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Preface

By the campanologist, the playing of tunes is considered to be a childish game; the proper
use of bells is to work out mathematical permutations and combinations.
His passion finds its satisfaction in mathematical completeness and mechanical perfection.

DOROTHY L. SAYERS

The Nine Tailors, 1934

This book provides a self-contained introduction to Axiomatic Set Theory with
main focus on Infinitary Combinatorics and the Forcing Technique. The book is
intended to be used as a textbook in undergraduate and graduate courses of vari-
ous levels, as well as for self-study. To make the book valuable for experienced re-
searchers also, some historical background and the sources of the main results have
been provided in the NOTES, and some topics for further studies are given in the
section RELATED RESULTS—where those containing open problems are marked
with an asterisk.

The axioms of Set Theory ZFC, consisting of the axioms of Zermelo–Fraenkel
Set Theory (denoted ZF) and the Axiom of Choice, are the foundation of Mathe-
matics in the sense that essentially all Mathematics can be formalised within ZFC.
On the other hand, Set Theory can also be considered as a mathematical theory,
like Group Theory, rather than the basis for building general mathematical theo-
ries. This approach allows us to drop or modify axioms of ZFC in order to get, for
example, a Set Theory without the Axiom of Choice (see Chapter 4) or in which
just a weak form of the Axiom of Choice holds (see Chapter 7). In addition, we are
also allowed to extend the axiomatic system ZFC in order to get, for example, a
Set Theory in which, in addition to the ZFC axioms, we also have Martin’s Axiom
(see Chapter 13), which is a very powerful axiom with many applications for Infini-
tary Combinatorics as well as other fields of Mathematics. However, this approach
prevents us from using any kind of Set Theory which goes beyond ZFC, which is
used, for example, to prove the existence of a countable model of ZFC (see the
Löwenheim–Skolem Theorem in Chapter 15).

Most of the results presented in this book are combinatorial results, in particu-
lar the results in Ramsey Theory (introduced in Chapter 2 and further developed in
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Chapter 11), or those results whose proofs have a combinatorial flavour. For exam-
ple, we get results of the latter type if we work in Set Theory without the Axiom of
Choice, since in the absence of the Axiom of Choice, the proofs must be construc-
tive and therefore typically have a much more combinatorial flavour than proofs in
ZFC (examples can be found in Chapters 4 & 7). On the other hand, there are also
elegant combinatorial proofs using the Axiom of Choice. An example is the proof in
Chapter 6, where it is shown that one can divide the solid unit ball into five parts,
such that one can build two solid unit balls out of these five parts—another such
paradoxical result is given in Chapter 17, where it is shown that it might be possible
in ZF to decompose a square into more parts than there are points on the square.

Even though the ZFC axiomatic system is the foundation of Mathematics, by
Gödel’s Incompleteness Theorem—briefly discussed at the end of Chapter 3—no
axiomatic system of Mathematics is complete in the sense that every statement can
either be proved or disproved; in other words, there are always statements which are
independent of the axiomatic system. The main tool to show that a certain statement
is independent of the axioms of Set Theory is Cohen’s Forcing Technique, which
he originally developed in the early 1960s in order to show that there are models
of ZF in which the Axiom of Choice fails (see Chapter 17) and that the Continuum
Hypothesis is independent of ZFC (see Chapter 14). The Forcing Technique is intro-
duced and discussed in great detail in Part II, and in Part III it is used to investigate
combinatorial properties of the set of real numbers. This is done by comparing the
Cardinal Characteristics of the Continuum introduced in Chapter 8.

The following table indicates which of the main topics appear in which chapter,
where ∗∗∗ means that it is the main topic of that chapter, ∗∗ means that some new
results in that topic are proved or at least that the topic is important for understanding
certain proofs, and ∗ means that the topic appears somewhere in that chapter, but not
in an essential way:

Chapter 1 2 3 4 5 6 7 8 9 10 11

Forcing Technique *

Axiom of Choice & ZF * * *** *** *** ** ***

Ramsey Theory * *** * ** * ** *** *** ***

Cardinal Characteristics * * *** *** *

Part I

Chapter 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Forcing Technique *** ** *** * *** ** ** ** *** ** ** ** ** ** ** **

Axiom of Choice & ZF ***

Ramsey Theory ** * * * * ** ***

Cardinal Characteristics ** ** ** ** ** ** ** ** ** ***

Part II Part III



Preface ix

For example Ramsey’s Theorem, which is the nucleus of Ramsey Theory, is the
main topic in Chapter 2, it is used in some proofs in Chapters 4 & 7, it is used as a
choice principle in Chapter 5, it is related to two Cardinal Characteristics defined
in Chapter 8, it is used to define what is called a Ramsey ultrafilter in Chapter 10, it
is used in the proof of the Hales–Jewett Theorem in Chapter 11, and it is used to for-
mulate a combinatorial feature of Mathias reals in Chapter 24. Furthermore, one can
see that Cardinal Characteristics are our main tool in Part III in the investigation
of combinatorial properties of various forcing notions, even in the cases when—in
Chapters 25 & 26—the existence of Ramsey ultrafilters are investigated. Finally, in
Chapter 27 we show how Cardinal Characteristics can be used to shed new light on
a classical problem in Measure Theory. On the other hand, the Cardinal Character-
istics are used to describe some combinatorial features of different forcing notions.
In particular, it will be shown that the cardinal characteristic h (introduced in Chap-
ter 8 and investigated in Chapter 9) is closely related to Mathias forcing (introduced
in Chapter 24), which is used in Chapter 25 to show that the existence of Ramsey
ultrafilters is independent of ZFC.

I tried to write this book like a piece of music, not just writing note by note,
but using various themes or voices—like Ramsey’s Theorem and the cardinal char-
acteristic h—again and again in different combinations. In this undertaking, I was
inspired by the English art of bell ringing and tried to base the order of the themes
on Zarlino’s introduction to the art of counterpoint.

Acknowledgement. First of all, I would like to thank Andreas Blass for his valuable
remarks and comments, as well as for his numerous corrections, which improved
the quality of the book substantially. Furthermore, I would like to thank my spouse
Stephanie Halbeisen, not only for reading Chapters 1 & 12, and parts of Chapters 5
& 13, but also for her patience during the last seven years. I would also like to
thank Dandolo Flumini for reading Chapters 2, 3, 13, 14, 15, Ioanna Dimitriou for
reading Chapters 16 & 17, and Gearóidín Diserens for reading Chapter 1 as well as
the introductory comments of several chapters. Finally, I would like to thank Jörg
Sixt, editor of Springer-Verlag, for making every effort to ensure that the book was
published in the optimal style.

Lorenz HalbeisenWinterthur, October 2011
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Chapter 1
The Setting

For one cannot order or compose anything, or understand the nature of the composite,
unless one knows first the things that must be ordered or combined, their nature, and their
cause.

GIOSEFFO ZARLINO

Le Istitutioni Harmoniche, 1558

Combinatorics with all its various aspects is a broad field of Mathematics which
has many applications in areas like Topology, Group Theory and even Analysis.
A reason for its wide range of applications might be that Combinatorics is rather
a way of thinking than a homogeneous theory, and consequently Combinatorics is
quite difficult to define. Nevertheless, let us start with a definition of Combinatorics
which will be suitable for our purpose:

Combinatorics is the branch of Mathematics which studies collections of objects
that satisfy certain criteria, and is in particular concerned with deciding how
large or how small such collections might be.

Below we give a few examples which should illustrate some aspects of infinitary
Combinatorics. At the same time, we present the main topics of this book, which
are the Axiom of Choice, Ramsey Theory, cardinal characteristics of the continuum,
and forcing.

Let us start with an example from Graph Theory: A graph is a set of vertices,
where some pairs of vertices are connected by an edge. Connected pairs of vertices
are called neighbours. A graph is infinite if it has an infinite number of vertices.
A tree is a cycle-free (i.e., one cannot walk in proper cycles along edges), connected
(i.e., any two vertices are connected by a path of edges) graph, where one of its
vertices is designated as the root. A tree is finitely branching if every vertex has only
a finite number of neighbours. Furthermore, a branch through a tree is a maximal
edge-path beginning at the root, in which no edge appears twice.

Now we are ready to state König’s Lemma, which is often used implicitly in fields
like Combinatorics, Topology, and many other branches of Mathematics.
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König’s Lemma. Every infinite, finitely branching tree contains an infinite
branch.

At first glance, this result looks straightforward and one would construct an in-
finite branch as follows: Let v0 be the root. Since the tree is infinite but finitely
branching, there must be a neighbour of v0 from which we reach infinitely many
vertices without going back to v0. Let v1 be such a neighbour of v0. Again, since
we reach infinitely many vertices from v1 (without going back to v1) and the tree
is finitely branching, there must be a neighbour of v1, say v2, from which we reach
infinitely many vertices without going back to v2. Proceeding in this way, we finally
get the infinite branch (v0, v1, v2, . . .).

Let us now have a closer look at this proof: Firstly, in order to prove that the
set of neighbours of v0 from which we reach infinitely many vertices without going
back to v0 is not empty, we need an infinite version of the so-called Pigeon-Hole
Principle. The Pigeon-Hole Principle can be seen as the fundamental principle of
Combinatorics.

Pigeon-Hole Principle. If n+ 1 pigeons roost in n holes, then at least two pigeons
must share a hole. More prosaically: If m objects are coloured with n colours and
m> n, then at least two objects have the same colour.

An infinite version of the Pigeon-Hole Principle reads as follows:

Infinite Pigeon-Hole Principle. If infinitely many objects are coloured with finitely
many colours, then infinitely many objects have the same colour.

Using the Infinite Pigeon-Hole Principle we are now sure that the set of neighbours
of v0 from which we reach infinitely many vertices without going back to v0 is not
empty. However, the next problem we face is which element we should choose from
that non-empty set. If the vertices are ordered in some way, then we can choose the
first element with respect to that order, but otherwise, we would need some kind
of choice function which selects infinitely often (and this is the crucial point!) one
vertex from a given non-empty set of vertices. Such a choice function is guaranteed
by the Axiom of Choice, denoted AC, which is discussed in Chapter 5.

Axiom of Choice. For every family F of non-empty sets, there is a function f

—called choice function—which selects one element from each member of F (i.e.,
for each x ∈ F , f (x) ∈ x); or equivalently, every Cartesian product of non-empty
sets is non-empty.

The Axiom of Choice is one of the main topics of this book: In Chapter 3, the
axioms of Zermelo–Fraenkel Set Theory (i.e., the usual axioms of Set Theory except
AC) are introduced. In Chapter 4 we shall introduce the reader to Zermelo–Fraenkel
Set Theory and show how combinatorics can, to some extent, replace the Axiom
of Choice. Subsequently, the Axiom of Choice (and some of its weaker forms) is
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introduced in Chapter 5. From then on, we always work in Zermelo–Fraenkel Set
Theory with the Axiom of Choice—even in the case as in Chapters 7 & 17 when we
construct models of Set Theory in which AC fails.

Now, let us turn back to König’s Lemma. In order to prove König’s Lemma we
do not need full AC, since it would be enough if every family of non-empty finite
sets had a choice function—the family would consist of all subsets of neighbours
of vertices. However, as we will see later, even this weaker form of AC is a proper
axiom and is independent of the other axioms of Set Theory (cf. PROPOSITION 7.7).
Thus, depending on the axioms of Set Theory we start with, AC—as well as some
weakened forms of it—may fail, and consequently, König’s Lemma may become
unprovable. On the other hand, as we will see in Chapter 5, König’s Lemma may be
used as a non-trivial choice principle.

Thus, this first example shows that—with respect to our definition of Combina-
torics given above—some “objects satisfying certain criteria,” may, but need not,
exist.

The next example can be seen as a problem in infinitary Extremal Combinatorics.
The word “extremal” describes the nature of problems dealt with in this field and
refers to the second part of our definition of Combinatorics, namely “how large or
how small collections satisfying certain criteria might be.”

If the objects considered are infinite, then the answer, how large or how small
certain sets are, depends again on the underlying axioms of Set Theory, as the next
example shows.

Reaping Families. A family R of infinite subsets of the natural numbers N is said
to be reaping if for every colouring of N with two colours there exists a monochro-
matic set in the family R.

For example, the set of all infinite subsets of N is such a family. The reaping
number r—a so-called cardinal characteristic of the continuum—is the smallest
cardinality (i.e., size) of a reaping family. In general, a cardinal characteristic of the
continuum is typically defined as the smallest cardinality of a subset of a given set
S which has certain combinatorial properties, where S is of the same cardinality as
the continuum R.

Consider the cardinal characteristic r (i.e., the size of the smallest reaping fam-
ily). Since r is a well-defined cardinality we can ask: How large is r ? Can it be
countable? Is it always equal to the cardinality of the continuum?

Let us just show that a reaping family can never be countable: Let A = {Ai :
i ∈ N} be any countable family of infinite subsets of N. For each i ∈ N, pick ni

and mi from the set Ai in such a way that, at the end, for all i we have ni < mi <

ni+1. Now we colour all ni ’s blue and all the other numbers red. For this colouring,
there is no monochromatic set in A , and hence, A cannot be a reaping family. The
Continuum Hypothesis, denoted CH, states that every subset of the continuum R is
either countable or of cardinality c, where c denotes the cardinality of R. Thus, if
we assume CH, then any reaping family is of cardinality c. The same holds if we
assume Martin’s Axiom which will be introduced in Chapter 13.
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On the other hand, with the forcing technique—invented by Paul Cohen in the
early 1960s—one can show that the axioms of Set Theory do not decide whether or
not the cardinals r and c are equal. The forcing technique is introduced in Part II and
a model in which r< c is given in Chapter 18.

Thus, the second example shows that—depending on the additional axioms of
Set Theory we start with—we can get different answers when we try to “decide
how large or how small certain collections might be.”

Many more cardinal characteristics like hom and par (see below) are introduced
in Chapter 8. Possible (i.e., consistent) relations between these cardinals are inves-
tigated in Part II and more systematically in Part III—where the cardinal charac-
teristics are also used to distinguish the combinatorial features of certain forcing
notions.

Another field of Combinatorics is the so-called Ramsey Theory, and since many
results in this work rely on Ramsey-type theorems, let us give a brief description of
Ramsey Theory.

Loosely speaking, Ramsey Theory (which can be seen as a part of extremal Com-
binatorics) is the branch of Combinatorics which deals with structures preserved
under partitions, or colourings. Typically, one looks at the following kind of ques-
tion: If a particular object (e.g., algebraic, geometric or combinatorial) is arbitrarily
coloured with finitely many colours, what kinds of monochromatic structure can we
find?

For example, VAN DER WAERDEN’S THEOREM, which will be proved in Chap-
ter 11, tells us that for any positive integers r and n, there is a positive integer N

such that for every r-colouring of the set {0,1, . . . ,N} we find always a monochro-
matic (non-constant) arithmetic progression of length n.

Even though VAN DER WAERDEN’S THEOREM is one of the earliest results in
Ramsey Theory, the most famous result in Ramsey Theory is surely RAMSEY’S

THEOREM (which will be discussed in detail in the next chapter):

RAMSEY’S THEOREM. Let n be any positive integer. If we colour all n-element
subsets of N with finitely many colours, then there exists an infinite subset of N all
of whose n-element subsets have the same colour.

There is also a finite version of RAMSEY’S THEOREM which gives an answer to
problems like the following:

How many people must be invited to a party in order to make sure that three of
them mutually shook hands on a previous occasion or three of them mutually did
not shake hands on a previous occasion?

It is quite easy to show that at least six people must be invited. On the other hand,
if we ask how many people must get invited such that there are five people who
all mutually shook hands or did not shake hands on a previous occasion, then the
precise number is not known—but it is conjectured that it is sufficient to invite 43
people.
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As we shall see later, RAMSEY’S THEOREM has many—sometimes unex-
pected—applications. For example, if we work in Set Theory without AC, then
RAMSEY’S THEOREM can help to construct a choice function, as we will see in
Chapter 4. Sometimes we get Ramsey-type (or anti-Ramsey-type) results even for
partitions into infinitely many classes (i.e., using infinitely many colours). For ex-
ample, one can show that there is a colouring of the points in the Euclidean plane
with countably many colours, such that no two points of any “copy of the rationals”
have the same colour. This result can be seen as an anti-Ramsey-type theorem (since
we are far away from “monochromatic structures”), and it shows that Ramsey-type
theorems cannot be generalised arbitrarily. However, concerning RAMSEY’S THE-
OREM, we can ask for a “nice” family F of infinite subsets of N, such that for every
colouring of the n-element subsets of N with finitely many colours, there exists a
homogeneous set in the family F , where an infinite set x ⊆N is called homoge-
neous if all n-element subsets of x have the same colour. Now, “nice” could mean
“as small as possible” but also “being an ultrafilter.” In the former case, this leads
to the homogeneous number hom, which is the smallest cardinality of a family F
which contains a homogeneous set for every 2-colouring of the 2-element subsets
of N. One can show that hom is uncountable and—like for the reaping number—
that the axioms of Set Theory do not decide whether or not hom is equal to c (see
Chapter 18). The latter case, where “nice” means “being an ultrafilter,” leads to so-
called Ramsey ultrafilters. It is not difficult to show that Ramsey ultrafilters exist
if one assumes CH or Martin’s Axiom (see Chapter 10), but on the other hand, the
axioms of Set Theory alone do not imply the existence of Ramsey ultrafilters (see
PROPOSITION 25.11). A somewhat anti-Ramsey-type question would be to ask how
many 2-colourings of the 2-element subsets of N we need to make sure that no sin-
gle infinite subset of N is almost homogeneous for all these colourings, where a set
H is called almost homogeneous if there is a finite set K such that H \K is homo-
geneous. This question leads to the partition number par. Again, par is uncountable
and the axioms of Set Theory do not decide whether or not par is equal to c (see for
example Chapter 18).

RAMSEY’S THEOREM, as well as Ramsey Theory in general, play an important
role throughout this book. Especially in all chapters of Part I, except for Chapter 3,
we shall meet—sometimes unexpectedly—RAMSEY’S THEOREM in one form or
other.

NOTES

Gioseffo Zarlino. All citations of Zarlino (1517–1590) are taken from Part III of
his book entitled Le Istitutioni Harmoniche (cf. [1]). This section of Zarlino’s Insti-
tutioni is concerned primarily with the art of counterpoint, which is, according to
Zarlino, the concordance or agreement born of a body with diverse parts, its vari-
ous melodic lines accommodated to the total composition, arranged so that voices
are separated by commensurable, harmonious intervals. The word “counterpoint”
presumably originated at the beginning of the 14th century and was derived from
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“punctus contra punctum,” i.e., point against point or note against note. Zarlino him-
self was an Italian music theorist and composer. While he composed a number of
masses, motets and madrigals, his principal claim to fame is as a music theorist:
For example, Zarlino was ahead of his time in proposing that the octave should
be divided into twelve equal semitones—for the lute, that is to say, he advocated
a practice in the 16th century which was universally adopted three centuries later.
He also advocated equal temperament for keyboard instruments and just intonation
for unaccompanied vocal music and strings—a system which has been successfully
practised up to the present day. Furthermore, Zarlino arranged the modes in a dif-
ferent order of succession, beginning with the Ionian mode instead of the Dorian
mode. This arrangement seems almost to have been dictated by a prophetic antici-
pation of the change which was to lead to the abandonment of the modes in favour
of a newer tonality, for his series begins with a form which corresponds exactly
with our modern major mode and ends with the prototype of the descending minor
scale of modern music. (For the terminology of music theory we refer the interested
reader to Benson [2].)

Zarlino’s most notable student was the music theorist and composer Vincenzo
Galilei, the father of Galileo Galilei.

König’s Lemma and Ramsey’s Theorem. A proof of König’s Lemma can be found
in König’s book on Graph Theory [3, VI, §2, Satz 6], where he called the result
Unendlichkeitslemma. As a first application of the Unendlichkeitslemma he proved
the following theorem of de la Vallée Poussin: If E is a subset of the open unit
interval (0,1) which is closed in R and I is a set of open intervals covering E,
then there is a natural number n, such that if one partitions (0,1) into 2n inter-
vals of length 2−n, each of these intervals containing a point of E is contained
in an interval of I . Using the Unendlichkeitslemma, König also showed that VAN

DER WAERDEN’S THEOREM is equivalent to the following statement: If the pos-
itive integers are finitely coloured, then there are arbitrarily long monochromatic
arithmetic progressions. In a similar way we will use König’s Lemma to derive the
FINITE RAMSEY THEOREM from RAMSEY’S THEOREM (cf. COROLLARY 2.3).

At first glance, König’s Lemma and RAMSEY’S THEOREM seem to be quite un-
related statements. In fact, König’s Lemma is a proper (but rather weak) choice prin-
ciple, whereas RAMSEY’S THEOREM is a very powerful combinatorial tool. How-
ever, as we shall see in Chapter 5, RAMSEY’S THEOREM can also be considered as
a proper choice principle which turns out to be even stronger than König’s Lemma
(see THEOREM 5.17).
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Chapter 2
Overture: Ramsey’s Theorem

Musicians in the past, as well as the best of the moderns, believed that a counterpoint or
other musical composition should begin on a perfect consonance, that is, a unison, fifth,
octave, or compound of one of these.

GIOSEFFO ZARLINO

Le Istitutioni Harmoniche, 1558

The Nucleus of Ramsey Theory

Most of this text is concerned with sets of subsets of the natural numbers, so, let us
start there: The set {0,1,2, . . .} of natural numbers (or of non-negative integers)
is denoted by ω. It is convenient to consider a natural number n as an n-element
subset of ω, namely as the set of all numbers smaller than n, so, n= {k ∈ ω : k < n}.
In particular, 0 = ∅, where ∅ is the empty set. For any n ∈ ω and any set S, let [S]n
denote the set of all n-element subsets of S (e.g., [S]0 = {∅}). Further, the set of all
finite subsets of a set S is denoted by [S]<ω .

For a finite set S let |S| denote the number of elements in S, also called the
cardinality of S.

A set S is called countable if there is an enumeration of S, i.e., if S = ∅ or
S = {xi : i ∈ ω}. In particular, every finite set is countable. However, when we say
that a set is countable we usually mean that it is a countably infinite set. For any
set S, [S]ω denotes the set of all countably infinite subsets of S, in particular, since
every infinite subset of ω is countable, [ω]ω is the set of all infinite subsets of ω.

Let S be an arbitrary non-empty set. A binary relation “∼” on S is an equivalence
relation if it is

• reflexive (i.e., for all x ∈ S: x ∼ x),
• symmetric (i.e., for all x, y ∈ S: x ∼ y ↔ y ∼ x), and
• transitive (i.e., for all x, y, z ∈ S: x ∼ y ∧ y ∼ z → x ∼ z).

The equivalence class of an element x ∈ S, denoted [x] ,̃ is the set {y ∈ S : x ∼ y}.
We would like to recall the fact that, since “∼” is an equivalence relation, for any
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10 2 Overture: Ramsey’s Theorem

x, y ∈ S we have either [x]˜ = [y]˜ or [x]˜ ∩ [y]˜ = ∅. A set A ⊆ S is a set of
representatives if for each equivalence class [x]˜ we have |A ∩ [x] |̃ = 1; in other
words, A has exactly one element in common with each equivalence class. It is
worth mentioning that in general, the existence of a set of representatives relies on
the Axiom of Choice (see Chapter 5).

For sets A and B , let AB denote the set of all functions f :A→ B . For f ∈ AB

and S ⊆A let f [S] := {f (x) : x ∈ S} and let f |S ∈ SB (the restriction of f to S) be
such that for all x ∈ S, f (x)= f |S(x).

Further, for sets A and B , let the set-theoretic difference of A and B be the set
A \B := {a ∈A : a /∈ B}.

For some positive n ∈ ω, let us colour all n-element subsets of ω with three
colours, say red, blue, and yellow. In other words, each n-element set of natural
numbers {k1, . . . , kn} is coloured either red, or blue, or yellow. Now one can ask
whether there is an infinite subset H of ω such that all its n-element subsets have
the same colour (i.e., [H ]n is monochromatic). Such a set we would call homo-
geneous (for the given colouring). In the terminology above, this question reads as
follows: Given any colouring (i.e., function) π : [ω]n → 3, where 3 = {0,1,2}, does
there exist a set H ∈ [ω]ω such that π |[H ]n is constant? Alternatively, one can de-
fine an equivalence relation “∼” on [ω]n by stipulating x ∼ y iff π(x)= π(y) and
ask whether there exists a set H ∈ [ω]ω such that [H ]n is included in one equiv-
alence class. The answer to this question is given by RAMSEY’S THEOREM 2.1
below, but before we state and prove this theorem, let us say a few words about its
background.

Ramsey proved his theorem in order to investigate a problem in formal logic,
namely the problem of finding a regular procedure to determine the truth or fal-
sity of a given logical formula in the language of First-Order Logic, which is also
the language of Set Theory (cf. Chapter 3). However, RAMSEY’S THEOREM is a
purely combinatorial statement and was the nucleus—but not the earliest result—of
a whole combinatorial theory, the so-called Ramsey Theory. We would also like to
mention that Ramsey’s original theorem, which will be discussed later, is somewhat
stronger than the theorem stated below but is, like König’s Lemma, not provable
without assuming some form of the Axiom of Choice (see PROPOSITION 7.8).

THEOREM 2.1 (RAMSEY’S THEOREM). For any number n ∈ ω, for any positive
number r ∈ ω, for any S ∈ [ω]ω, and for any colouring π : [S]n → r , there is always
an H ∈ [S]ω such that H is homogeneous for π , i.e., the set [H ]n is monochromatic.

Before we prove RAMSEY’S THEOREM, let us consider a few examples: In the
first example we colour the set of prime numbers P with two colours. A Wieferich
prime is a prime number p such that p2 divides 2p−1 − 1, denoted p2 | 2p−1 − 1.
Recall that by FERMAT’S LITTLE THEOREM we have p | 2p−1 −1 for any prime p.
Now, define the 2-colouring π1 of P by stipulating

π1(p)=
{

0 if p is a Wieferich prime,

1 otherwise.
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Let H0 = {p ∈ P : p2 | 2p−1 − 1} and H1 = P \H0. The only numbers which are
known to belong to H0 are 1093 and 3511. On the other hand, it is not known
whether H1 is infinite. However, by the Infinite Pigeon-Hole Principle we know that
at least one of the two sets H0 and H1 is infinite, which gives us a homogeneous set
for π1.

As a second example, define the 2-colouring π2 of the set of 2-element subsets
of {7l : l ∈ ω} by stipulating

π2
({n,m})=

{
0 if nm +mn + 1 is prime,

1 otherwise.

An easy calculation modulo 3 shows that the set H = {42k + 14 : k ∈ ω} ⊆ {7l :
l ∈ ω} is homogeneous for π2; in fact, for all {n,m} ∈ [H ]2 we have 3 | (nm +
mn + 1).

Before we give a third example, we prove the following special case of RAM-
SEY’S THEOREM.

PROPOSITION 2.2. For any positive number r ∈ ω, for any S ∈ [ω]ω , and for any
colouring π : [S]2 → r , there is always an H ∈ [S]ω such that [H ]2 is monochro-
matic.

Proof. The proof is in fact just a consequence of the Infinite Pigeon-Hole Principle;
firstly, the Infinite Pigeon-Hole Principle is used to construct homogeneous sets for
certain 2-colourings τ and then it is used to show the existence of a homogeneous
set for π .

Let S0 = S and let a0 = min(S0). Define the r-colouring τ0 : S0 \ {a0} → r by
stipulating τ0(b) := π({a0, b}). By the Infinite Pigeon-Hole Principle there is an infi-
nite set S1 ⊆ S0 \ {a0} such that τ0|S1 is constant (i.e., τ0|S1 is a constant function)
and let ρ0 := τ0(b), where b is any member of S1. Now, let a1 = min(S1) and de-
fine the r-colouring τ1 : S1 \ {a1}→ r by stipulating τ1(b) := π({a1, b}). Again we
find an infinite set S2 ⊆ S1 \ {a1} such that τ1|S2 is constant and let ρ1 := τ1(b),
where b is any member of S2. Proceeding this way we finally get infinite se-
quences a0 < a1 < . . . < an < . . . and ρ0, ρ1, . . . . Notice that by construction, for
all n ∈ ω and all k > n we have π({an, ak})= τn(ak)= ρn. Define the r-colouring
τ : {an : n ∈ ω} → r by stipulating τ(an) := ρn. Again by the Infinite Pigeon-Hole
Principle there is an infinite set H ⊆ {an : n ∈ ω} such that τ |H is constant, which
implies that H is homogeneous for π , i.e., [H ]2 is monochromatic. �

As a third example, consider the 17-colouring π3 of the set of 9-element subsets
of P defined by stipulating

π3
({p1, . . . , p9}

)= c ⇐⇒ p1 · p2 · . . . · p9 ≡ c mod 17.

For 0 ≤ k ≤ 16 let Pk = {p ∈ P : p ≡ k mod 17}. Then, by Dirichlet’s theorem on
primes in arithmetic progression, Pk is infinite whenever gcd(k,17) = 1, i.e., for
all positive numbers k ≤ 16. Thus, by an easy calculation modulo 17 we find for
1 ≤ k ≤ 16, that Pk is homogeneous for π3.



12 2 Overture: Ramsey’s Theorem

Now we give a complete proof of RAMSEY’S THEOREM 2.1:

Proof of Ramsey’s Theorem. The proof is by induction on n. For n = 2 we get
PROPOSITION 2.2. So, we assume that the statement is true for n ≥ 2 and prove it
for n+ 1. Let π : [ω]n+1 → r be any r-colouring of [ω]n+1. For each integer a ∈ ω

let πa be the r-colouring of [ω \ {a}]n defined as follows:

πa(x)= π
(
x ∪ {a}).

By induction hypothesis, for each S′ ∈ [ω]ω and for each a ∈ S′ there is an HS′
a ∈

[S′ \ {a}]ω such that HS′
a is homogeneous for πa . Construct now an infinite sequence

a0 < a1 < . . . < ai < . . . of natural numbers and an infinite sequence S0 ⊇ S1 ⊇
. . .⊇ Si ⊇ . . . of infinite subsets of ω as follows: Let S0 = S and a0 = min(S), and
in general let

Si+1 =HSi
ai
, and ai+1 = min{a ∈ Si+1 : a > ai}.

It is clear that for each i ∈ ω, the set [{am :m > i}]n is monochromatic for πai ; let
τ(ai) be its colour (i.e., τ is a colouring of {ai : i ∈ ω} with at most r colours). By
the Infinite Pigeon-Hole Principle there is an H ⊆ {ai : i ∈ ω} such that τ is constant
on H , which implies that π |[H ]n+1 is constant, too. Indeed, for any x0 < . . . < xn
in H we have π({x0, . . . , xn}) = πx0({x1, . . . , xn}) = τ(x0), which completes the
proof. �

Corollaries of Ramsey’s Theorem

In finite Combinatorics, the most important consequence of RAMSEY’S THEO-
REM 2.1 is its finite version:

COROLLARY 2.3 (FINITE RAMSEY THEOREM). For all m,n, r ∈ ω, where r ≥ 1
and n ≤ m, there exists an N ∈ ω, where N ≥ m, such that for every colouring of
[N ]n with r colours, there exists a set H ∈ [N ]m, all of whose n-element subsets
have the same colour.

Proof. Assume towards a contradiction that the FINITE RAMSEY THEOREM fails.
So, there are m,n, r ∈ ω, where r ≥ 1 and n≤m, such that for all N ∈ ω with N ≥
m there is a colouring πN : [N ]n → r such that no H ∈ [N ]m is homogeneous, i.e.,
[H ]n is not monochromatic. We shall construct an r-colouring π of [ω]n such that
no infinite subset of ω is homogeneous for π , contradicting RAMSEY’S THEOREM.
The r-colouring π will be induced by an infinite branch through a finitely branching
tree, where the infinite branch is obtained by König’s Lemma. Thus, we first need
an infinite, finitely branching tree. For this, consider the following graph G: The
vertex set of G consists of ∅ and all colourings πN : [N ]n → r , where N ≥m, such
that no H ∈ [N ]m is homogeneous for πN . There is an edge between ∅ and each
r-colouring πm of [m]n, and there is an edge between the colourings πN and πN+1
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iff πN ≡ πN+1|N (i.e., for all x ∈ [N ]n, πN+1(x) = πN(x)). In particular, there is
no edge between two different r-colouring of [N ]n. By our assumption, the graph
G is infinite. Further, by construction, it is cycle-free, connected, finitely branching,
and has a root, namely ∅. In other words, G is an infinite, finitely branching tree
and therefore, by König’s Lemma, contains an infinite branch of r-colourings, say
(∅,πm,πm+1, . . . , πm+i , . . .), where for all i, j ∈ ω, the colouring πm+i+j is an
extension of the colouring πm+i .

At this point we would like to mention that since for any N ∈ ω the set of all
r-colouring of [N ]n can be ordered, for example lexicographically, we do not need
any non-trivial form of the Axiom of Choice to construct an infinite branch.

Now, the infinite branch (∅,πm,πm+1, . . .) induces an r-colouring π of [ω]n
such that no m-element subset of ω is homogeneous. In particular, there is no infinite
set H ∈ [ω]ω such that π |[H ]n is constant, which is a contradiction to RAMSEY’S

THEOREM 2.1 and completes the proof. �

The following corollary is a geometrical consequence of the FINITE RAMSEY

THEOREM 2.3:

COROLLARY 2.4. For every positive integer n there exists an N ∈ ω with the fol-
lowing property: If P is a set of N points in the Euclidean plane without three
collinear points, then P contains n points which form the vertices of a convex n-gon.

Proof. By the FINITE RAMSEY THEOREM 2.3, let N be such that for every 2-
colouring of [N ]3 there is a set H ∈ [N ]n such that [H ]3 is monochromatic. Now
let N points in the plane be given, and number them from 1 to N in an arbitrary but
fixed way. Colour a triple (i, j, k), where i < j < k, red, if travelling from i to j to
k is in clockwise direction; otherwise, colour it blue. By the choice of N , there are n

ordered points so that every triple has the same colour (i.e., orientation) from which
one verifies easily (e.g., by considering the convex hull of the n points) that these
points form the vertices of a convex n-gon. �

The following theorem—discovered more than a decade before RAMSEY’S

THEOREM—is perhaps the earliest result in Ramsey Theory:

COROLLARY 2.5 (SCHUR’S THEOREM). If the positive integers are finitely
coloured (i.e., coloured with finitely many colours), then there are three distinct
positive integers x, y, z of the same colour, with x + y = z.

Proof. Let r be a positive integer and let π be any r-colouring of ω \ {0}. Let N ∈ ω

be such that for every r-colouring of [N ]2 there is a homogeneous 3-element subset
of N . Define the colouring π∗ : [N ]2 → r by stipulating π∗(i, j) = π(|i − j |),
where |i − j | is the modulus or absolute value of the difference i − j . Since N

contains a homogeneous 3-element subset (for π∗), there is a triple 0 ≤ i < j <

k < N such that π∗(i, j) = π∗(j, k) = π∗(i, k), which implies that the numbers
x = j − i, y = k − j , and z= k − i, have the same colour, and in addition we have
x + y = z. �



14 2 Overture: Ramsey’s Theorem

The next result is a purely number-theoretical result and follows quite easily
from RAMSEY’S THEOREM. However, somewhat surprisingly, it is unprovable in
Number Theory, or more precisely, in Peano Arithmetic (which will be discussed in
Chapter 3). Before we can state the corollary, we have to introduce the following
notion: A non-empty set S ⊆ ω is called large if S has more than min(S) elements.
Further, for n,m ∈ ω let [n,m] := {i ∈ ω : n≤ i ≤m}.

COROLLARY 2.6. For all n, k, r ∈ ω with r ≥ 1, there is an m ∈ ω such that for any
r-colouring of [[n,m]]k , there exists a large homogeneous set.

Proof. Let n, k, r ∈ ω, where r ≥ 1, be some arbitrary but fixed numbers. Let π :
[ω \ n]k → r be any r-colouring of the k-element subsets of {i ∈ ω : i ≥ n}. By
RAMSEY’S THEOREM 2.1 there exists an infinite homogeneous set H ∈ [ω \ n]ω.
Let a = min(H) and let S denote the least a+ 1 elements of H . Then S is large and
[S]k is monochromatic.

The existence of a finite number m with the required properties now follows—
using König’s Lemma—in the very same way as the FINITE RAMSEY THEOREM

followed from RAMSEY’S THEOREM (see the proof of the FINITE RAMSEY THE-
OREM 2.3). �

Generalisations of Ramsey’s Theorem

Even though Ramsey’s theorems are very powerful combinatorial results, they can
still be generalised. The following result will be used later in Chapter 7 in order to
prove that the Prime Ideal Theorem—introduced in Chapter 5—holds in the ordered
Mostowski permutation model (but it will not be used anywhere else in this book).

In order to illustrate the next theorem, as well as to show that it is optimal to some
extent, we consider the following two examples: Firstly, define the 2-colouring π1
of [ω]2 × [ω]3 × [ω]1 by stipulating

π1
({x1, x2}, {y1, y2, y3}, {z1}

)=
{

1 if 2x1·x2 + 13y1·y2·y3 + 17z1 − 3 is prime,

0 otherwise.

Let H1 = {3 · k : k ∈ ω}, H2 = {2 · k : k ∈ ω}, and H3 = {6 · k : k ∈ ω}. Then an easy
calculation modulo 7 shows that [H1]2×[H2]3×[H3]1 is an infinite monochromatic
set.

Secondly, define the 2-colouring π2 of [ω]1 × [ω]1 by stipulating

π2
({x}, {y})=

{
1 if x < y,

0 otherwise.

It is easy to see that whenever H1 and H2 are infinite subsets of ω, then [H1]1 ×
[H2]1 is not monochromatic; on the other hand, we easily find arbitrarily large finite
sets M1,M2 ⊆ ω such that [M1]1 × [M2]1 is monochromatic.

Thus, if [ω]n1 × . . .×[ω]nl is coloured with r colours, then, in general, we cannot
expect to find infinite subsets of ω, say H1, . . . ,Hl , such that [H1]n1 × . . .× [Hl]nl

is monochromatic; but we always find arbitrarily large finite subsets of ω:
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THEOREM 2.7. Let r, l, n1, . . . , nl ∈ ω with r ≥ 1 be given. For every m ∈ ω with
m≥ max{n1, . . . , nl} there is some N ∈ ω such that whenever [N ]n1 × . . .× [N ]nl

is coloured with r colours, then there are M1, . . . ,Ml ∈ [N ]m such that [M1]n1 ×
. . .× [Ml]nl is monochromatic.

Proof. The proof is by induction on l and the induction step uses a so-called
product-argument. For l = 1 the statement is equivalent to the FINITE RAMSEY

THEOREM 2.3. So, assume that the statement is true for l ≥ 1 and let us prove it for
l+ 1. By induction hypothesis, for every r ≥ 1 there is an Nl (depending on r) such
that for every r-colouring of [Nl]n1 × . . . × [Nl]nl there are M1, . . . ,Ml ∈ [Nl]m
such that [M1]n1 × . . .× [Ml]nl is monochromatic. Now, the crucial idea in order
to apply the FINITE RAMSEY THEOREM is to consider the coloured l-tuples in
([Nl]m)l as new colours. More precisely, let ul be the number of different l-tuples
in ([Nl]m)l and let rl := ul · r . Notice that each colour in rl corresponds to a pair
〈t, c〉, where t is an l-tuple in ([Nl]m)l and c is one of r colours. Notice also that
rl is very large compared to r . Now, by the FINITE RAMSEY THEOREM 2.3, there
is a number Nl+1 ∈ ω such that whenever [Nl+1]nl+1 is coloured with rl colours,
then there exists an Ml+1 ∈ [Nl+1]m such that [Ml+1]nl+1 is monochromatic. Let
N = max{Nl,Nl+1} and let π be any r-colouring of [Nl]n1 × . . .×[Nl]nl ×[N ]nl+1 .
For every F ∈ [N ]nl+1 let πF be the r-colouring of [Nl]n1 × . . .× [Nl]nl defined by
stipulating

πF (X)= π
(〈X,F 〉).

By the definition of N , for every F ∈ [N ]nl+1 there is a lexicographically first l-
tuple (MF

1 , . . . ,MF
l ) ∈ ([Nl]m)l such that [MF

1 ]n1 × . . .×[MF
l ]nl is monochromatic

for πF . By definition of rl we can define an rl-colouring πl+1 on [N ]nl+1 as fol-
lows: Every set F ∈ [N ]nl+1 is coloured according to the l-tuple t = (MF

1 , . . . ,MF
l )

(which can be encoded as one of ul numbers) and the colour c = πF (X), where X

is any element of the set [MF
1 ]n1 × . . .× [MF

l ]nl ; because [MF
1 ]n1 × . . .× [MF

l ]nl

is monochromatic for πF , c is well-defined and one of r colours. In other words,
for every F ∈ [N ]nl+1 , πl+1(F ) correspond to a pair 〈t, c〉, where t ∈ ([Nl]m)l and
c is one of r colours. Finally, by definition of N , there is a set Ml+1 ∈ [N ]m such
that [Ml+1]nl+1 is monochromatic for πl+1, which implies that for all F,F1,F2 ∈
[Ml+1]nl+1 we get that

• [MF
1 ]n1 × . . .× [MF

l ]nl is monochromatic for πF ,

• (M
F1
1 , . . . ,M

F1
l )= (M

F2
1 , . . . ,M

F2
l ),

• and restricted to the set [MF
1 ]n1 × . . .× [MF

l ]nl , the colourings π
F1
l and π

F2
l are

identical.

Hence, there are M1, . . . ,Ml+1 ∈ [N ]m such that π |[M1]n1×...×[Ml+1]nl+1 is constant,
which completes the proof. �

A very strong generalisation of RAMSEY’S THEOREM in terms of partitions is
the PARTITION RAMSEY THEOREM 11.4. However, since the proof of this general-
isation is quite involved, we postpone the discussion of that result until Chapter 11
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and consider now some other possible generalisations of RAMSEY’S THEOREM:
Firstly one could finitely colour all finite subsets of ω, secondly one could colour
[ω]n with infinitely many colours, and finally, one could finitely colour all the in-
finite subsets of ω. However, below we shall see that none of these generalisations
works, but first, let us consider Ramsey’s original theorem, which is—at least in
the absence of the Axiom of Choice—also a generalisation of RAMSEY’S THEO-
REM.

Ramsey’s Original Theorem. The theorem which Ramsey proved originally is
somewhat stronger than what we proved above. In our terminology, it states as fol-
lows:

RAMSEY’S ORIGINAL THEOREM. For any infinite set A, for any number n ∈ ω,
for any positive number r ∈ ω, and for any colouring π : [A]n → r , there is an
infinite set H ⊆A such that [H ]n is monochromatic.

Notice that the difference is just that the infinite set A is not necessarily a sub-
set of ω, and therefore, it does not necessarily contain a countable infinite subset.
However, this difference is crucial, since one can show that, like König’s Lemma,
this statement is not provable without assuming some form of the Axiom of Choice
(AC). On the other hand, if one has AC, then every infinite set has a countably in-
finite subset, and so RAMSEY’S THEOREM implies the original version. Ramsey
was aware of this fact and stated explicitly that he is assuming the axiom of selec-
tions (i.e., AC). Even though we do not need full AC in order to prove RAMSEY’S

ORIGINAL THEOREM, there is no way to avoid some non-trivial kind of choice,
since there are models of Set Theory in which RAMSEY’S ORIGINAL THEOREM

fails (cf. PROPOSITION 7.8). Consequently, RAMSEY’S ORIGINAL THEOREM can
be used as a choice principle, which will be discussed in Chapter 5.

Finite Colourings of [ω]<ω. Assume we have coloured all the finite subsets of ω

with two colours, say red and blue. Can we be sure that there is an infinite subset of
ω such that all its finite subsets have the same colour? The answer to this question
is negative and it is not hard to find a counterexample (e.g., colour a set x ∈ [ω]<ω

blue, if |x| is even; otherwise, colour it red).
Thus, let us ask for slightly less. Is there at least an infinite subset of ω such that

for each n ∈ ω, all its n-element subsets have the same colour? The answer to this
question is also negative: Colour a non-empty set x ∈ [ω]<ω red, if x has more than
min(x) elements (i.e., x is large); otherwise, colour it blue. Now, let I be an infinite
subset of ω and let n= min(I ). We leave it as an exercise to the reader to verify that
[I ]n+1 is dichromatic.

The picture changes if we are asking just for an almost homogeneous sets: An
infinite set H ⊆ ω is called almost homogeneous for a colouring π : [ω]n → r

(where n ∈ ω and r is a positive integer), if there is a finite set K ⊆ ω such that
H \K is homogeneous for π . Now, for a positive integer r consider any colouring
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π̄ : [ω]<ω → r . Then, for each n ∈ ω, π̄ |[ω]n is a colouring πn : [ω]n → r . Is there
an infinite set H ⊆ ω which is almost homogeneous for all πn’s simultaneously?
The answer to this question is affirmative and is given by the following result.

PROPOSITION 2.8. Let {rk : k ∈ ω} and {nk : k ∈ ω} be two (possibly finite) sets of
positive integers, and for each k ∈ ω let πk : [ω]nk → rk be a colouring. Then there
exists an infinite set H ⊆ ω which is almost homogeneous for each πk (k ∈ ω).

Proof. A first attempt to construct the required almost homogeneous set would be to
start with an I0 ∈ [ω]ω which is homogeneous for π0, then take an I1 ∈ [I0]ω which
is homogeneous for π1, et cetera, and finally take the intersection of all the Ik’s.
Even though this attempt fails—since it is very likely that we end up with the empty
set—it is the right direction. In fact, if the intersection of the Ik’s would be non-
empty, it would be homogeneous for all πk’s, which is more than what is required.
In order to end up with an infinite set we just have to modify the above approach—
the trick, which is used almost always when the word “almost” is involved, is called
diagonalisation.

The proof is by induction on k: By RAMSEY’S THEOREM 2.1 there exists an
H0 ∈ [ω]ω which is homogeneous for π0. Assume we have already constructed Hk ∈
[ω]ω (for some k ≥ 0) such that Hk is homogeneous for πk . Let ak = min(Hk)

and let Sk = Hk \ {ak}. Then, again by RAMSEY’S THEOREM 2.1, there exists an
Hk+1 ∈ [Sk]ω such that Hk+1 is homogeneous for πk+1. Let H = {ak : k ∈ ω}. Then,
by construction, for every k ∈ ω we see that H \ {a0, . . . , ak−1} is homogeneous for
πk , which implies that H is almost homogeneous for all πk’s simultaneously. �

Now we could ask what is the least number of 2-colourings of 2-element subsets
of ω we need in order to make sure that no single infinite subset of ω is almost
homogeneous for all colourings simultaneously? By PROPOSITION 2.8 we know
that countably many colourings are not sufficient, but as we will see later, the axioms
of Set Theory do not decide how large this number is (cf. Chapter 18).

The dual question would be as follows: How large must a family of infinite sub-
sets of ω be, in order to make sure that for each 2-colouring of the 2-element subsets
of ω we find a set in the family which is homogeneous for this colouring? Again,
the axioms of Set Theory do not decide how large this number is (cf. Chapter 18).

Going to the Infinite. There are two parameters involved in a colouring π :
[ω]n → r , namely n and r . Let first consider the case when n = 2 and r = ω. In
this case, we obviously cannot hope for any infinite homogeneous or almost ho-
mogeneous set. However, there are still infinite subsets of ω which are homoge-
neous in a broader sense which leads to the CANONICAL RAMSEY THEOREM.
Even though the CANONICAL RAMSEY THEOREM is a proper generalisation of
RAMSEY’S THEOREM, we will not discuss it here (but see RELATED RESULT 0).

In the case when n= ω and r = 2 we cannot hope for an infinite homogeneous
set, as the following example illustrates (compare this result with Chapter 5 | RE-
LATED RESULT 38):


