Gyula Csató
 Bernard Dacorogna
 Olivier Kneuss

The Pullback Equation for Differential Forms

E Birkhäuser

Progress in Nonlinear Differential Equations and Their Applications

Volume 83

Editor
Haim Brezis
Université Pierre et Marie Curie
Paris
and
Rutgers University
New Brunswick, N.J.

Editorial Board
Antonio Ambrosetti, Scuola Internationale Superiore di Studi Avanzati, Trieste
A. Bahri, Rutgers University, New Brunswick

Felix Browder, Rutgers University, New Brunswick
Luis Caffarelli, The University of Texas, Austin
Lawrence C. Evans, University of California, Berkeley
Mariano Giaquinta, University of Pisa
David Kinderlehrer, Carnegie-Mellon University, Pittsburgh
Sergiu Klainerman, Princeton University
Robert Kohn, New York University
P. L. Lions, University of Paris IX

Jean Mawhin, Université Catholique de Louvain
Louis Nirenberg, New York University
Lambertus Peletier, University of Leiden
Paul Rabinowitz, University of Wisconsin, Madison
John Toland, University of Bath

For further volumes:
http://www.springer.com/series/4889

Gyula Csató • Bernard Dacorogna
Olivier Kneuss

The Pullback Equation for Differential Forms

E Birkhäuser

Gyula Csató
Lausanne, Switzerland
Olivier Kneuss
Lausanne, Switzerland

Bernard Dacorogna

Lausanne, Switzerland

ISBN 978-0-8176-8312-2
e-ISBN 978-0-8176-8313-9
DOI 10.1007/978-0-8176-8313-9
Springer New York Dordrecht Heidelberg London
Library of Congress Control Number: 2011941790

Mathematics Subject Classification: 15A75, 35FXX, 58AXX
© Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper
Springer is part of Springer Science + Business Media (www.birkhauser-science.com)

Preface

In the present book we study the pullback equation for differential forms

$$
\varphi^{*}(g)=f,
$$

namely, given two differential k-forms f and g we want to discuss the equivalence of such forms. This turns out to be a system of nonlinear first-order partial differential equations in the unknown map φ.

The problem that we study here is a particular case of the equivalence of tensors which has received considerable attention. However, the pullback equation for differential forms has quite different features than those for symmetric tensors, such as Riemannian metrics, which has also been studied a great deal. In more physical terms, the problem of equivalence of forms can also be seen as a problem of mass transportation.

This is an important problem in geometry and in analysis. It has been extensively studied, in the cases $k=2$ and $k=n$, but much less when $3 \leq k \leq n-1$. The problem considered here of finding normal forms (Darboux theorem, Pfaff normal form) is a fundamental question in symplectic and contact geometry. With respect to the literature in geometry, the main emphasis of the book is on regularity and boundary conditions. Indeed, special attention has been given to getting optimal regularity; this is a particularly delicate point and requires estimates for elliptic equations and fine properties of Hölder spaces.

In the case of volume forms (i.e., $k=n$), our problem is clearly related to the widely studied subject of optimal mass transportation. However, our analysis is not in this framework. As stated before, the two main points of our analysis are that we provide optimal regularity in Hölder spaces and, at the same time, we are able to handle boundary conditions.

Our book will hopefully appeal to both geometers and analysts. In order to make the subject more easily attractive for the analysts, we have reduced as much as possible the notations of geometry. For example, we have restricted our attention to domains in \mathbb{R}^{n}, but it goes without saying that all results generalize to manifolds with or without boundary.

In Part I we gather some basic facts about exterior and differential forms that are used throughout Parts II and IV. Most of the results are standard, but they are presented so that the reader may be able to grasp the main results of the subject without getting too involved with the terminology and concepts of differential geometry.

Part II presents the classical Hodge decomposition following the proof of Morrey, but with some variants, notably in our way of deriving the Gaffney inequality. We also give applications to several versions of the Poincaré lemma that are constantly used in the other parts of the book. Part II can be of interest independently of the main subject of the book.

Part III discusses the case $k=n$. We have tried in this part to make it, as much as possible, independent of the machinery of differential forms. Indeed, Part III can essentially be read with no reference to the other parts of the work, except for the properties of Hölder spaces presented in Part V.

Part IV deals with the general case. Emphasis in this part is given to the symplectic case $k=2$. We also briefly deal with the simpler cases $k=0,1, n-1$. The case $3 \leq k \leq n-2$ is much harder and we are able to obtain results only for forms having a special structure. The difficulty is already at the algebraic level.

In Part V we gather several basic properties of Hölder spaces that are used extensively throughout the book. Due to the nonlinearity of the pullback equation, Hölder spaces are much better adapted than Sobolev spaces. The literature on Hölder spaces is considerably smaller than the one on Sobolev spaces. Moreover, the results presented here cannot be found solely in a single reference. We hope that this part will be useful to mathematicians well beyond those who are primarily interested in the pullback equation.

Acknowledgments Several results of Part IV find their origins from joint works and discussions with S. Bandyopadhyay. During the preparation of the manuscript, we have benefited from many helpful comments by P. Bousquet, G. Cupini, W. Gangbo, N. Kamran, T. Ratiu, K.D. Semmler, D. Serre and D. Ye. The discussions with M. Troyanov have been particularly fruitful. We also thank H. Brézis for accepting, with enthusiasm, our book in the Birkhäuser series that he edits.

The research of the third author has been, in part, subsidized by a grant of the Fonds National Suisse de la Recherche Scientifique.

Contents

1 Introduction 1
1.1 Statement of the Problem 1
1.2 Exterior and Differential Forms 3
1.2.1 Definitions and Basic Properties of Exterior Forms 3
1.2.2 Divisibility 6
1.2.3 Differential Forms 7
1.3 Hodge-Morrey Decomposition and Poincaré Lemma 10
1.3.1 A General Identity and Gaffney Inequality 10
1.3.2 The Hodge-Morrey Decomposition 11
1.3.3 First-Order Systems of Cauchy-Riemann Type 12
1.3.4 Poincaré Lemma 13
1.4 The Case of Volume Forms 15
1.4.1 Statement of the Problem 15
1.4.2 The One-Dimensional Case 17
1.4.3 The Case $f \cdot g>0$ 18
1.4.4 The Case with No Sign Hypothesis on f 19
1.5 The Case $0 \leq k \leq n-1$ 20
1.5.1 The Flow Method 20
1.5.2 The Cases $k=0$ and $k=1$ 21
1.5.3 The Case $k=2$ 22
1.5.4 The Case $3 \leq k \leq n-1$ 24
1.6 Hölder Spaces 25
1.6.1 Definition and Extension of Hölder Functions 25
1.6.2 Interpolation, Product, Composition and Inverse 27
1.6.3 Smoothing Operator 28
Part I Exterior and Differential Forms
2 Exterior Forms and the Notion of Divisibility 33
2.1 Definitions 34
2.1.1 Exterior Forms and Exterior Product 34
2.1.2 Scalar Product, Hodge Star Operator and Interior Product 36
2.1.3 Pullback and Dimension Reduction 39
2.1.4 Canonical Forms for $1,2,(n-2)$ and $(n-1)$-Forms 42
2.2 Annihilators, Rank and Corank 46
2.2.1 Exterior and Interior Annihilators 46
2.2.2 Rank and Corank 48
2.2.3 Properties of the Rank of Order 1 53
2.3 Divisibility 57
2.3.1 Definition and First Properties 57
2.3.2 Main Result 63
2.3.3 Some More Results 67
2.3.4 Proof of the Main Theorem 71
3 Differential Forms 75
3.1 Notations 75
3.2 Tangential and Normal Components 79
3.3 Gauss-Green Theorem and Integration-by-Parts Formula 87
4 Dimension Reduction 91
4.1 Frobenius Theorem 91
4.2 Reduction Theorem 93
Part II Hodge-Morrey Decomposition and Poincaré Lemma
5 An Identity Involving Exterior Derivatives and Gaffney Inequality 101
5.1 Introduction 101
5.2 An Identity Involving Exterior Derivatives 103
5.2.1 Preliminary Formulas 103
5.2.2 The Main Theorem 107
5.3 Gaffney Inequality 113
5.3.1 An Elementary Proof 113
5.3.2 A Generalization of the Boundary Condition 115
5.3.3 Gaffney-Type Inequalities in L^{p} and Hölder Spaces 118
6 The Hodge-Morrey Decomposition 121
6.1 Properties of Harmonic Fields 121
6.2 Existence of Minimizers and Euler-Lagrange Equation 124
6.3 The Hodge-Morrey Decomposition 127
6.4 Higher Regularity 130
7 First-Order Elliptic Systems of Cauchy-Riemann Type 135
7.1 System with Prescribed Tangential Component 135
7.2 System with Prescribed Normal Component 140
7.3 Weak Formulation for Closed Forms 142
7.4 Equivalence Between Hodge Decomposition and Cauchy- Riemann-Type Systems 145
8 Poincaré Lemma 147
8.1 The Classical Poincaré Lemma 147
8.2 Global Poincaré Lemma with Optimal Regularity 148
8.3 Some Preliminary Lemmas 150
8.4 Poincaré Lemma with Dirichlet Boundary Data 157
8.5 Poincaré Lemma with Constraints 161
8.5.1 A First Result 161
8.5.2 A Second Result 161
8.5.3 Some Technical Lemmas 166
9 The Equation $\operatorname{div} u=f$ 179
9.1 The Main Theorem 179
9.2 Regularity of Divergence-Free Vector Fields 181
9.3 Some More Results 182
9.3.1 A First Result 182
9.3.2 A Second Result 184
Part III The Case $\boldsymbol{k}=\boldsymbol{n}$
10 The Case $f \cdot g>0$ 191
10.1 The Main Theorem 191
10.2 The Flow Method 193
10.3 The Fixed Point Method 198
10.4 Two Proofs of the Main Theorem 201
10.4.1 First Proof 201
10.4.2 Second Proof 206
10.5 A Constructive Method 209
11 The Case Without Sign Hypothesis on f 211
11.1 Main Result 211
11.2 Remarks and Related Results 213
11.3 Proof of the Main Result 217
11.4 Radial Solution 222
11.5 Concentration of Mass 229
11.6 Positive Radial Integration 235
Part IV The Case $\mathbf{0} \leq \boldsymbol{k} \leq \boldsymbol{n}-\mathbf{1}$
12 General Considerations on the Flow Method 255
12.1 Basic Properties of the Flow 255
12.2 A Regularity Result 258
12.3 The Flow Method 261
13 The Cases $\boldsymbol{k}=0$ and $\boldsymbol{k}=1$ 267
13.1 The Case of 0-Forms and of Closed 1-Forms 267
13.1.1 The Case of 0-Forms 267
13.1.2 The Case of Closed 1-Forms 269
13.2 Darboux Theorem for 1-Forms 271
13.2.1 Main Results 271
13.2.2 A Technical Result 276
14 The Case $k=2$ 285
14.1 Notations 285
14.2 Local Result for Forms with Maximal Rank 286
14.3 Local Result for Forms of Nonmaximal Rank 290
14.3.1 The Theorem and a First Proof 290
14.3.2 A Second Proof 291
14.4 Global Result with Dirichlet Data 292
14.4.1 The Main Result 292
14.4.2 The Flow Method 294
14.4.3 The Key Estimate for Regularity 295
14.4.4 The Fixed Point Method 302
14.4.5 A First Proof of the Main Theorem 308
14.4.6 A Second Proof of the Main Theorem 314
15 The Case $3 \leq k \leq n-1$ 319
15.1 A General Theorem for Forms of Rank $=k$ 319
15.2 The Case of $(n-1)$-Forms 321
15.2.1 The Case of Closed $(n-1)$-Forms 321
15.2.2 The Case of Nonclosed ($n-1$)-Forms 322
15.3 Simultaneous Resolutions and Applications 324
15.3.1 Simultaneous Resolution for 1-Forms 324
15.3.2 Applications to k-Forms 326
Part V Hölder Spaces
16 Hölder Continuous Functions 335
16.1 Definitions of Continuous and Hölder Continuous Functions 335
16.1.1 Definitions 335
16.1.2 Regularity of Boundaries 338
16.1.3 Some Elementary Properties 339
16.2 Extension of Continuous and Hölder Continuous Functions 341
16.2.1 The Main Result and Some Corollaries 341
16.2.2 Preliminary Results 345
16.2.3 Proof of the Main Theorem 353
16.3 Compact Imbeddings 356
16.4 A Lower Semicontinuity Result 358
16.5 Interpolation and Product 359
16.5.1 Interpolation 359
16.5.2 Product and Quotient 366
16.6 Composition and Inverse 369
16.6.1 Composition 369
16.6.2 Inverse 370
16.6.3 A Further Result 372
16.7 Difference of Composition 375
16.7.1 A First Result 376
16.7.2 A Second Result 377
16.7.3 A Third Result 384
16.8 The Smoothing Operator 386
16.8.1 The Main Theorem 386
16.8.2 A First Application 390
16.8.3 A Second Application 393
16.9 Smoothing Operator for Differential Forms 396
Part VI Appendix
17 Necessary Conditions 407
18 An Abstract Fixed Point Theorem 413
19 Degree Theory 417
19.1 Definition and Main Properties 417
19.2 General Change of Variables Formula 418
19.3 Local and Global Invertibility 420
References 425
Further Reading 429
Notations 431
Index 435

Chapter 1

Introduction

1.1 Statement of the Problem

The aim of this book is the study of the pullback equation

$$
\begin{equation*}
\varphi^{*}(g)=f \tag{1.1}
\end{equation*}
$$

More precisely, we want to find a map $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} ;$ preferably we want this map to be a diffeomorphism that satisfies the above equation, where f and g are differential k-forms, $0 \leq k \leq n$. Most of the time we will require these two forms to be closed. Before going further, let us examine the exact meaning of (1.1). We write

$$
g(x)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} g_{i_{1} \cdots i_{k}}(x) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

and similarly for f. The meaning of (1.1) is that

$$
\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} g_{i_{1} \cdots i_{k}} \circ \varphi d \varphi^{i_{1}} \wedge \cdots \wedge d \varphi^{i_{k}}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} f_{i_{1} \cdots i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

where

$$
d \varphi^{i}=\sum_{j=1}^{n} \frac{\partial \varphi^{i}}{\partial x_{j}} d x^{j}
$$

This turns out to be a nonlinear (if $2 \leq k \leq n$) homogeneous of degree k (in the derivatives) first-order system of $\binom{n}{k}$ partial differential equations. Let us see the form that the equation takes when $k=0,1,2, n$.

Case: $k=0$. Equation (1.1) reads as

$$
g(\varphi(x))=f(x)
$$

while

$$
d g=0 \Leftrightarrow \operatorname{grad} g=0
$$

We will be, only marginally, interested in this elementary case, which is trivial for closed forms. In any case, (1.1) is not, when $k=0$, a differential equation.

Case: $k=1$. The form g, and analogously for f, can be written as

$$
g(x)=\sum_{i=1}^{n} g_{i}(x) d x^{i}
$$

Equation (1.1) then becomes

$$
\sum_{i=1}^{n} g_{i}(\varphi(x)) d \varphi^{i}=\sum_{i=1}^{n} f_{i}(x) d x^{i}
$$

while

$$
d g=0 \Leftrightarrow \operatorname{curl} g=0 \Leftrightarrow \frac{\partial g_{i}}{\partial x_{j}}-\frac{\partial g_{j}}{\partial x_{i}}=0, \quad 1 \leq i<j \leq n .
$$

Writing

$$
d \varphi^{i}=\sum_{j=1}^{n} \frac{\partial \varphi^{i}}{\partial x_{j}} d x^{j}
$$

and substituting into the equation, we find that (1.1) is equivalent to

$$
\sum_{j=1}^{n} g_{j}(\varphi(x)) \frac{\partial \varphi^{j}}{\partial x_{i}}(x)=f_{i}(x), \quad 1 \leq i \leq n
$$

This is a system of $\binom{n}{1}=n$ first-order linear (in the first derivatives) partial differential equations.

Case: $k=2$. The form g, and analogously for f, can be written as

$$
g=\sum_{1 \leq i<j \leq n} g_{i j}(x) d x^{i} \wedge d x^{j}
$$

while

$$
d g=0 \Leftrightarrow \frac{\partial g_{i j}}{\partial x_{k}}-\frac{\partial g_{i k}}{\partial x_{j}}+\frac{\partial g_{j k}}{\partial x_{i}}=0, \quad 1 \leq i<j<k \leq n .
$$

The equation $\varphi^{*}(g)=f$ becomes

$$
\sum_{1 \leq p<q \leq n} g_{p q}(\varphi(x)) d \varphi^{p} \wedge d \varphi^{q}=\sum_{1 \leq i<j \leq n} f_{i j}(x) d x^{i} \wedge d x^{j}
$$

We get, as before, that (1.1) is equivalent, for every $1 \leq i<j \leq n$, to

$$
\sum_{1 \leq p<q \leq n} g_{p q}(\varphi(x))\left(\frac{\partial \varphi^{p}}{\partial x_{i}} \frac{\partial \varphi^{q}}{\partial x_{j}}-\frac{\partial \varphi^{p}}{\partial x_{j}} \frac{\partial \varphi^{q}}{\partial x_{i}}\right)(x)=f_{i j}(x),
$$

which is a nonlinear homogeneous of degree 2 (in the derivatives) system of $\binom{n}{2}=$ $\frac{n(n-1)}{2}$ first-order partial differential equations.

Case: $k=n$. In this case we always have $d f=d g=0$. By abuse of notations, if we identify volume forms and functions, we get that the equation $\varphi^{*}(g)=f$ becomes

$$
g(\varphi(x)) \operatorname{det} \nabla \varphi(x)=f(x) .
$$

It is then a nonlinear homogeneous of degree n (in the derivatives) first-order partial differential equation.smallskip

The main questions that we will discuss are the following.

1) Local existence. This is the easiest question. We will handle fairly completely the case of closed 2-forms, which is the case of the Darboux theorem. The cases of 1 and $(n-1)$-forms as well as the case of n-forms will also be dealt with. It will turn out that the case $3 \leq k \leq n-2$ is much more difficult and we will be able to handle only closed k-forms with special structure.
2) Global existence. This is a much more difficult problem. We will obtain results in the case of volume forms and of closed 2-forms.
3) Regularity. A special emphasis will be given on getting sharp regularity results. For this reason we will have to work with Hölder spaces $C^{r, \alpha}, 0<\alpha<1$, not with spaces C^{r}. Apart from the linear problems considered in Part II, we will not deal with Sobolev spaces. In the present context the reason is that Hölder spaces form an algebra contrary to Sobolev spaces (with low exponents).

1.2 Exterior and Differential Forms

In Chapter 2 we have gathered some algebraic results about exterior forms that are used throughout the book.

1.2.1 Definitions and Basic Properties of Exterior Forms

Let $1 \leq k \leq n$ be an integer. An exterior k-form will be denoted by

$$
f=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} f_{i_{1} \cdots i_{k}} e^{i_{1}} \wedge \cdots \wedge e^{i_{k}} .
$$

The set of exterior k-forms over \mathbb{R}^{n} is a vector space and is denoted $\Lambda^{k}\left(\mathbb{R}^{n}\right)$ and its dimension is

$$
\operatorname{dim}\left(\Lambda^{k}\left(\mathbb{R}^{n}\right)\right)=\binom{n}{k}
$$

If $k=0$, we set

$$
\Lambda^{0}\left(\mathbb{R}^{n}\right)=\mathbb{R}
$$

By abuse of notations, we will, when convenient and in order not to burden the notations, identify k-forms with vectors in $\mathbb{R}^{\binom{n}{k}}$.
(i) The exterior product of $f \in \Lambda^{k}\left(\mathbb{R}^{n}\right)$ with $g \in \Lambda^{l}\left(\mathbb{R}^{n}\right)$, denoted by $f \wedge g$, is defined as usual (cf. Definition 2.2) and it belongs to $\Lambda^{k+l}\left(\mathbb{R}^{n}\right)$. The scalar product between two k-forms f and g is denoted by

$$
\langle g ; f\rangle=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} g_{i_{1} \cdots i_{k}} f_{i_{1} \cdots i_{k}} .
$$

The Hodge star operator (cf. Definition 2.9) associates to $f \in \Lambda^{k}\left(\mathbb{R}^{n}\right)$ a form $(* f) \in$ $\Lambda^{n-k}\left(\mathbb{R}^{n}\right)$. We define (cf. Definition 2.11) the interior product of $f \in \Lambda^{k}\left(\mathbb{R}^{n}\right)$ with $g \in \Lambda^{l}\left(\mathbb{R}^{n}\right)$ by

$$
g\lrcorner f=(-1)^{n(k-l)} *(g \wedge(* f)) .
$$

These definitions are linked through the following elementary facts (cf. Proposition 2.16). For every $f \in \Lambda^{k}\left(\mathbb{R}^{n}\right), g \in \Lambda^{k+1}\left(\mathbb{R}^{n}\right)$ and $h \in \Lambda^{1}\left(\mathbb{R}^{n}\right)$,

$$
\begin{gathered}
\left.\left.|h|^{2} f=h\right\lrcorner(h \wedge f)+h \wedge(h\lrcorner f\right), \\
\langle h \wedge f ; g\rangle=\langle f ; h\lrcorner g\rangle .
\end{gathered}
$$

(ii) Let $A \in \mathbb{R}^{n \times n}$ be a matrix and let $f \in \Lambda^{k}\left(\mathbb{R}^{n}\right)$ be given by

$$
f=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} f_{i_{1} \cdots i_{k}} e^{i_{1}} \wedge \cdots \wedge e^{i_{k}} .
$$

We define (cf. Definition 2.17) the pullback of f by A, denoted $A^{*}(f)$, by

$$
A^{*}(f)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} f_{i_{1} \cdots i_{k}} A^{i_{1}} \wedge \cdots \wedge A^{i_{k}} \in \Lambda^{k}\left(\mathbb{R}^{n}\right),
$$

where A^{j} is the j th row of A and is identified by

$$
A^{j}=\sum_{k=1}^{n} A_{k}^{j} e^{k} \in \Lambda^{1}\left(\mathbb{R}^{n}\right)
$$

If $k=0$, we then let

$$
A^{*}(f)=f
$$

The present definition is consistent with the one given at the beginning of the chapter; just set $\varphi(x)=A x$ in (1.1).
(iii) We next define the notion of rank (also called rank of order 1 in Chapter 2) of $f \in \Lambda^{k}\left(\mathbb{R}^{n}\right)$. We first associate to the linear map

$$
\left.g \in \Lambda^{1}\left(\mathbb{R}^{n}\right) \rightarrow g\right\lrcorner f \in \Lambda^{k-1}\left(\mathbb{R}^{n}\right)
$$

a matrix $\bar{f} \in \mathbb{R}^{\binom{n}{k-1} \times n}$ such that, by abuse of notations,

$$
g\lrcorner f=\bar{f} g \quad \text { for every } g \in \Lambda^{1}\left(\mathbb{R}^{n}\right)
$$

In this case, we have
$g\lrcorner f$

$$
=\sum_{1 \leq j_{1}<\cdots<j_{k-1} \leq n}\left(\sum_{\gamma=1}^{k}(-1)^{\gamma-1} \sum_{j_{\gamma-1}<i<j_{\gamma}} f_{j_{1} \cdots j_{\gamma-1} i j_{\gamma} \cdots j_{k-1}} g_{i}\right) e^{j_{1}} \wedge \cdots \wedge e^{j_{k-1}}
$$

More explicitly, using the lexicographical order for the columns (index below) and the rows (index above) of the matrix \bar{f}, we have

$$
(\bar{f})_{i}^{j_{1} \cdots j_{k-1}}=f_{i j_{1} \cdots j_{k-1}}
$$

for $1 \leq i \leq n$ and $1 \leq j_{1}<\cdots<j_{k-1} \leq n$. The rank of the k-form f is then the rank of the $\binom{n}{k-1} \times n$ matrix \bar{f} (or similarly the rank of the map $\left.g \rightarrow g\right\lrcorner f$). We then write (in Chapter 2, we write $\operatorname{rank}_{1}[f]$, but in the remaining part of the book we write only $\operatorname{rank}[f]$)

$$
\operatorname{rank}[f]=\operatorname{rank}(\bar{f})
$$

Note that only when $k=2$ or $k=n$, the matrix \bar{f} is a square matrix. We will get our best results precisely in these cases and when the matrix \bar{f} is invertible.

We then have the following elementary result (cf. Proposition 2.37).
Proposition 1.1. Let $f \in \Lambda^{k}\left(\mathbb{R}^{n}\right), f \neq 0$.
(i) If $k=1$, then the rank of f is always 1 .
(ii) If $k=2$, then the rank of f is even. The forms

$$
\omega_{m}=\sum_{i=1}^{m} e^{2 i-1} \wedge e^{2 i}
$$

are such that $\operatorname{rank}\left[\omega_{m}\right]=2 m$. Moreover, $\operatorname{rank}[f]=2 m$ if and only if

$$
f^{m} \neq 0 \quad \text { and } \quad f^{m+1}=0
$$

where $f^{m}=\underbrace{f \wedge \cdots \wedge f}_{m \text { times }}$.
(iii) If $3 \leq k \leq n$, then

$$
\operatorname{rank}[f] \in\{k, k+2, \ldots, n\}
$$

and any of the values in $\{k, k+2, \ldots, n\}$ can be achieved by the rank of a k-form. In particular, if $k=n-1$, then $\operatorname{rank}[f]=n-1$, whereas if $k=n$, then $\operatorname{rank}[f]=n$.

Remark 1.2 (cf. Propositions 2.24 and 2.33). The rank is an invariant for the pullback equation. More precisely, if there exists $A \in \operatorname{GL}(n)$ (i.e., A is an invertible $n \times n$ matrix) such that

$$
A^{*}(g)=f
$$

then

$$
\operatorname{rank}[g]=\operatorname{rank}[f] .
$$

Conversely, when $k=1,2, n-1, n$, if $\operatorname{rank}[g]=\operatorname{rank}[f]$, then there exists $A \in \operatorname{GL}(n)$ such that

$$
A^{*}(g)=f
$$

However, the converse is not true, in general, if $3 \leq k \leq n-2$. For example (cf. Example 2.36), when $k=3$, the forms

$$
\begin{gathered}
f=e^{1} \wedge e^{2} \wedge e^{3}+e^{4} \wedge e^{5} \wedge e^{6}, \\
g=e^{1} \wedge e^{2} \wedge e^{3}+e^{1} \wedge e^{4} \wedge e^{5}+e^{2} \wedge e^{4} \wedge e^{6}+e^{3} \wedge e^{5} \wedge e^{6}
\end{gathered}
$$

have both rank $=6$, but there is no $A \in \operatorname{GL}(6)$ so that

$$
A^{*}(g)=f
$$

Similarly and more strikingly (cf. Example 2.35), when $k=4$ and

$$
f=e^{1} \wedge e^{2} \wedge e^{3} \wedge e^{4}+e^{1} \wedge e^{2} \wedge e^{5} \wedge e^{6}+e^{3} \wedge e^{4} \wedge e^{5} \wedge e^{6}
$$

there is no $A \in \mathrm{GL}(6)$ such that

$$
A^{*}(f)=-f
$$

1.2.2 Divisibility

We then discuss the notion of divisibility for exterior forms. Given two integers $1 \leq l \leq k \leq n$, a k-form f and a l-form g, we want to know if we can find a $(k-l)$ form u so that

$$
f=g \wedge u
$$

This is an important question in the theory of Grassmann algebras. A well-known result is the so called Cartan lemma (cf. Theorem 2.42).
Theorem 1.3 (Cartan lemma). Let $1 \leq k \leq n$ and $f \in \Lambda^{k}\left(\mathbb{R}^{n}\right)$ with $f \neq 0$. Let $1 \leq l \leq k$ and $g_{1}, \ldots, g_{l} \in \Lambda^{1}\left(\mathbb{R}^{n}\right)$ be such that

$$
g_{1} \wedge \cdots \wedge g_{l} \neq 0
$$

Then there exists $u \in \Lambda^{k-l}\left(\mathbb{R}^{n}\right)$ verifying

$$
f=g_{1} \wedge \cdots \wedge g_{l} \wedge u
$$

if and only if

$$
f \wedge g_{1}=\cdots=f \wedge g_{l}=0
$$

Remark 1.4. In the same spirit, the following facts can easily be proved (cf. Proposition 2.43):
(i) The form $f \in \Lambda^{k}\left(\mathbb{R}^{n}\right)$ is totally divisible, meaning that there exist $f_{1}, \cdots, f_{k} \in$ $\Lambda^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
f=f_{1} \wedge \cdots \wedge f_{k}
$$

if and only if

$$
\operatorname{rank}[f]=k
$$

(ii) If k is odd and if $f \in \Lambda^{k}\left(\mathbb{R}^{n}\right)$ with $\operatorname{rank}[f]=k+2$, then there exist $u \in \Lambda^{1}\left(\mathbb{R}^{n}\right)$ and $g \in \Lambda^{k-1}\left(\mathbb{R}^{n}\right)$ such that

$$
f=g \wedge u
$$

Our main result (cf. Theorem 2.45 for a more general statement) will be the following theorem obtained by Dacorogna-Kneuss [31]. It generalizes the Cartan lemma.

Theorem 1.5. Let $0 \leq l \leq k \leq n$ be integers. Let $g \in \Lambda^{l}\left(\mathbb{R}^{n}\right)$ and $f \in \Lambda^{k}\left(\mathbb{R}^{n}\right)$. The following statements are then equivalent:
(i) There exists $u \in \Lambda^{k-l}\left(\mathbb{R}^{n}\right)$ verifying

$$
f=g \wedge u
$$

(ii) For every $h \in \Lambda^{n-k}\left(\mathbb{R}^{n}\right)$, the following implication holds:

$$
[h \wedge g=0] \quad \Rightarrow \quad[h \wedge f=0] .
$$

1.2.3 Differential Forms

In Chapter 3 we have gathered the main notations concerning differential forms.
Definition 1.6. Let $\Omega \subset \mathbb{R}^{n}$ be open and $f \in C^{1}\left(\Omega ; \Lambda^{k}\right)$, namely

$$
f=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} f_{i_{1} \cdots i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

(i) The exterior derivative of f denoted $d f$ belongs to $C^{0}\left(\Omega ; \Lambda^{k+1}\right)$ and is defined by

$$
d f=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \sum_{m=1}^{n} \frac{\partial f_{i_{1} \cdots i_{k}}}{\partial x_{m}} d x^{m} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

If $k=n$, then $d f=0$.
(ii) The interior derivative or codifferential of f denoted δf belongs to $C^{0}(\Omega$; Λ^{k-1}) and is defined by

$$
\delta f=(-1)^{n(k-1)} *(d(* f)) .
$$

Remark 1.7. (i) If $k=0$, then the operator d can be identified with the gradient operator, while $\delta f=0$ for any f.
(ii) If $k=1$, then the operator d can be identified with the curl operator and the operator δ is the divergence operator.

We next gather some well-known properties of the operators d and δ (cf. Theorems 3.5 and 3.7).

Theorem 1.8. Let $f \in C^{2}\left(\Omega ; \Lambda^{k}\right)$. Then

$$
d d f=0, \quad \delta \delta f=0 \quad \text { and } \quad d \delta f+\delta d f=\Delta f
$$

We also need the following definition. In the sequel we will denote the exterior unit normal of $\partial \Omega$ by v.

Definition 1.9. The tangential component of a k-form f on $\partial \Omega$ is the $(k+1)$-form

$$
v \wedge f \in \Lambda^{k+1}
$$

The normal component of a k-form f on $\partial \Omega$ is the $(k-1)$-form

$$
v\lrcorner f \in \Lambda^{k-1} .
$$

We easily deduce the following properties (cf. Theorem 3.23).
Proposition 1.10. Let $0 \leq k \leq n$ and $f \in C^{1}\left(\bar{\Omega} ; \Lambda^{k}\right)$; then

$$
\begin{aligned}
v \wedge f=0 \text { on } \partial \Omega & \Rightarrow v \wedge d f=0 \text { on } \partial \Omega \\
v\lrcorner f=0 \text { on } \partial \Omega & \Rightarrow v\lrcorner \delta f=0 \text { on } \partial \Omega .
\end{aligned}
$$

We will constantly use the integration by parts formula (cf. Theorem 3.28).
Theorem 1.11. Let $1 \leq k \leq n, f \in C^{1}\left(\bar{\Omega} ; \Lambda^{k-1}\right)$ and $g \in C^{1}\left(\bar{\Omega} ; \Lambda^{k}\right)$. Then

$$
\left.\int_{\Omega}\langle d f ; g\rangle+\int_{\Omega}\langle f ; \delta g\rangle=\int_{\partial \Omega}\langle v \wedge f ; g\rangle=\int_{\partial \Omega}\langle f ; v\lrcorner g\right\rangle .
$$

We will adopt the following notations.
Notation 1.12. Let $\Omega \subset \mathbb{R}^{n}$ be open, $r \geq 0$ be an integer and $0 \leq \alpha \leq 1 \leq p \leq \infty$. Spaces with vanishing tangential or normal component will be denoted in the following way:

$$
\begin{aligned}
C_{T}^{r, \alpha}\left(\bar{\Omega} ; \Lambda^{k}\right) & =\left\{f \in C^{r, \alpha}\left(\bar{\Omega} ; \Lambda^{k}\right): v \wedge f=0 \quad \text { on } \partial \Omega\right\}, \\
C_{N}^{r, \alpha}\left(\bar{\Omega} ; \Lambda^{k}\right) & \left.=\left\{f \in C^{r, \alpha}\left(\bar{\Omega} ; \Lambda^{k}\right): v\right\lrcorner f=0 \quad \text { on } \partial \Omega\right\}, \\
W_{T}^{r+1, p}\left(\Omega ; \Lambda^{k}\right) & =\left\{f \in W^{r+1, p}\left(\Omega ; \Lambda^{k}\right): v \wedge f=0 \quad \text { on } \partial \Omega\right\}, \\
W_{N}^{r+1, p}\left(\Omega ; \Lambda^{k}\right) & \left.=\left\{f \in W^{r+1, p}\left(\Omega ; \Lambda^{k}\right): v\right\lrcorner f=0 \quad \text { on } \partial \Omega\right\} .
\end{aligned}
$$

The different sets of harmonic fields will be denoted by

$$
\begin{gathered}
\mathscr{H}\left(\Omega ; \Lambda^{k}\right)=\left\{f \in W^{1,2}\left(\Omega ; \Lambda^{k}\right): d f=0 \text { and } \delta f=0 \text { in } \Omega\right\}, \\
\mathscr{H}_{T}\left(\Omega ; \Lambda^{k}\right)=\left\{f \in \mathscr{H}\left(\Omega ; \Lambda^{k}\right): v \wedge f=0 \quad \text { on } \partial \Omega\right\} \\
\left.\mathscr{H}_{N}\left(\Omega ; \Lambda^{k}\right)=\left\{f \in \mathscr{H}\left(\Omega ; \Lambda^{k}\right): v\right\lrcorner f=0 \quad \text { on } \partial \Omega\right\} .
\end{gathered}
$$

We now list (cf. Section 6.1) some properties of the harmonic fields.
Theorem 1.13. Let $\Omega \subset \mathbb{R}^{n}$ be an open set. Then

$$
\mathscr{H}\left(\Omega ; \Lambda^{k}\right) \subset C^{\infty}\left(\Omega ; \Lambda^{k}\right) .
$$

Moreover if Ω is bounded and smooth, then the next statements are valid.
(i) The following inclusion holds:

$$
\mathscr{H}_{T}\left(\Omega ; \Lambda^{k}\right) \cup \mathscr{H}_{N}\left(\Omega ; \Lambda^{k}\right) \subset C^{\infty}\left(\bar{\Omega} ; \Lambda^{k}\right)
$$

Furthermore, if $r \geq 0$ is an integer and $0 \leq \alpha \leq 1$, then there exists $C=C(r, \Omega)$ such that for every $\left.\omega \in \mathscr{H}_{T}\left(\Omega ; \Lambda^{k}\right) \cup \mathscr{H}_{N} \overline{\left(\Omega ; \Lambda^{k}\right.}\right)$,

$$
\|\omega\|_{W^{r, 2}} \leq C\|\omega\|_{L^{2}} \quad \text { and } \quad\|\omega\|_{C^{r}, \alpha} \leq C\|\omega\|_{C^{0}} .
$$

(ii) The spaces $\mathscr{H}_{T}\left(\Omega ; \Lambda^{k}\right)$ and $\mathscr{H}_{N}\left(\Omega ; \Lambda^{k}\right)$ are finite dimensional and closed in $L^{2}\left(\Omega ; \Lambda^{k}\right)$.
(iii) Furthermore, if Ω is contractible (cf. Definition 6.1), then

$$
\begin{gathered}
\mathscr{H}_{T}\left(\Omega ; \Lambda^{k}\right)=\{0\} \quad \text { if } 0 \leq k \leq n-1 \\
\mathscr{H}_{N}\left(\Omega ; \Lambda^{k}\right)=\{0\} \quad \text { if } 1 \leq k \leq n
\end{gathered}
$$

(iv) If $k=0$ or $k=n$ and $h \in \mathscr{H}\left(\Omega ; \Lambda^{k}\right)$, then h is constant on each connected component of Ω. In particular, $\mathscr{H}_{T}\left(\Omega ; \Lambda^{0}\right)=\{0\}$ and $\mathscr{H}_{N}\left(\Omega ; \Lambda^{n}\right)=\{0\}$.
Remark 1.14. If $k=1$ and assuming that Ω is smooth, then the sets \mathscr{H}_{T} and \mathscr{H}_{N} can be rewritten, as usual by abuse of notations, as

$$
\begin{gathered}
\mathscr{H}_{T}\left(\Omega ; \Lambda^{1}\right)=\left\{f \in C^{\infty}\left(\bar{\Omega} ; \mathbb{R}^{n}\right):\left[\begin{array}{c}
\operatorname{curl} f=0 \text { and } \operatorname{div} f=0 \\
f_{i} v_{j}-f_{j} v_{i}=0, \forall 1 \leq i<j \leq n
\end{array}\right\},\right. \\
\mathscr{H}_{N}\left(\Omega ; \Lambda^{1}\right)=\left\{f \in C^{\infty}\left(\bar{\Omega} ; \mathbb{R}^{n}\right):\left[\begin{array}{c}
\operatorname{curl} f=0 \text { and } \operatorname{div} f=0 \\
\sum_{i=1}^{n} f_{i} v_{i}=0
\end{array}\right\} .\right.
\end{gathered}
$$

Moreover, if Ω is simply connected, then

$$
\mathscr{H}_{T}\left(\Omega ; \Lambda^{1}\right)=\mathscr{H}_{N}\left(\Omega ; \Lambda^{1}\right)=\{0\} .
$$

1.3 Hodge-Morrey Decomposition and Poincaré Lemma

1.3.1 A General Identity and Gaffney Inequality

In the proof of Morrey of the Hodge decomposition, one of the key points to get compactness is the following inequality (cf. Theorem 5.16).

Theorem 1.15 (Gaffney inequality). Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open smooth set. Then there exists a constant $C=C(\Omega)>0$ such that

$$
\|\omega\|_{W^{1,2}}^{2} \leq C\left(\|d \omega\|_{L^{2}}^{2}+\|\delta \omega\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right)
$$

for every $\omega \in W_{T}^{1,2}\left(\Omega ; \Lambda^{k}\right) \cup W_{N}^{1,2}\left(\Omega ; \Lambda^{k}\right)$.
Remark 1.16. When $k=1$, the inequality says, identifying 1 -forms with vector fields,

$$
\|\omega\|_{W^{1,2}}^{2} \leq C\left(\|\operatorname{curl} \omega\|_{L^{2}}^{2}+\|\operatorname{div} \omega\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right)
$$

for every $\omega \in W^{1,2}\left(\Omega ; \mathbb{R}^{n}\right)$ satisfying either one of the following two conditions:

$$
\begin{gathered}
v \wedge \omega=0 \Leftrightarrow \omega_{i} v_{j}-\omega_{j} v_{i}=0, \forall 1 \leq i<j \leq n, \\
v\lrcorner \omega=\langle v ; \omega\rangle=\sum_{i=1}^{n} \omega_{i} v_{i}=0 .
\end{gathered}
$$

The inequality, as stated above, has been proved by Morrey [76, 77], generalizing results of Gaffney [44, 45]. We will prove in Section 5.3 the inequality appealing to a very general identity (see Theorem 5.7) proved by Csató and Dacorogna [24].

Theorem 1.17 (A general identity). Let $0 \leq k \leq n$ and let $\Omega \subset \mathbb{R}^{n}$ be a bounded open smooth set and with exterior unit normal v. Then every $\alpha, \beta \in C^{1}\left(\bar{\Omega} ; \Lambda^{k}\right)$ satisfy the equation

$$
\begin{aligned}
& \int_{\Omega}(\langle d \alpha ; d \beta\rangle+\langle\delta \alpha ; \delta \beta\rangle-\langle\nabla \alpha ; \nabla \beta\rangle) \\
&=\left.\left.\left.-\int_{\partial \Omega}(\langle v \wedge d(v\lrcorner \alpha) ; v \wedge \beta\rangle+\langle v\lrcorner \delta(v \wedge \alpha) ; v\right\lrcorner \beta\right\rangle\right) \\
&\left.\left.+\int_{\partial \Omega}\left(\left\langle L^{v}(v \wedge \alpha) ; v \wedge \beta\right\rangle+\left\langle K^{v}(v\lrcorner \alpha\right) ; v\right\lrcorner \beta\right\rangle\right) .
\end{aligned}
$$

The operators L^{V} and K^{v} (cf. Definition 5.1) can be seen as matrices acting on $(k+1)$-forms and $(k-1)$-forms respectively (identifying, as usual, a k-form with
a ($\left.\begin{array}{l}n \\ k\end{array}\right)$ vector). They depend only on the geometry of Ω and on the degree k of the form. They can easily be calculated explicitly for general k-forms and, when Ω is a ball of radius R (cf. Corollary 5.9), it turns out that

$$
\left.\left.L^{v}(v \wedge \omega)=\frac{k}{R} v \wedge \omega \quad \text { and } \quad K^{v}(v\lrcorner \omega\right)=\frac{n-k}{R} v\right\lrcorner \omega
$$

and, thus,

$$
\left.\left.\left.\left\langle L^{v}(v \wedge \omega) ; v \wedge \omega\right\rangle=\frac{k}{R}|v \wedge \omega|^{2} \quad \text { and } \quad\left\langle K^{v}(v\lrcorner \omega\right) ; v\right\lrcorner \omega\right\rangle \left.=\frac{n-k}{R} \right\rvert\, v\right\lrcorner\left.\omega\right|^{2}
$$

In the case of a 1 -form and for general open sets Ω (cf. Proposition 5.11), it can be shown that K^{ν} is a scalar and it is a multiple of κ, the mean curvature of the hypersurface $\partial \Omega$, namely

$$
K^{v}=(n-1) \kappa
$$

Summarizing the results for a 1-form ω in \mathbb{R}^{n} (cf. Corollary 5.12) with vanishing tangential component (i.e., $v \wedge \omega=0$ on $\partial \Omega$), we have

$$
\int_{\Omega}\left(|\operatorname{curl} \omega|^{2}+|\operatorname{div} \omega|^{2}-|\nabla \omega|^{2}\right)=(n-1) \int_{\partial \Omega} \kappa[\langle v ; \omega\rangle]^{2},
$$

where κ is the mean curvature of the hypersurface $\partial \Omega$ and $\langle. ;$.$\rangle denotes the scalar$ product in \mathbb{R}^{n}.

1.3.2 The Hodge-Morrey Decomposition

We now turn to the celebrated Hodge-Morrey decomposition (cf. Theorem 6.9).
Theorem 1.18 (Hodge-Morrey decomposition). Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open smooth set. Let $0 \leq k \leq n$ and $f \in L^{2}\left(\Omega ; \Lambda^{k}\right)$. Then there exist

$$
\begin{gathered}
\alpha \in W_{T}^{1,2}\left(\Omega ; \Lambda^{k-1}\right), \quad \beta \in W_{T}^{1,2}\left(\Omega ; \Lambda^{k+1}\right), \\
h \in \mathscr{H}_{T}\left(\Omega ; \Lambda^{k}\right) \quad \text { and } \quad \omega \in W_{T}^{2,2}\left(\Omega ; \Lambda^{k}\right)
\end{gathered}
$$

such that, in Ω,

$$
f=d \alpha+\delta \beta+h, \quad \alpha=\delta \omega \quad \text { and } \quad \beta=d \omega
$$

Remark 1.19. (i) We have quoted only one of the three decompositions (cf. Theorem 6.9 for details). Another one, completely similar, is by replacing T by N and the other one mixing both T and N.
(ii) If $k \leq n-1$ and if Ω is contractible, then $h=0$.
(iii) If $k=0$, then the theorem reads as

$$
f=\delta \beta=\delta d \omega=\Delta \omega \text { in } \Omega \quad \text { with } \quad \omega=0 \text { on } \partial \Omega
$$

(iv) When $k=1$ and $n=3$, the decomposition reads as follows. Let v be the exterior unit normal. For any $f \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$, there exist

$$
\begin{aligned}
& \omega \in W^{2,2}\left(\Omega ; \mathbb{R}^{3}\right) \quad \text { with } \omega_{i} v_{j}-\omega_{j} v_{i}=0 \text { on } \partial \Omega, \forall 1 \leq i<j \leq 3 \\
& \alpha \in W_{0}^{1,2}(\Omega) \quad \text { and } \alpha=\operatorname{div} \omega, \\
& \beta \in W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right) \quad \text { with } \beta=-\operatorname{curl} \omega \quad \text { and } \quad\langle v ; \beta\rangle=0 \text { on } \partial \Omega \\
& h \in\left\{h \in C^{\infty}\left(\bar{\Omega} ; \mathbb{R}^{3}\right):\left[\begin{array}{c}
\operatorname{curl} h=0 \text { and } \operatorname{div} h=0 \\
h_{i} v_{j}-h_{j} v_{i}=0, \forall 1 \leq i<j \leq 3
\end{array}\right\}\right.
\end{aligned}
$$

such that

$$
f=\operatorname{grad} \alpha+\operatorname{curl} \beta+h \text { in } \Omega .
$$

Furthermore, if Ω is simply connected, then $h=0$.
(v) If f is more regular than in L^{2}, then α, β and ω are in the corresponding class of regularity (cf. Theorem 6.12). More precisely if, for example, $r \geq 0$ is an integer, $0<q<1$ and $f \in C^{r, q}\left(\bar{\Omega} ; \Lambda^{k}\right)$, then

$$
\alpha \in C^{r+1, q}\left(\bar{\Omega} ; \Lambda^{k-1}\right), \quad \beta \in C^{r+1, q}\left(\bar{\Omega} ; \Lambda^{k+1}\right) \quad \text { and } \quad \omega \in C^{r+2, q}\left(\bar{\Omega} ; \Lambda^{k}\right)
$$

(vi) The proof of Morrey (cf. Theorem 6.7) uses the direct methods of the calculus of variations. One minimizes

$$
D_{f}(\omega)=\int_{\Omega}\left(\frac{1}{2}|d \omega|^{2}+\frac{1}{2}|\delta \omega|^{2}+\langle f ; \omega\rangle\right)
$$

in an appropriate space, Gaffney inequality giving the coercivity of the integral.

1.3.3 First-Order Systems of Cauchy-Riemann Type

It turns out that the Hodge-Morrey decomposition is in fact equivalent (cf. Proposition 7.9) to solving the first-order system

$$
\left\{\begin{array}{cl}
d \omega=f \quad \text { and } \quad \delta \omega=g & \text { in } \Omega, \\
v \wedge \omega=v \wedge \omega_{0} & \text { on } \partial \Omega
\end{array}\right.
$$

or the similar one,

$$
\left\{\begin{array}{cl}
d \omega=f \quad \text { and } \quad \delta \omega=g & \text { in } \Omega, \\
v\lrcorner \omega=v\lrcorner \omega_{0} & \text { on } \partial \Omega .
\end{array}\right.
$$

Both systems are discussed in Theorems 7.2 and 7.4. We here state a simplified version of the first one.

Theorem 1.20. Let $r \geq 0$ and $1 \leq k \leq n-2$ be integers, $0<q<1$ and $\Omega \subset \mathbb{R}^{n}$ be a bounded contractible open smooth set and with exterior unit normal v. Let $g \in C^{r, q}\left(\bar{\Omega} ; \Lambda^{k-1}\right)$ and $f \in C^{r, q}\left(\bar{\Omega} ; \Lambda^{k+1}\right)$ be such that

$$
\delta g=0 \text { in } \Omega, \quad d f=0 \text { in } \Omega \quad \text { and } \quad v \wedge f=0 \text { on } \partial \Omega .
$$

Then there exists $\omega \in C^{r+1, q}\left(\bar{\Omega} ; \Lambda^{k}\right)$, such that

$$
\left\{\begin{array}{cl}
d \omega=f \quad \text { and } \quad \delta \omega=g & \text { in } \Omega, \\
v \wedge \omega=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

Remark 1.21. (i) It turns out that the sufficient conditions are also necessary (cf. Theorems 7.2 and 7.4).
(ii) When $k=n-1$, the result is valid provided

$$
\int_{\Omega} f=0
$$

Note that in this case the conditions $d f=0$ and $v \wedge f=0$ are automatically fulfilled.
(iii) Completely analogous results are given in Theorems 7.2 and 7.4 for Sobolev spaces.
(iv) If Ω is not contractible, then additional necessary conditions have to be added.
(v) When $k=1$ and $n=3$, the theorem reads as follows. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded contractible smooth open set, $g \in C^{r, q}(\bar{\Omega})$ and $f \in C^{r, q}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)$ be such that

$$
\operatorname{div} f=0 \text { in } \Omega \quad \text { and } \quad\langle f ; v\rangle=0 \text { on } \partial \Omega
$$

Then there exists $\omega \in C^{r+1, q}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)$ such that

$$
\left\{\begin{array}{cl}
\operatorname{curl} \omega=f \quad \text { and } \quad \operatorname{div} \omega=g & \text { in } \Omega \\
\omega_{i} v_{j}-\omega_{j} v_{i}=0 \forall 1 \leq i<j \leq 3 & \text { on } \partial \Omega
\end{array}\right.
$$

1.3.4 Poincaré Lemma

We start with the classical Poincaré lemma (cf. Theorem 8.1).

Theorem 1.22 (Poincaré lemma). Let $r \geq 1$ and $0 \leq k \leq n-1$ be integers and $\Omega \subset \mathbb{R}^{n}$ be an open contractible set. Let $g \in C^{r}\left(\Omega ; \Lambda^{k+1}\right)$ with $d g=0$ in Ω. Then there exists $G \in C^{r}\left(\Omega ; \Lambda^{k}\right)$ such that

$$
d G=g \quad \text { in } \Omega
$$

With the help of the Hodge-Morrey decomposition, the result can be improved (cf. Theorem 8.3) in two directions. First, one can consider general sets Ω, not only contractible sets. Moreover, one can get sharp regularity in Hölder and in Sobolev spaces. We quote here only the case of Hölder spaces. We also give the theorem with the d operator. Analogous results are also valid for the δ operator; see Theorem 8.4.

Theorem 1.23. Let $r \geq 0$ and $0 \leq k \leq n-1$ be integers, $0<\alpha<1$ and $\Omega \subset \mathbb{R}^{n}$ be a bounded open smooth set. Let $\bar{f}: \bar{\Omega} \rightarrow \Lambda^{k+1}$. The following statements are equivalent:
(i) Let $f \in C^{r, \alpha}\left(\bar{\Omega} ; \Lambda^{k+1}\right)$ be such that

$$
d f=0 \text { in } \Omega \quad \text { and } \quad \int_{\Omega}\langle f ; \psi\rangle=0 \text { for every } \psi \in \mathscr{H}_{N}\left(\Omega ; \Lambda^{k+1}\right) .
$$

(ii) There exists $\omega \in C^{r+1, \alpha}\left(\bar{\Omega} ; \Lambda^{k}\right)$ such that

$$
d \omega=f \quad \text { in } \Omega .
$$

Remark 1.24. (i) When $k=n-1$, there is no restriction on the solvability of $d \omega=f$.
(ii) Recall that if Ω is contractible and $0 \leq k \leq n-1$, then

$$
\mathscr{H}_{N}\left(\Omega ; \Lambda^{k+1}\right)=\{0\} .
$$

We finally consider the boundary value problems

$$
\left\{\begin{array} { l l }
{ d \omega = f } & { \text { in } \Omega , } \\
{ \omega = \omega _ { 0 } } & { \text { on } \partial \Omega }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
\delta \omega=g & \text { in } \Omega \\
\omega=\omega_{0} & \text { on } \partial \Omega
\end{array}\right.\right.
$$

We give a result for the first one and for $\omega_{0}=0$ (cf. Theorem 8.16 for general ω_{0}), but a similar one (cf. Theorem 8.18) exists for the second problem. We only discuss the case of Hölder spaces, but the result is also valid in Sobolev spaces (see Theorems 8.16 and 8.18 for details).

Theorem 1.25. Let $r \geq 0$ and $0 \leq k \leq n-1$ be integers, $0<\alpha<1$ and $\Omega \subset \mathbb{R}^{n}$ be a bounded open smooth set and with exterior unit normal v. Then the following statements are equivalent:
(i) Let $f \in C^{r, \alpha}\left(\bar{\Omega} ; \Lambda^{k+1}\right)$ satisfy

$$
d f=0 \text { in } \Omega, \quad v \wedge f=0 \text { on } \partial \Omega,
$$

and, for every $\chi \in \mathscr{H}_{T}\left(\Omega ; \Lambda^{k+1}\right)$,

$$
\int_{\Omega}\langle f ; \chi\rangle=0 .
$$

(ii) There exists $\omega \in C^{r+1, \alpha}\left(\bar{\Omega} ; \Lambda^{k}\right)$ such that

$$
\left\{\begin{aligned}
d \omega=f & \text { in } \Omega \\
\omega=0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

1.4 The Case of Volume Forms

1.4.1 Statement of the Problem

In Part III, we will discuss the following problem. Given Ω a bounded open set in \mathbb{R}^{n} and $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we want to find $\varphi: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ verifying

$$
\left\{\begin{array}{cl}
g(\varphi(x)) \operatorname{det} \nabla \varphi(x)=f(x) & x \in \Omega \tag{1.2}\\
\varphi(x)=x & x \in \partial \Omega
\end{array}\right.
$$

Writing the functions f and g as volume forms through the straightforward identification

$$
g=g(x) d x^{1} \wedge \cdots \wedge d x^{n} \quad \text { and } \quad f=f(x) d x^{1} \wedge \cdots \wedge d x^{n}
$$

problem (1.2) can be written as

$$
\left\{\begin{array}{cl}
\varphi^{*}(g)=f & \text { in } \Omega \\
\varphi=\text { id } & \text { on } \partial \Omega
\end{array}\right.
$$

where $\varphi^{*}(g)$ is the pullback of g by φ.
The following preliminary remarks are in order.
(i) The case $n=1$ is completely elementary and is discussed in Section 1.4.2.
(ii) When $n \geq 2$, the equation in (1.2) is a nonlinear first-order partial differential equation homogeneous of degree n in the derivatives. It is underdetermined, in the sense that we have n unknowns (the components of φ) and only one equation. $\operatorname{Re}-$ lated to this observation, we have that if there exists a solution to our problem, then there are infinitely many ones. Indeed, for example, if $n=2, \Omega$ is the unit ball and $f=g=1$, the maps φ_{m} (written in polar and in Cartesian coordinates) defined by

$$
\begin{aligned}
\varphi_{m}(x) & =\varphi_{m}\left(x_{1}, x_{2}\right)=\binom{r \cos \left(\theta+2 m \pi r^{2}\right)}{r \sin \left(\theta+2 m \pi r^{2}\right)} \\
& =\binom{x_{1} \cos \left(2 m \pi\left(x_{1}^{2}+x_{2}^{2}\right)\right)-x_{2} \sin \left(2 m \pi\left(x_{1}^{2}+x_{2}^{2}\right)\right)}{x_{2} \cos \left(2 m \pi\left(x_{1}^{2}+x_{2}^{2}\right)\right)+x_{1} \sin \left(2 m \pi\left(x_{1}^{2}+x_{2}^{2}\right)\right)}
\end{aligned}
$$

satisfy (1.2) for every $m \in \mathbb{Z}$.
(iii) An integration by parts, or, what amounts to the same thing, an elementary topological degree argument (see (19.3)), immediately gives the necessary condition (independently of the fact that φ is a diffeomorphism or not and of the fact that $\varphi(\Omega)$ contains strictly or not Ω)

$$
\begin{equation*}
\int_{\Omega} f=\int_{\Omega} g \tag{1.3}
\end{equation*}
$$

In most of our analysis, it will turn out that this condition is also sufficient.
(iv) We will always assume that $g>0$. If g is not strictly positive, then hypotheses other than (1.3) are necessary; for example, f cannot be strictly positive. Indeed if, for example, $f \equiv 1$ and g is allowed to vanish even at a single point, then no C^{1} solution of our problem exists (cf. Proposition 11.6). However, in a very special case (cf. Lemma 11.21), we will deal with functions f and g that both change sign.
(v) We will, however, allow f to change sign, but the analysis is very different if $f>0$ or if f vanishes, even at a single point, let alone if it becomes negative. The first problem will be discussed in Chapter 10, whereas the second one will be dealt with in Chapter 11. One of the main differences is that in the first case, any solution of (1.2) is necessarily a diffeomorphism (cf. Theorem 19.12), whereas this is never true in the second case.
(vi) It is easy to see (cf. Corollary 19.4) that any solution of (1.2) satisfies

$$
\begin{equation*}
\varphi(\Omega) \supset \Omega \quad \text { and } \quad \varphi(\bar{\Omega}) \supset \bar{\Omega} \tag{1.4}
\end{equation*}
$$

If $f>0$, we have, since φ is a diffeomorphism, that (cf. Theorem 19.12)

$$
\varphi(\Omega)=\Omega \quad \text { and } \quad \varphi(\bar{\Omega})=\bar{\Omega}
$$

If this is not the case, then, in general, the inclusions can be strict. We will discuss in Chapter 11 this matter in details.
(vii) Problem (1.2) admits a weak formulation. Indeed, if φ is a diffeomorphism, we can write (cf. Theorem 19.7) the equation $g(\varphi) \operatorname{det} \nabla \varphi=f$ as

$$
\int_{\varphi(E)} g=\int_{E} f \quad \text { for every open set } E \subset \Omega
$$

or, equivalently,

$$
\int_{\Omega} g \zeta\left(\varphi^{-1}\right)=\int_{\Omega} f \zeta \quad \text { for every } \zeta \in C_{0}^{\infty}(\Omega)
$$

We observe that both new writings make sense if φ is only a homeomorphism.
(viii) The problem can be seen as a question of mass transportation. Indeed, we want to transport the mass distribution g to the mass distribution f without moving the points of the boundary of Ω. In this context, the equation is usually written as

$$
\int_{E} g=\int_{\varphi^{-1}(E)} f \quad \text { for every open set } E \subset \Omega
$$

The problem of optimal mass transportation has received considerable attention. We should point out that our analysis is not in this framework. The two main strong points of our analysis are that we are able to find smooth solutions, sometimes with the optimal regularity and to deal with fixed boundary data.

1.4.2 The One-Dimensional Case

As already stated, the case $n=1$ is completely elementary (cf. Proposition 11.4), but it exhibits some striking differences with the case $n \geq 2$. However, it may shed some light on some issues that we will discuss in the higher-dimensional case. Let $\Omega=(a, b)$,

$$
F(x)=\int_{a}^{x} f(t) d t \quad \text { and } \quad G(x)=\int_{a}^{x} g(t) d t
$$

Then problem (1.2) becomes

$$
\left\{\begin{array}{c}
G(\varphi(x))=F(x) \quad \text { if } x \in(a, b) \\
\varphi(a)=a \quad \text { and } \quad \varphi(b)=b
\end{array}\right.
$$

If G is invertible and this happens if, for example, $g>0$ and if

$$
\begin{equation*}
F([a, b]) \subset G(\mathbb{R}) \tag{1.5}
\end{equation*}
$$

and this happens if, for example, $g \geq g_{0}>0$, then the problem has the solution

$$
\varphi(x)=G^{-1}(F(x)) .
$$

The necessary condition (1.3)

$$
\int_{a}^{b} f=\int_{a}^{b} g
$$

ensures that

$$
\varphi(a)=a \quad \text { and } \quad \varphi(b)=b
$$

This very elementary analysis leads to the following conclusions:

1) Contrary to the case $n \geq 2$, the necessary condition (1.3) is not sufficient. We need the extra condition (1.5); see Proposition 11.4 for details.
2) The problem has a unique solution, contrary to the case $n \geq 2$.
3) If f and g are in the space C^{r}, then the solution φ is in C^{r+1}.
