (x)− f (y)| ≤ L‖y− x‖, for all x,y ∈V,

then the two above concepts are equivalent.

1.2.1 Unconstrained Minimization Problems

In most situations in optimization, we begin by considering the following abstract
minimization problem: minimize f (x) subject to x ∈ S where f : S→ R is defined
on S which is a subset of a real vector space X . If we redefine the function f so that
f (x) = +∞ for x �∈ S, then minimizing f over S is equivalent to minimizing the new
f over all of X . So, no generality is lost in this paragraph if we restrict our attention
to the case where S = X . Let f : X → R be a function and x̄ be a point in X . Thus,
let us consider the following unconstrained minimization problem:

(UP)

{

Minimize f (x)
subject to x ∈ X .
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Definition 1.3. We will say that

1. f has a local minimum at x̄ if and only if there exists a neighborhood V of x̄ such
that f (x̄)≤ f (x), for all x ∈V .

2. f has a global minimum at x̄ over X if and only if f (x̄)≤ f (x), for all x ∈ X .

Assume that f is Gâteaux differentiable at x̄ ∈ X .

Fact 1. If f has a local minimum at x̄, then there exists some ε > 0 such that

〈

f ′G(x̄),x− x̄
〉≥ 0, for all x ∈ x̄+ εB. (1.3)

Proof. Assume that f has a local minimum at x̄, then there exists some α > 0
such that

f (x̄)≤ f (x), for all x ∈ x̄+αB. (1.4)

Fix ε ∈ (0,α) and δ ∈ (0, αε ), and fix any x ∈ x̄+ εB. Hence,

x̄+ δ (x− x̄) ∈ x̄+ δεB⊂ x̄+αB

and so we get by (1.4)
f (x̄+ δ (x− x̄))− f (x̄)≥ 0,

for all δ ∈ (0, αε ) and for all x ∈ x̄+ εB. Therefore, as f is Gâteaux differentiable at
x̄, the limit

lim
δ↓0

δ−1 [ f (x̄+ δ (x− x̄))− f (x̄)]

exists and so
〈

f ′G(x̄),x− x̄
〉≥ 0 for all x ∈ x̄+ εB. ��

Exercise 1.2.

1. Prove that the converse in Fact 1 is not true in general. This ensures that (1.3) is
only a necessary optimality condition for (UP).

2. Prove that (1.3) is equivalent to

f ′G(x̄) = 0. (1.5)

Assume now that the function f is not Gâteaux differentiable and f is convex.
Take for instance f (x) = ‖x‖. For this function, f ′G(0) does not exist and it is clear
that f has a global minimum over X at x̄ = 0. But we cannot make use of Fact 1 to
derive necessary optimality conditions like relations (1.3) or (1.5) for problem (UP),
because f is not Gâteaux differentiable at x̄. So it is a natural question to ask what
could replace f ′G in those relations? One could think of making use of the directional
derivative instead of the Gâteaux derivative as follows:

f ′(x̄;v) = 0, for all v ∈ X . (1.6)

However, the relation (1.6) does not hold for the above function, although x̄ is a
global minimum. Indeed, we can check that f ′(x̄;v) = ‖v‖, for all v ∈ X and so
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f ′(x̄;v) = 0 only for v = 0 and f ′(x̄;v) �= 0 for every v �= 0. Therefore, we have
to propose, something else to replace f ′G which is the subdifferential of f that we
define below.

Definition 1.4. Let f be a convex continuous function on X and let x̄∈X . We define
the subdifferential of f at x̄ as follows

∂ conv f (x̄) = {ζ ∈ X∗ :
〈

ζ ,v
〉≤ f ′(x̄;v), for all v ∈ X}. (1.7)

Exercise 1.3. For every convex continuous function f , every x ∈ X , and every
direction v ∈ X one has:

1. The function δ �→ δ−1 [ f (x+ δv)− f (x)] is nondecreasing for δ small enough.
2. The directional derivative f ′(x̄;v) exists and is positively homogeneous and

subadditive on X with respect to v.
3.

∂ conv f (x̄) = {ζ ∈ X∗ :
〈

ζ ,x− x̄
〉≤ f (x)− f (x̄), for all x ∈ X}. (1.8)

4. Calculus rules:

∂ conv( f +g)(x̄) = ∂ conv f (x̄)+∂ convg(x̄) and ∂ conv(α f )(x̄) =α∂ conv f (x̄), (1.9)

whenever α ∈ R and g is a convex continuous function on X .

Using the subdifferential concept we can derive an analogue to Fact 1 for convex
continuous functions, i.e., necessary optimality conditions.

Proposition 1.1. Let f be a convex continuous function on X and let x̄∈ X. If f has
a local minimum over X at x̄, then

0 ∈ ∂ conv f (x̄). (1.10)

Proof. It follows the same lines as in the proof of Fact 1, by using the definition of
the subdifferential in (1.7) or it follows directly from (1.8). ��
In fact, for convex continuous functions we have a stronger version of Fact 1. Indeed,
we can prove that (1.10) is a necessary and sufficient optimality condition for (UP).
Further, any local minimum is a global minimum.

Proposition 1.2. Let f be a convex continuous function on X and let x̄ ∈ X. The
relation (1.10) is equivalent to each one of the following assertions:

1. f has a local minimum over X at x̄;
2. f has a global minimum over X at x̄.

Proof. It follows from the relation (1.8). ��
Proposition 1.3. If f is a convex continuous and Gâteaux differentiable function
at x̄, then ∂ conv f (x̄) = { f ′G(x̄)} and so the relation (1.5) becomes a necessary and
sufficient optimality condition for (UP).
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Fig. 1.1 Tangent and normal
cones to convex sets Tconv ( S1 ,  x0 )  =  S1

x

y=−x y=x

− S1

Nconv  ( S1 ,  x0 ) = −  S1

y

 S1

Proof. Let ζ be any element of ∂ conv f (x̄). Then,
〈

ζ ,v
〉 ≤ f ′(x̄;v) for all v ∈ X . On

the other hand, by the Gâteaux differentiability of f at x̄ one has f ′(x̄;v) =
〈

f ′G(x̄),v
〉

for all v ∈ X . Consequently, we get
〈

ζ ,v
〉≤ 〈 f ′G(x̄),v

〉

, for all v ∈ X , which ensures
that ζ = f ′G(x̄) and so ∂ conv f (x̄) = { f ′G(x̄)}. The second part of the proposition
follows from Proposition 1.2 and the first part of this proposition. ��

1.2.2 Constrained Minimization Problems

Consider now the following constrained minimization problem:

(CP)

{

Minimize f (x)
subject to x ∈ S,

where f is a convex continuous function and S is a closed convex set in X . First, we
define the tangent cone and the normal cone for closed convex sets by

T conv(S; x̄) = cl [R+(S− x̄)] = cl{λ (s− x̄) : λ ≥ 0,s ∈ S}

and Nconv(S; x̄) is the negative polar cone1 of T conv(S; x̄), i.e.,

Nconv(S; x̄) = {ζ ∈ X∗ :
〈

ζ ,v
〉

, for all v ∈ T conv(S; x̄)}.

1For a closed nonempty set L⊂ X , the negative polar of L is denoted by L0 and defined as

L0 = {ζ ∈ X∗ :
〈

ζ ,v
〉

, for all v ∈ L}.
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Example 1.1. Let S1 = {(x,y) ∈ R2 : y≥ |x|} and x̄ = (0,0) (see Fig. 1.1). This set
is a closed convex cone and

T conv(S1; x̄) = cl [R+(S1− x̄)] = cl [R+(S1)] = cl [S1] = S1

and
Nconv(S1; x̄) =−S1 = {(x,y) ∈ R2 : y≤−|x|}.

Exercise 1.4. Prove the following assertions for closed convex sets S and x̄ ∈ S:

1. Nconv(S; x̄) = {ζ ∈ X :
〈

ζ ,x− x̄
〉≤ 0, for all x ∈ S}.

2. The distance function dS is convex if and only if S is convex.
3. ∂ convdS(x̄) = Nconv(S; x̄)∩B∗.
4. T conv(S; x̄) is a closed convex cone containing the vector zero.

Exercise 1.5. Prove the following:

1. Every l.s.c. convex function is continuous over int(dom f ) the interior of the
effective domain of f .

2. Assume that X is a real normed vector space. Every convex function which is
finite on an open convex set Ω and bounded around some point x̄ ∈Ω , is locally
Lipschitz on Ω .

3. For any closed subset S of X , and f is Lipschitz with ratio k > 0 on an open
convex set Ω containing S, then any global minimum x̄ of f over S is a global
minimum of the function f + kdS over the whole space X .

We derive in the following proposition a necessary and sufficient optimality
condition for (CP).

Proposition 1.4. Let f be a convex continuous function on a closed convex set S
and let x̄ ∈ int(S). Then the following assertions are equivalent:

1. f has a local minimum over S at x̄, i.e., there exists a neighborhood V of x̄ such
that f (x̄)≤ f (x), for all x ∈ S∩V;

2. f has a global minimum over S at x̄, i.e., f (x̄)≤ f (x), for all x ∈ S;
3.

0 ∈ ∂ conv f (x̄)+Nconv(S; x̄).

Proof. The implication (1)⇒ (2) is left to the reader as an exercise. We prove
the implication (2) ⇒ (3). Assume that f has a global minimum over S at x̄.
First, by the second part of Exercise 1.5, f is locally Lipschitz at x̄ with some
constant k > 0. Then by the third part of Exercise 1.5 the function f + kdS has
a global minimum over X at x̄, that is, ( f + kdS)(x̄) ≤ ( f + kdS)(x) for all x ∈ X .
This ensures by (1.9), (1.10) and the third part of Exercise 1.4, that 0 ∈ ∂ conv( f +
kdS)(x) = ∂ conv f (x̄)+ k∂ convdS(x̄) ⊂ ∂ conv f (x̄)+Nconv(S; x̄). The converse (3)⇒
(2) follows directly from the characterization of the normal cone in the first part of
Exercise 1.4. ��



10 1 Nonsmooth Concepts

Assume now that the function f is neither convex nor Gâteaux differentiable.
In this case, the directional derivative f ′(x̄;v) does not exist necessarily. Take for
instance f (x) =−‖x‖ or f (x) = x2 sin(1/x), for x �= 0 and f (0) = 0, and take x̄ = 0.
Even if f ′(x̄;v) exists, it may not preserve its important properties cited in Exercise
1.3. Consequently, the subdifferential ∂ conv f loses almost all of its properties, and
in particular relation (1.8) as well as the characterization of the global minimum
given in Propositions 1.1 and 1.4. Thus, it would be interesting to ask what could
possibly replace both the Gâteaux derivative (for Gâteaux differentiable functions)
in Fact 1 and the subdifferential (for convex continuous functions) in Propositions
1.1 and 1.4. The answer to this question was given by Clarke in [86] when he
introduced a generalized gradient (also known as the Clarke subdifferential) for
nondifferentiable nonconvex functions and developed a new theory that he called
Nonsmooth Analysis Theory. Our primary goal in this book is to focus upon this
theory and its applications.

1.3 Subdifferentials

In this section, we will assume that X is a normed vector space and f : X → R is a
locally Lipschitz function at x̄ ∈ X with ratio k > 0.

1.3.1 The Generalized Gradient (Clarke Subdifferential)

We have seen that for convex continuous functions the subdifferential was defined
in terms of the directional derivative f ′(x̄, ·) (see Definition 1.4). Following the same
idea, we define the the generalized gradient by using a new concept of directional
differentiability because, as we have mentioned in the end of the previous section,
the directional derivative f ′(x̄, ·) loses almost all of its properties and it is not the
appropriate directional derivative that can be used to define the generalized gradient
(Clarke subdifferential). The new concept of directional derivative is called the
generalized directional derivative (also known as Clarke directional derivative) and
is defined by

f 0(x̄;v) = limsup
x→x̄
t↓0

t−1[ f (x+ tv)− f (x)]. (1.11)

The generalized gradient (Clarke subdifferential) of f at x̄ is defined then as

∂C f (x̄) = {ζ ∈ X∗ :
〈

ζ ,v
〉≤ f 0(x̄;v), for all v ∈ X}. (1.12)

The following proposition summarizes the most important properties of the gen-
eralized directional derivative and the generalized gradient for locally Lipschitz
functions.
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Proposition 1.5.

1. The function v �→ f 0(x̄;v) is finite, positively homogeneous, subadditive, and
satisfies

| f 0(x̄;v)| ≤ k‖v‖, for all v ∈ X . (1.13)

2. ( f + g)0(x̄;v)≤ f 0(x̄;v)+ g0(x̄;v), where g is a locally Lipschitz function at x̄.
3. Sum rules:

∂C( f + g)(x̄)⊂ ∂C f (x̄)+ ∂Cg(x̄),

where g is a locally Lipschitz function at x̄.
4. For every α ∈ R one has (α f )0(x̄;v) = α f 0(x̄;v) and hence ∂C(α f )(x̄) =

α∂C f (x̄).
5. If f has a local minimum or maximum at x̄, then 0 ∈ ∂C f (x̄).
6. The generalized gradient ∂C f (x̄) is a nonempty, convex, w∗-compact subset in

X∗ and satisfies ∂C f (x̄)⊂ kB∗.
7. If xn and ζn are two sequences in X and X∗ respectively such that ζn ∈ ∂C f (xn)

and xn strongly converges to x and ζn w∗-converges to ζ , then we have ζ ∈
∂C f (x).

8. Mean Value Theorem: If f is locally Lipschitz on an open neighborhood
containing the segment [x,y], then there exists z ∈ [x,y] and ξ ∈ ∂C f (z)
satisfying

f (y)− f (x) =
〈

ξ ,y− x
〉

.

9. Chain rule: Let F : H → Rn be locally Lipschitz2 at x̄ and let g : Rn → R be
locally Lipschitz at F(x̄). Then the function g◦F is locally Lipschitz at x̄ and

∂C(g ◦F)(x̄)⊂ co{∂C(
〈

ξ ,F(·)〉)(x̄) : ξ ∈ ∂Cg(F(x̄))}.

10. Pointwise maximum rule: Let f be a pointwise maximum of a finite number of
locally Lipschitz functions at x̄, that is, f (x) = max

1≤n≤N
fn(x) with each fn locally

Lipschitz at x̄. Then f is locally Lipschitz at x̄ and satisfies

∂C f (x̄)⊂ co{∂C fn(x̄) : n ∈ I(x̄)},

where I(x̄) denotes the set of indices n for which f (x̄) = fn(x̄).

Proof.

1. By the local Lipschitz property of f at x̄, we get for t > 0 small enough and for
x sufficiently close to x̄

|t−1 [ f (x+ tv)− f (x)] | ≤ k‖v‖, for all v ∈ X .

2F : H → Rn is locally Lipschitz at x̄ means that F = ( f1, f2, . . ., fn) and each fi : H → R (i =
1,2, . . .,n) is locally Lipschitz at x̄.


