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Preface

In the present book we study the pullback equation for differential forms

ϕ∗ (g) = f ,

namely, given two differential k-forms f and g we want to discuss the equivalence of
such forms. This turns out to be a system of nonlinear first-order partial differential
equations in the unknown map ϕ.

The problem that we study here is a particular case of the equivalence of tensors
which has received considerable attention. However, the pullback equation for dif-
ferential forms has quite different features than those for symmetric tensors, such
as Riemannian metrics, which has also been studied a great deal. In more physical
terms, the problem of equivalence of forms can also be seen as a problem of mass
transportation.

This is an important problem in geometry and in analysis. It has been extensively
studied, in the cases k = 2 and k = n, but much less when 3≤ k≤ n−1. The problem
considered here of finding normal forms (Darboux theorem, Pfaff normal form) is
a fundamental question in symplectic and contact geometry. With respect to the
literature in geometry, the main emphasis of the book is on regularity and boundary
conditions. Indeed, special attention has been given to getting optimal regularity;
this is a particularly delicate point and requires estimates for elliptic equations and
fine properties of Hölder spaces.

In the case of volume forms (i.e., k = n), our problem is clearly related to the
widely studied subject of optimal mass transportation. However, our analysis is not
in this framework. As stated before, the two main points of our analysis are that we
provide optimal regularity in Hölder spaces and, at the same time, we are able to
handle boundary conditions.

Our book will hopefully appeal to both geometers and analysts. In order to make
the subject more easily attractive for the analysts, we have reduced as much as pos-
sible the notations of geometry. For example, we have restricted our attention to
domains in R

n, but it goes without saying that all results generalize to manifolds
with or without boundary.

v



vi Preface

In Part I we gather some basic facts about exterior and differential forms that are
used throughout Parts II and IV. Most of the results are standard, but they are pre-
sented so that the reader may be able to grasp the main results of the subject without
getting too involved with the terminology and concepts of differential geometry.

Part II presents the classical Hodge decomposition following the proof of Morrey,
but with some variants, notably in our way of deriving the Gaffney inequality. We
also give applications to several versions of the Poincaré lemma that are constantly
used in the other parts of the book. Part II can be of interest independently of the
main subject of the book.

Part III discusses the case k = n. We have tried in this part to make it, as much
as possible, independent of the machinery of differential forms. Indeed, Part III can
essentially be read with no reference to the other parts of the work, except for the
properties of Hölder spaces presented in Part V.

Part IV deals with the general case. Emphasis in this part is given to the sym-
plectic case k = 2. We also briefly deal with the simpler cases k = 0,1, n− 1. The
case 3 ≤ k ≤ n−2 is much harder and we are able to obtain results only for forms
having a special structure. The difficulty is already at the algebraic level.

In Part V we gather several basic properties of Hölder spaces that are used exten-
sively throughout the book. Due to the nonlinearity of the pullback equation, Hölder
spaces are much better adapted than Sobolev spaces. The literature on Hölder spaces
is considerably smaller than the one on Sobolev spaces. Moreover, the results pre-
sented here cannot be found solely in a single reference. We hope that this part will
be useful to mathematicians well beyond those who are primarily interested in the
pullback equation.
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8 Poincaré Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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Chapter 1

Introduction

1.1 Statement of the Problem

The aim of this book is the study of the pullback equation

ϕ∗ (g) = f . (1.1)

More precisely, we want to find a map ϕ : Rn →R
n; preferably we want this map to

be a diffeomorphism that satisfies the above equation, where f and g are differential
k-forms, 0 ≤ k ≤ n. Most of the time we will require these two forms to be closed.
Before going further, let us examine the exact meaning of (1.1). We write

g(x) = ∑
1≤i1<···<ik≤n

gi1···ik (x)dxi1 ∧·· ·∧dxik

and similarly for f . The meaning of (1.1) is that

∑
1≤i1<···<ik≤n

gi1···ik ◦ϕ dϕ i1 ∧·· ·∧dϕ ik = ∑
1≤i1<···<ik≤n

fi1···ik dxi1 ∧·· ·∧dxik ,

where

dϕ i =
n

∑
j=1

∂ϕ i

∂x j
dx j.

This turns out to be a nonlinear (if 2 ≤ k ≤ n) homogeneous of degree k (in the
derivatives) first-order system of

(n
k

)
partial differential equations. Let us see the

form that the equation takes when k = 0,1,2,n.

Case: k = 0. Equation (1.1) reads as

g(ϕ (x)) = f (x)

while
dg = 0 ⇔ gradg = 0.

G. Csató et al., The Pullback Equation for Differential Forms, Progress in Nonlinear  
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We will be, only marginally, interested in this elementary case, which is trivial for
closed forms. In any case, (1.1) is not, when k = 0, a differential equation.

Case: k = 1. The form g, and analogously for f , can be written as

g(x) =
n

∑
i=1

gi (x)dxi.

Equation (1.1) then becomes

n

∑
i=1

gi (ϕ (x))dϕ i =
n

∑
i=1

fi (x)dxi

while

dg = 0 ⇔ curlg = 0 ⇔ ∂gi

∂x j
− ∂g j

∂xi
= 0, 1≤ i < j ≤ n.

Writing

dϕ i =
n

∑
j=1

∂ϕ i

∂x j
dx j

and substituting into the equation, we find that (1.1) is equivalent to

n

∑
j=1

g j (ϕ (x))
∂ϕ j

∂xi
(x) = fi (x) , 1≤ i≤ n.

This is a system of
(n

1

)
= n first-order linear (in the first derivatives) partial differ-

ential equations.
Case: k = 2. The form g, and analogously for f , can be written as

g = ∑
1≤i< j≤n

gi j (x)dxi∧dx j

while

dg = 0 ⇔ ∂gi j

∂xk
− ∂gik

∂x j
+

∂g jk

∂xi
= 0, 1≤ i < j < k ≤ n.

The equation ϕ∗ (g) = f becomes

∑
1≤p<q≤n

gpq (ϕ (x))dϕ p∧dϕq = ∑
1≤i< j≤n

fi j (x)dxi∧dx j.

We get, as before, that (1.1) is equivalent, for every 1≤ i < j ≤ n, to

∑
1≤p<q≤n

gpq (ϕ (x))
(

∂ϕ p

∂xi

∂ϕq

∂x j
− ∂ϕ p

∂x j

∂ϕq

∂xi

)
(x) = fi j (x) ,

which is a nonlinear homogeneous of degree 2 (in the derivatives) system of
(n

2

)
=

n(n−1)
2 first-order partial differential equations.
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Case: k = n. In this case we always have d f = dg = 0. By abuse of notations,
if we identify volume forms and functions, we get that the equation ϕ∗ (g) = f
becomes

g(ϕ (x))det∇ϕ (x) = f (x) .

It is then a nonlinear homogeneous of degree n (in the derivatives) first-order partial
differential equation.smallskip

The main questions that we will discuss are the following.

1) Local existence. This is the easiest question. We will handle fairly completely the
case of closed 2-forms, which is the case of the Darboux theorem. The cases of
1 and (n−1)-forms as well as the case of n-forms will also be dealt with. It will
turn out that the case 3≤ k ≤ n−2 is much more difficult and we will be able to
handle only closed k-forms with special structure.

2) Global existence. This is a much more difficult problem. We will obtain results
in the case of volume forms and of closed 2-forms.

3) Regularity. A special emphasis will be given on getting sharp regularity results.
For this reason we will have to work with Hölder spaces Cr,α , 0 < α < 1, not
with spaces Cr. Apart from the linear problems considered in Part II, we will not
deal with Sobolev spaces. In the present context the reason is that Hölder spaces
form an algebra contrary to Sobolev spaces (with low exponents).

1.2 Exterior and Differential Forms

In Chapter 2 we have gathered some algebraic results about exterior forms that are
used throughout the book.

1.2.1 Definitions and Basic Properties of Exterior Forms

Let 1≤ k ≤ n be an integer. An exterior k-form will be denoted by

f = ∑
1≤i1<···<ik≤n

fi1···ik ei1 ∧·· ·∧ eik .

The set of exterior k-forms over Rn is a vector space and is denoted Λ k(Rn) and its
dimension is

dim(Λ k(Rn)) =
(n

k

)
.

If k = 0, we set

Λ 0(Rn) = R.
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By abuse of notations, we will, when convenient and in order not to burden the
notations, identify k-forms with vectors in R

(n
k).

(i) The exterior product of f ∈ Λ k(Rn) with g ∈ Λ l(Rn), denoted by f ∧ g, is
defined as usual (cf. Definition 2.2) and it belongs to Λ k+l(Rn). The scalar product
between two k-forms f and g is denoted by

〈g; f 〉= ∑
1≤i1<···<ik≤n

gi1···ik fi1···ik .

The Hodge star operator (cf. Definition 2.9) associates to f ∈Λ k(Rn) a form (∗ f )∈
Λ n−k(Rn). We define (cf. Definition 2.11) the interior product of f ∈ Λ k(Rn) with
g ∈Λ l(Rn) by

g� f = (−1)n(k−l) ∗ (g∧ (∗ f )) .

These definitions are linked through the following elementary facts (cf. Proposition
2.16). For every f ∈Λ k(Rn), g ∈Λ k+1(Rn) and h ∈Λ 1(Rn),

|h|2 f = h�(h∧ f )+h∧ (h� f ),

〈h∧ f ;g〉= 〈 f ;h�g〉 .

(ii) Let A ∈ R
n×n be a matrix and let f ∈Λ k(Rn) be given by

f = ∑
1≤i1<···<ik≤n

fi1···ik ei1 ∧·· ·∧ eik .

We define (cf. Definition 2.17) the pullback of f by A, denoted A∗( f ), by

A∗( f ) = ∑
1≤i1<···<ik≤n

fi1···ik Ai1 ∧·· ·∧Aik ∈Λ k(Rn),

where A j is the jth row of A and is identified by

A j =
n

∑
k=1

A j
kek ∈Λ 1(Rn).

If k = 0, we then let

A∗( f ) = f .

The present definition is consistent with the one given at the beginning of the chap-
ter; just set ϕ (x) = Ax in (1.1).

(iii) We next define the notion of rank (also called rank of order 1 in Chapter 2)
of f ∈Λ k (Rn) . We first associate to the linear map

g ∈Λ 1 (Rn)→ g� f ∈Λ k−1 (Rn)
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a matrix f ∈ R

( n
k−1

)
×n such that, by abuse of notations,

g� f = f g for every g ∈Λ 1 (Rn) .

In this case, we have

g� f

= ∑
1≤ j1<···< jk−1≤n

(
k

∑
γ=1

(−1)γ−1 ∑
jγ−1<i< jγ

f j1··· jγ−1i jγ ··· jk−1 gi

)
e j1 ∧·· ·∧ e jk−1 .

More explicitly, using the lexicographical order for the columns (index below) and
the rows (index above) of the matrix f , we have

( f ) j1··· jk−1
i = fi j1··· jk−1

for 1≤ i≤ n and 1≤ j1 < · · ·< jk−1 ≤ n. The rank of the k-form f is then the rank
of the

( n
k−1

)×n matrix f (or similarly the rank of the map g→ g� f ). We then write
(in Chapter 2, we write rank1 [ f ] , but in the remaining part of the book we write
only rank [ f ])

rank [ f ] = rank
(

f
)
.

Note that only when k = 2 or k = n, the matrix f is a square matrix. We will get our
best results precisely in these cases and when the matrix f is invertible.

We then have the following elementary result (cf. Proposition 2.37).

Proposition 1.1. Let f ∈Λ k (Rn) , f �= 0.

(i) If k = 1, then the rank of f is always 1.

(ii) If k = 2, then the rank of f is even. The forms

ωm =
m

∑
i=1

e2i−1∧ e2i

are such that rank [ωm] = 2m. Moreover, rank [ f ] = 2m if and only if

f m �= 0 and f m+1 = 0,

where f m = f ∧·· ·∧ f︸ ︷︷ ︸
m times

.

(iii) If 3≤ k ≤ n, then

rank [ f ] ∈ {k,k+2, . . . ,n}

and any of the values in {k,k+2, . . . ,n} can be achieved by the rank of a k-form. In
particular, if k = n−1, then rank [ f ] = n−1, whereas if k = n, then rank [ f ] = n.
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Remark 1.2 (cf. Propositions 2.24 and 2.33). The rank is an invariant for the pull-
back equation. More precisely, if there exists A ∈ GL(n) (i.e., A is an invertible
n×n matrix) such that

A∗(g) = f ,

then
rank [g] = rank [ f ] .

Conversely, when k = 1,2,n−1,n, if rank [g] = rank [ f ] , then there exists A∈GL(n)
such that

A∗(g) = f .

However, the converse is not true, in general, if 3 ≤ k ≤ n− 2. For example (cf.
Example 2.36), when k = 3, the forms

f = e1∧ e2∧ e3 + e4∧ e5∧ e6,

g = e1∧ e2∧ e3 + e1∧ e4∧ e5 + e2∧ e4∧ e6 + e3∧ e5∧ e6

have both rank = 6, but there is no A ∈ GL(6) so that

A∗ (g) = f .

Similarly and more strikingly (cf. Example 2.35), when k = 4 and

f = e1∧ e2∧ e3∧ e4 + e1∧ e2∧ e5∧ e6 + e3∧ e4∧ e5∧ e6,

there is no A ∈ GL(6) such that

A∗( f ) =− f .

1.2.2 Divisibility

We then discuss the notion of divisibility for exterior forms. Given two integers
1≤ l ≤ k ≤ n, a k-form f and a l-form g, we want to know if we can find a (k− l)-
form u so that

f = g∧u.

This is an important question in the theory of Grassmann algebras. A well-known
result is the so called Cartan lemma (cf. Theorem 2.42).

Theorem 1.3 (Cartan lemma). Let 1 ≤ k ≤ n and f ∈ Λ k (Rn) with f �= 0. Let
1≤ l ≤ k and g1, . . . ,gl ∈Λ 1(Rn) be such that

g1∧·· ·∧gl �= 0.

Then there exists u ∈Λ k−l(Rn) verifying

f = g1∧·· ·∧gl ∧u
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if and only if
f ∧g1 = · · ·= f ∧gl = 0.

Remark 1.4. In the same spirit, the following facts can easily be proved (cf. Propo-
sition 2.43):

(i) The form f ∈Λ k(Rn) is totally divisible, meaning that there exist f1, · · · , fk ∈
Λ 1 (Rn) such that

f = f1∧·· ·∧ fk

if and only if
rank[ f ] = k.

(ii) If k is odd and if f ∈Λ k(Rn) with rank[ f ] = k+2, then there exist u∈Λ 1(Rn)
and g ∈Λ k−1(Rn) such that

f = g∧u.

Our main result (cf. Theorem 2.45 for a more general statement) will be the
following theorem obtained by Dacorogna–Kneuss [31]. It generalizes the Cartan
lemma.

Theorem 1.5. Let 0 ≤ l ≤ k ≤ n be integers. Let g ∈ Λ l(Rn) and f ∈ Λ k(Rn). The
following statements are then equivalent:

(i) There exists u ∈Λ k−l(Rn) verifying

f = g∧u.

(ii) For every h ∈Λ n−k(Rn), the following implication holds:

[h∧g = 0] ⇒ [h∧ f = 0].

1.2.3 Differential Forms

In Chapter 3 we have gathered the main notations concerning differential forms.

Definition 1.6. Let Ω ⊂ R
n be open and f ∈C1

(
Ω ;Λ k

)
, namely

f = ∑
1≤i1<···<ik≤n

f i1···ik dxi1 ∧·· ·∧dxik .

(i) The exterior derivative of f denoted d f belongs to C0
(
Ω ;Λ k+1

)
and is

defined by

d f = ∑
1≤i1<···<ik≤n

n

∑
m=1

∂ fi1···ik
∂xm

dxm∧dxi1 ∧·· ·∧dxik .

If k = n, then d f = 0.
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(ii) The interior derivative or codifferential of f denoted δ f belongs to C0
(
Ω ;

Λ k−1
)

and is defined by

δ f = (−1)n(k−1) ∗ (d (∗ f )) .

Remark 1.7. (i) If k = 0, then the operator d can be identified with the gradient
operator, while δ f = 0 for any f .

(ii) If k = 1, then the operator d can be identified with the curl operator and the
operator δ is the divergence operator.

We next gather some well-known properties of the operators d and δ (cf. Theo-
rems 3.5 and 3.7).

Theorem 1.8. Let f ∈C2(Ω ;Λ k). Then

dd f = 0, δδ f = 0 and dδ f +δd f = Δ f .

We also need the following definition. In the sequel we will denote the exterior
unit normal of ∂Ω by ν .

Definition 1.9. The tangential component of a k-form f on ∂Ω is the (k+1)-form

ν ∧ f ∈Λ k+1.

The normal component of a k-form f on ∂Ω is the (k−1)-form

ν � f ∈Λ k−1.

We easily deduce the following properties (cf. Theorem 3.23).

Proposition 1.10. Let 0≤ k ≤ n and f ∈C1
(
Ω ;Λ k

)
; then

ν ∧ f = 0 on ∂Ω ⇒ ν ∧d f = 0 on ∂Ω ,

ν � f = 0 on ∂Ω ⇒ ν �δ f = 0 on ∂Ω .

We will constantly use the integration by parts formula (cf. Theorem 3.28).

Theorem 1.11. Let 1≤ k ≤ n, f ∈C1
(
Ω ;Λ k−1

)
and g ∈C1

(
Ω ;Λ k

)
. Then∫

Ω
〈d f ;g〉+

∫
Ω
〈 f ;δg〉=

∫
∂Ω
〈ν ∧ f ;g〉=

∫
∂Ω
〈 f ;ν �g〉.

We will adopt the following notations.

Notation 1.12. Let Ω ⊂ R
n be open, r ≥ 0 be an integer and 0≤ α ≤ 1≤ p≤ ∞.

Spaces with vanishing tangential or normal component will be denoted in the fol-
lowing way:
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Cr,α
T

(
Ω ;Λ k)= { f ∈Cr,α(Ω ;Λ k) : ν ∧ f = 0 on ∂Ω},

Cr,α
N

(
Ω ;Λ k)= { f ∈Cr,α(Ω ;Λ k) : ν � f = 0 on ∂Ω},

W r+1,p
T

(
Ω ;Λ k)= { f ∈W r+1,p(Ω ;Λ k) : ν ∧ f = 0 on ∂Ω},

W r+1,p
N

(
Ω ;Λ k)= { f ∈W r+1,p(Ω ;Λ k) : ν � f = 0 on ∂Ω}.

The different sets of harmonic fields will be denoted by

H
(
Ω ;Λ k)= { f ∈W 1,2(Ω ;Λ k) : d f = 0 and δ f = 0 in Ω},

HT
(
Ω ;Λ k)= { f ∈H

(
Ω ;Λ k) : ν ∧ f = 0 on ∂Ω},

HN
(
Ω ;Λ k)= { f ∈H

(
Ω ;Λ k) : ν � f = 0 on ∂Ω}.

We now list (cf. Section 6.1) some properties of the harmonic fields.

Theorem 1.13. Let Ω ⊂ R
n be an open set. Then

H
(
Ω ;Λ k)⊂C∞(Ω ;Λ k).

Moreover if Ω is bounded and smooth, then the next statements are valid.
(i) The following inclusion holds:

HT
(
Ω ;Λ k)∪HN

(
Ω ;Λ k)⊂C∞(Ω ;Λ k).

Furthermore, if r ≥ 0 is an integer and 0 ≤ α ≤ 1, then there exists C = C(r,Ω)
such that for every ω ∈HT

(
Ω ;Λ k

)∪HN
(
Ω ;Λ k

)
,

‖ω‖W r,2 ≤C‖ω‖L2 and ‖ω‖Cr,α ≤C‖ω‖C0 .

(ii) The spaces HT
(
Ω ;Λ k

)
and HN

(
Ω ;Λ k

)
are finite dimensional and closed

in L2
(
Ω ;Λ k

)
.

(iii) Furthermore, if Ω is contractible (cf. Definition 6.1), then

HT
(
Ω ;Λ k)= {0} if 0≤ k ≤ n−1,

HN
(
Ω ;Λ k)= {0} if 1≤ k ≤ n.

(iv) If k = 0 or k = n and h ∈H
(
Ω ;Λ k

)
, then h is constant on each connected

component of Ω . In particular, HT
(
Ω ;Λ 0

)
= {0} and HN (Ω ;Λ n) = {0}.

Remark 1.14. If k = 1 and assuming that Ω is smooth, then the sets HT and HN
can be rewritten, as usual by abuse of notations, as

HT
(
Ω ;Λ 1)=

{
f ∈C∞ (

Ω ;Rn) :

[
curl f = 0 and div f = 0

fiν j− f jνi = 0, ∀1≤ i < j ≤ n

}
,

HN
(
Ω ;Λ 1)=

{
f ∈C∞ (

Ω ;Rn) :

[
curl f = 0 and div f = 0

∑n
i=1 fiνi = 0

}
.
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Moreover, if Ω is simply connected, then

HT
(
Ω ;Λ 1)= HN

(
Ω ;Λ 1)= {0}.

1.3 Hodge–Morrey Decomposition and Poincaré Lemma

1.3.1 A General Identity and Gaffney Inequality

In the proof of Morrey of the Hodge decomposition, one of the key points to get
compactness is the following inequality (cf. Theorem 5.16).

Theorem 1.15 (Gaffney inequality). Let Ω ⊂ R
n be a bounded open smooth set.

Then there exists a constant C =C(Ω)> 0 such that

‖ω‖2
W 1,2 ≤C

(‖dω‖2
L2 +‖δω‖2

L2 +‖ω‖2
L2

)
for every ω ∈W 1,2

T (Ω ;Λ k)∪W 1,2
N (Ω ;Λ k).

Remark 1.16. When k = 1, the inequality says, identifying 1-forms with vector
fields,

‖ω‖2
W 1,2 ≤C

(‖curlω‖2
L2 +‖divω‖2

L2 +‖ω‖2
L2

)
for every ω ∈W 1,2(Ω ;Rn) satisfying either one of the following two conditions:

ν ∧ω = 0 ⇔ ωiν j−ω jνi = 0, ∀1≤ i < j ≤ n,

ν �ω = 〈ν ;ω〉=
n

∑
i=1

ωiνi = 0.

The inequality, as stated above, has been proved by Morrey [76, 77], generalizing
results of Gaffney [44, 45]. We will prove in Section 5.3 the inequality appealing to
a very general identity (see Theorem 5.7) proved by Csató and Dacorogna [24].

Theorem 1.17 (A general identity). Let 0 ≤ k ≤ n and let Ω ⊂ R
n be a bounded

open smooth set and with exterior unit normal ν . Then every α,β ∈ C1(Ω ;Λ k)
satisfy the equation∫

Ω
(〈dα;dβ 〉+ 〈δα;δβ 〉−〈∇α;∇β 〉)

=−
∫

∂Ω
(〈ν ∧d(ν �α);ν ∧β 〉+ 〈ν �δ (ν ∧α);ν �β 〉)

+
∫

∂Ω
(〈Lν(ν ∧α);ν ∧β 〉+ 〈Kν(ν �α);ν �β 〉) .

The operators Lν and Kν (cf. Definition 5.1) can be seen as matrices acting on
(k+1)-forms and (k−1)-forms respectively (identifying, as usual, a k-form with
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a
(n

k

)
vector). They depend only on the geometry of Ω and on the degree k of the

form. They can easily be calculated explicitly for general k-forms and, when Ω is a
ball of radius R (cf. Corollary 5.9), it turns out that

Lν(ν ∧ω) =
k
R

ν ∧ω and Kν (ν �ω) =
n− k

R
ν �ω

and, thus,

〈Lν(ν ∧ω);ν ∧ω〉= k
R
|ν ∧ω|2 and 〈Kν(ν �ω);ν �ω〉= n− k

R
|ν �ω|2.

In the case of a 1-form and for general open sets Ω (cf. Proposition 5.11), it can
be shown that Kν is a scalar and it is a multiple of κ, the mean curvature of the
hypersurface ∂Ω , namely

Kν = (n−1)κ.

Summarizing the results for a 1-form ω in R
n (cf. Corollary 5.12) with vanishing

tangential component (i.e., ν ∧ω = 0 on ∂Ω ), we have∫
Ω

(
|curlω|2 + |divω|2−|∇ω|2

)
= (n−1)

∫
∂Ω

κ [〈ν ;ω〉]2 ,

where κ is the mean curvature of the hypersurface ∂Ω and 〈.; .〉 denotes the scalar
product in R

n.

1.3.2 The Hodge–Morrey Decomposition

We now turn to the celebrated Hodge–Morrey decomposition (cf. Theorem 6.9).

Theorem 1.18 (Hodge–Morrey decomposition). Let Ω ⊂ R
n be a bounded open

smooth set. Let 0≤ k ≤ n and f ∈ L2
(
Ω ;Λ k

)
. Then there exist

α ∈W 1,2
T

(
Ω ;Λ k−1), β ∈W 1,2

T

(
Ω ;Λ k+1),

h ∈HT
(
Ω ;Λ k) and ω ∈W 2,2

T

(
Ω ;Λ k)

such that, in Ω ,

f = dα +δβ +h, α = δω and β = dω.

Remark 1.19. (i) We have quoted only one of the three decompositions (cf. Theorem
6.9 for details). Another one, completely similar, is by replacing T by N and the
other one mixing both T and N.

(ii) If k ≤ n−1 and if Ω is contractible, then h = 0.
(iii) If k = 0, then the theorem reads as

f = δβ = δdω = Δω in Ω with ω = 0 on ∂Ω .
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(iv) When k = 1 and n = 3, the decomposition reads as follows. Let ν be the
exterior unit normal. For any f ∈ L2(Ω ;R3), there exist

ω ∈W 2,2 (Ω ;R3) with ωiν j−ω jνi = 0 on ∂Ω , ∀1≤ i < j ≤ 3

α ∈W 1,2
0 (Ω) and α = divω,

β ∈W 1,2 (Ω ;R3) with β =−curlω and 〈ν ;β 〉= 0 on ∂Ω

h ∈
{

h ∈C∞ (
Ω ;R3) :

[
curlh = 0 and divh = 0

hiν j−h jνi = 0, ∀1≤ i < j ≤ 3

}

such that
f = gradα + curlβ +h in Ω .

Furthermore, if Ω is simply connected, then h = 0.

(v) If f is more regular than in L2, then α,β and ω are in the corresponding class
of regularity (cf. Theorem 6.12). More precisely if, for example, r ≥ 0 is an integer,
0 < q < 1 and f ∈Cr,q(Ω ;Λ k), then

α ∈Cr+1,q(Ω ;Λ k−1), β ∈Cr+1,q(Ω ;Λ k+1) and ω ∈Cr+2,q(Ω ;Λ k).
(vi) The proof of Morrey (cf. Theorem 6.7) uses the direct methods of the calcu-

lus of variations. One minimizes

D f (ω) =
∫

Ω

(
1
2
|dω|2 + 1

2
|δω|2 + 〈 f ;ω〉

)

in an appropriate space, Gaffney inequality giving the coercivity of the integral.

1.3.3 First-Order Systems of Cauchy–Riemann Type

It turns out that the Hodge–Morrey decomposition is in fact equivalent (cf. Proposi-
tion 7.9) to solving the first-order system{

dω = f and δω = g in Ω ,

ν ∧ω = ν ∧ω0 on ∂Ω

or the similar one, {
dω = f and δω = g in Ω ,

ν �ω = ν �ω0 on ∂Ω .

Both systems are discussed in Theorems 7.2 and 7.4. We here state a simplified
version of the first one.
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Theorem 1.20. Let r ≥ 0 and 1 ≤ k ≤ n− 2 be integers, 0 < q < 1 and Ω ⊂ R
n

be a bounded contractible open smooth set and with exterior unit normal ν . Let
g ∈Cr,q

(
Ω ;Λ k−1

)
and f ∈Cr,q

(
Ω ;Λ k+1

)
be such that

δg = 0 in Ω , d f = 0 in Ω and ν ∧ f = 0 on ∂Ω .

Then there exists ω ∈Cr+1,q
(
Ω ;Λ k

)
, such that{

dω = f and δω = g in Ω ,

ν ∧ω = 0 on ∂Ω .

Remark 1.21. (i) It turns out that the sufficient conditions are also necessary (cf.
Theorems 7.2 and 7.4).

(ii) When k = n−1, the result is valid provided∫
Ω

f = 0.

Note that in this case the conditions d f = 0 and ν∧ f = 0 are automatically fulfilled.

(iii) Completely analogous results are given in Theorems 7.2 and 7.4 for Sobolev
spaces.

(iv) If Ω is not contractible, then additional necessary conditions have to be
added.

(v) When k= 1 and n= 3, the theorem reads as follows. Let Ω ⊂R
3 be a bounded

contractible smooth open set, g ∈Cr,q
(
Ω
)

and f ∈Cr,q
(
Ω ;R3

)
be such that

div f = 0 in Ω and 〈 f ;ν〉= 0 on ∂Ω .

Then there exists ω ∈Cr+1,q
(
Ω ;R3

)
such that{

curlω = f and divω = g in Ω ,

ωiν j−ω jνi = 0 ∀1≤ i < j ≤ 3 on ∂Ω .

1.3.4 Poincaré Lemma

We start with the classical Poincaré lemma (cf. Theorem 8.1).

Theorem 1.22 (Poincaré lemma). Let r ≥ 1 and 0 ≤ k ≤ n− 1 be integers and
Ω ⊂ R

n be an open contractible set. Let g ∈Cr
(
Ω ;Λ k+1

)
with dg = 0 in Ω . Then

there exists G ∈Cr
(
Ω ;Λ k

)
such that

dG = g in Ω .
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With the help of the Hodge–Morrey decomposition, the result can be improved
(cf. Theorem 8.3) in two directions. First, one can consider general sets Ω , not
only contractible sets. Moreover, one can get sharp regularity in Hölder and in
Sobolev spaces. We quote here only the case of Hölder spaces. We also give the
theorem with the d operator. Analogous results are also valid for the δ operator; see
Theorem 8.4.

Theorem 1.23. Let r ≥ 0 and 0 ≤ k ≤ n− 1 be integers, 0 < α < 1 and Ω ⊂ R
n

be a bounded open smooth set. Let f : Ω → Λ k+1. The following statements are
equivalent:

(i) Let f ∈Cr,α (
Ω ;Λ k+1

)
be such that

d f = 0 in Ω and
∫

Ω
〈 f ;ψ〉= 0 for every ψ ∈HN

(
Ω ;Λ k+1).

(ii) There exists ω ∈Cr+1,α (
Ω ;Λ k

)
such that

dω = f in Ω .

Remark 1.24. (i) When k = n−1, there is no restriction on the solvability of dω = f .

(ii) Recall that if Ω is contractible and 0≤ k ≤ n−1, then

HN
(
Ω ;Λ k+1)= {0}.

We finally consider the boundary value problems{
dω = f in Ω ,

ω = ω0 on ∂Ω
and

{
δω = g in Ω ,

ω = ω0 on ∂Ω .

We give a result for the first one and for ω0 = 0 (cf. Theorem 8.16 for general
ω0), but a similar one (cf. Theorem 8.18) exists for the second problem. We only
discuss the case of Hölder spaces, but the result is also valid in Sobolev spaces (see
Theorems 8.16 and 8.18 for details).

Theorem 1.25. Let r ≥ 0 and 0 ≤ k ≤ n− 1 be integers, 0 < α < 1 and Ω ⊂ R
n

be a bounded open smooth set and with exterior unit normal ν . Then the following
statements are equivalent:

(i) Let f ∈Cr,α (
Ω ;Λ k+1

)
satisfy

d f = 0 in Ω , ν ∧ f = 0 on ∂Ω ,

and, for every χ ∈HT
(
Ω ;Λ k+1

)
,∫

Ω
〈 f ; χ〉= 0.
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(ii) There exists ω ∈Cr+1,α (
Ω ;Λ k

)
such that{

dω = f in Ω ,

ω = 0 on ∂Ω .

1.4 The Case of Volume Forms

1.4.1 Statement of the Problem

In Part III, we will discuss the following problem. Given Ω a bounded open set
in R

n and f ,g : Rn → R, we want to find ϕ : Ω → R
n verifying{

g(ϕ(x))det∇ϕ(x) = f (x) x ∈Ω ,

ϕ(x) = x x ∈ ∂Ω .
(1.2)

Writing the functions f and g as volume forms through the straightforward
identification

g = g(x)dx1∧·· ·∧dxn and f = f (x)dx1∧·· ·∧dxn,

problem (1.2) can be written as{
ϕ∗(g) = f in Ω ,

ϕ = id on ∂Ω ,

where ϕ∗(g) is the pullback of g by ϕ.
The following preliminary remarks are in order.

(i) The case n = 1 is completely elementary and is discussed in Section 1.4.2.

(ii) When n≥ 2, the equation in (1.2) is a nonlinear first-order partial differential
equation homogeneous of degree n in the derivatives. It is underdetermined, in the
sense that we have n unknowns (the components of ϕ) and only one equation. Re-
lated to this observation, we have that if there exists a solution to our problem, then
there are infinitely many ones. Indeed, for example, if n = 2, Ω is the unit ball and
f = g = 1, the maps ϕm (written in polar and in Cartesian coordinates) defined by

ϕm (x) = ϕm (x1,x2) =

(
r cos

(
θ +2mπr2

)
r sin

(
θ +2mπr2

)
)

=

(
x1 cos

(
2mπ

(
x2

1 + x2
2
))− x2 sin

(
2mπ

(
x2

1 + x2
2
))

x2 cos
(
2mπ

(
x2

1 + x2
2
))

+ x1 sin
(
2mπ

(
x2

1 + x2
2
))

)

satisfy (1.2) for every m ∈ Z.
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(iii) An integration by parts, or, what amounts to the same thing, an elementary
topological degree argument (see (19.3)), immediately gives the necessary condition
(independently of the fact that ϕ is a diffeomorphism or not and of the fact that
ϕ (Ω) contains strictly or not Ω ) ∫

Ω
f =

∫
Ω

g. (1.3)

In most of our analysis, it will turn out that this condition is also sufficient.

(iv) We will always assume that g> 0. If g is not strictly positive, then hypotheses
other than (1.3) are necessary; for example, f cannot be strictly positive. Indeed if,
for example, f ≡ 1 and g is allowed to vanish even at a single point, then no C1

solution of our problem exists (cf. Proposition 11.6). However, in a very special
case (cf. Lemma 11.21), we will deal with functions f and g that both change sign.

(v) We will, however, allow f to change sign, but the analysis is very different if
f > 0 or if f vanishes, even at a single point, let alone if it becomes negative. The
first problem will be discussed in Chapter 10, whereas the second one will be dealt
with in Chapter 11. One of the main differences is that in the first case, any solution
of (1.2) is necessarily a diffeomorphism (cf. Theorem 19.12), whereas this is never
true in the second case.

(vi) It is easy to see (cf. Corollary 19.4) that any solution of (1.2) satisfies

ϕ(Ω)⊃Ω and ϕ(Ω)⊃Ω . (1.4)

If f > 0, we have, since ϕ is a diffeomorphism, that (cf. Theorem 19.12)

ϕ(Ω) = Ω and ϕ(Ω) = Ω .

If this is not the case, then, in general, the inclusions can be strict. We will discuss
in Chapter 11 this matter in details.

(vii) Problem (1.2) admits a weak formulation. Indeed, if ϕ is a diffeomorphism,
we can write (cf. Theorem 19.7) the equation g(ϕ)det∇ϕ = f as∫

ϕ(E)
g =

∫
E

f for every open set E ⊂Ω

or, equivalently, ∫
Ω

gζ
(
ϕ−1)= ∫

Ω
f ζ for every ζ ∈C∞

0 (Ω) .

We observe that both new writings make sense if ϕ is only a homeomorphism.

(viii) The problem can be seen as a question of mass transportation. Indeed, we
want to transport the mass distribution g to the mass distribution f without moving
the points of the boundary of Ω . In this context, the equation is usually written as
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E

g =
∫

ϕ−1(E)
f for every open set E ⊂Ω .

The problem of optimal mass transportation has received considerable attention.
We should point out that our analysis is not in this framework. The two main strong
points of our analysis are that we are able to find smooth solutions, sometimes with
the optimal regularity and to deal with fixed boundary data.

1.4.2 The One-Dimensional Case

As already stated, the case n = 1 is completely elementary (cf. Proposition 11.4),
but it exhibits some striking differences with the case n ≥ 2. However, it may shed
some light on some issues that we will discuss in the higher-dimensional case. Let
Ω = (a,b) ,

F (x) =
∫ x

a
f (t)dt and G(x) =

∫ x

a
g(t)dt.

Then problem (1.2) becomes{
G(ϕ (x)) = F (x) if x ∈ (a,b) ,

ϕ (a) = a and ϕ (b) = b.

If G is invertible and this happens if, for example, g > 0 and if

F ([a,b])⊂ G(R) , (1.5)

and this happens if, for example, g≥ g0 > 0, then the problem has the solution

ϕ (x) = G−1 (F (x)) .

The necessary condition (1.3)

∫ b

a
f =

∫ b

a
g

ensures that

ϕ (a) = a and ϕ (b) = b.

This very elementary analysis leads to the following conclusions:

1) Contrary to the case n≥ 2, the necessary condition (1.3) is not sufficient. We
need the extra condition (1.5); see Proposition 11.4 for details.

2) The problem has a unique solution, contrary to the case n≥ 2.

3) If f and g are in the space Cr, then the solution ϕ is in Cr+1.


