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Preface

Optimal Control is a rapidly expanding field developed during the last half-century
to analyze the optimal behavior of a constrained process that evolves in time accord-
ing to prescribed laws. Its applications now embrace a variety of new disciplines
such as economics and production planning. The main feature of Classical Optimal
Control Theory (OCT) is that the mathematical technique, especially designed for
the analysis and synthesis of an optimal control of dynamic models, is based on
the assumption that a designer (or an analyst) possesses complete information on a
considered model as well as on an environment where this controlled model has to
evolve.

There exist two principal approaches to solving optimal control problems in the
presence of complete information on the dynamic models considered:

– the first one is the Maximum Principle (MP) of L. Pontryagin (Boltyanski et al.
1956)

– and the second one is the Dynamic Programming Method (DPM) of R. Bellman
(Bellman 1957)

The Maximum Principle is a basic instrument to derive a set of necessary con-
ditions which should be satisfied by any optimal solution (see also Boltyanski 1975,
1978; Dubovitski and Milyutin 1971; Sussman 1987a, 1987b, 1987c). Thus, to solve
a static optimization problem in a finite-dimensional space, one should obtain the
so-called zero-derivative condition (in the case of unconstrained optimization) and
the Kuhn–Tucker conditions (in the case of constrained optimization). These con-
ditions become sufficient under certain convexity assumptions related to the objec-
tive as well as to constraint functions. Optimal control problems, on the other hand,
may be regarded as optimization problems in the corresponding infinite-dimensional
(Hilbert or, in general, Banach) spaces. The Maximum Principle is really a mile-
stone of modern optimal control theory. It states that any dynamic system, closed
by an optimal control strategy or, simply, by an optimal control, is a Hamiltonian
system (with a doubled dimension) described by a system of forward-backward or-
dinary differential equations; in addition, an optimal control maximizes a function
called the Hamiltonian. Its mathematical importance is derived from the following
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fact: the maximization of the Hamiltonian with respect to a control variable given
in a finite-dimensional space looks and really is much easier than the original opti-
mization problem formulated in an infinite-dimensional space. The key idea of the
original version of the Maximum Principle comes from classical variational calcu-
lus. To derive the main MP formulation, first one needs to perturb slightly an optimal
control using the so-called needle-shape (spike) variations and, second, to consider
the first-order term in a Taylor expansion with respect to this perturbation. Letting
the perturbations go to zero, some variational inequalities may be obtained. Then
the final result follows directly from duality. The same formulation can be arrived at
based on more general concepts related to some geometric representation and sep-
arability theorems in Banach space. This approach is called the Tent Method. It is a
key mathematical apparatus used in this book.

The Dynamic Programming Method (DPM) is another powerful approach to
solve optimal control problems. It provides sufficient conditions for testing whether
a control is optimal or not. The basic idea of this approach consists of consider-
ing a family of optimal control problems with different initial conditions (times and
states) and obtaining some relationships among them via the so-called Hamilton–
Jacobi–Bellman equation (HJB), which is a nonlinear first-order partial differential
equation. If this HJB equation is solvable (analytically or even numerically), then
the optimal control can be obtained by maximization (or minimization) of the cor-
responding generalized Hamiltonian. Such optimal controllers turn out to be given
by a nonlinear feedback depending on the optimized plant nonlinearities as well
as on the solution of the corresponding HJB equation. Such an approach actually
provides solutions to the entire family of optimization problems, and, in particular,
the original problem. Such a technique is called “Invariant Embedding.” The major
drawback of the classical HJB method is that it requires that this partial differential
equation admits a smooth enough solution. Unfortunately this is not the case even
for some very simple situations. To overcome this problem the so-called viscos-
ity solutions have been introduced (Crandall and Lions 1983). These solutions are
some sort of nonsmooth solutions with a key function to replace the conventional
derivatives by a set-valued super/subdifferential maintaining the uniqueness of the
solutions under very mild conditions. This approach not only saves the DPM as a
mathematical method, but also makes it a powerful tool in optimal control tackling.
In this book we will briefly touch on this approach and also discuss the gap between
necessary (MP) and sufficient conditions (DPM), while applying this consideration
to some particular problems.

When we do not have complete information on a dynamic model to be con-
trolled, the main problem entails designing an acceptable control which remains
“close to the optimal one” (having a low sensitivity with respect to an unknown (un-
predictable) parameter or input belonging to a given possible set). In other words,
the desired control should be robust with respect to the unknown factors. In the
presence of any sort of uncertainties (parametric type, unmodeled dynamics, and
external perturbations), the main approach to obtaining a solution suitable for a
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class of given models is to formulate a corresponding Min-Max control problem,
where maximization is taken over a set of uncertainties and minimization is taken
over control actions within a given set. The Min-Max controller design for differ-
ent classes of nonlinear systems has been a hot topic of research over the last two
decades.

One of the important components of Min-Max Control Theory is the game-
theoretic approach (Basar and Bernhard 1991). In terms of game theory, control and
model uncertainty are strategies employed by opposing players in a game: control
is chosen to minimize a cost function and uncertainty is chosen to maximize it. To
the best of our knowledge, the earliest publications in this direction were the papers
of Dorato and Drenick (1966) and Krasovskii (1969, in Russian). Subsequently, in
the book by Kurjanskii (1977), the Lagrange Multiplier Approach was applied to
problems of control and observations under incomplete information. They were for-
mulated as corresponding Min-Max problems.

Starting from the pioneering work of Zames (1981), which dealt with frequency
domain methods to minimize the norm of the transfer function between the dis-
turbance inputs and the performance output, the minimax controller design is for-
mulated as an H∞-optimization problem. As was shown in Basar and Bernhard
(1991), this specific problem can be successfully solved in the time domain, lead-
ing to rapprochement with dynamic game theory and the establishment of a re-
lationship with risk-sensitivity quadratic stochastic control (Doyle et al. 1989;
Glover and Doyle 1988; Limebeer et al. 1989; Khargonekar 1991). The paper by
Limebeer et al. (1989) presented a control design method for continuous-time plants
whose uncertain parameters in the output matrix are only known to lie within an
ellipsoidal set. An algorithm for Min-Max control, which at every iteration approx-
imately minimizes the defined Hamiltonian, is presented in Pytlak (1990). In the
publication by Didinsky and Basar (1994), using “the cost-to-come” method, the
authors showed that the original problem with incomplete information can be con-
verted into an equivalent full information Min-Max control problem of a higher
dimension, which can be solved using the Dynamic Programming Approach. Min-
Max control of a class of dynamic systems with mixed uncertainties was investi-
gated in Basar (1994). A continuous deterministic uncertainty which affects system
dynamics and discrete stochastic uncertainties leading to jumps in the system struc-
ture at random times were also studied. The solution involves a finite-dimensional
compensator using two finite sets of partial differential equations. The robust con-
troller for linear time-varying systems given by a stochastic differential equation
was studied in Poznyak and Taksar (1996). The solution was based on stochastic
Lyapunov-like analysis with a martingale technique implementation.

Another class of problems dealing with discrete-time models of a deterministic
and/or stochastic nature and their corresponding solutions was discussed in Didin-
sky and Basar (1991), Blom and Everdij (1993), and Bernhard (1994). A compre-
hensive survey of various parameter space methods for robust control design can be
found in Siljak (1989).

In this book we present a new version of the Maximum Principle recently de-
veloped, particularly, for the construction of optimal control strategies for the class
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of uncertain systems given by a system of ordinary differential equations with un-
known parameters belonging to a given set (finite or compact) which corresponds to
different scenarios of the possible dynamics. Such problems, dealing with finite un-
certainty sets, are very common, for example, in Reliability Theory, where some of
the sensors or actuators may fail, leading to a complete change in the structure of the
system to be controlled (each of the possible structures can be associated with one of
the fixed parameter values). The problem under consideration belongs to the class of
optimization problems of the Min-Max type. The proof is based on the Tent Method
(Boltyanski 1975, 1987), which is discussed in the following text. We show that
in the general case the original problem can be converted into the analysis of non-
solid convex cones, which leads to the inapplicability of the Dubovitski–Milyutin
method (Dubovitski and Milyutin 1965) for deriving the corresponding necessary
conditions of optimality whenever the Tent Method still remains operative.

This book is for experts, scientists, and researchers in the field of Control Theory.
However, it may also be of interest to scholars who want to use the results of Control
Theory in complex cases, in engineering, and management science. It will also be
useful for students who pursue Ph.D.-level or advanced graduate-level courses. It
may also serve for training and research purposes.

The present book is both a refinement and an extension of the authors’ earlier
publications and consists of four complementary parts.

Part I: Topics of Classical Optimal Control.
Part II: The Tent Method.

Part III: Robust Maximum Principle for Deterministic Systems.
Part IV: Robust Maximum Principle for Stochastic Systems.

Part I presents a review of Classical Optimal Control Theory and includes two
main topics: the Maximum Principle and Dynamic Programming. Two important
subproblems such as Linear Quadratic Optimal Control and Time Optimization are
considered in more detail. This part of the book can be considered as independent
and may be recommended (adding more examples) for a postgraduate course in
Optimal Control Theory as well as for self-study by wide groups of electrical and
mechanical engineers.

Part II introduces the reader to the Tent Method, which, in fact, is a basic math-
ematical tool for the rigorous proof and justification of one of the main results of
Optimal Control Theory. The Tent Method is shown to be a general tool for solving
extremal problems profoundly justifying the so-called Separation Principle. First, it
was developed in finite-dimensional spaces, using topology theory to justify some
results in variational calculus. A short historical remark on the Tent Method is made,
and the idea of the proof of the Maximum Principle is explained, paying special
attention to the necessary topological tools. The finite-dimensional version of the
Tent Method allows one to establish the Maximum Principle and a generalization
of the Kuhn–Tucker Theorem in Euclidean spaces. In this part, we also present a
version of the Tent Method in Banach spaces and demonstrate its application to a
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generalization of the Kuhn–Tucker Theorem and the Lagrange Principle for infinite-
dimensional spaces.

This part is much more advanced than the others and is accessible only to readers
with a strong background in mathematics, particularly in topology. Those who find
it difficult to follow topological (homology) arguments can omit the proofs of the
basic theorems, trying to understand only their principal statements.

Part III is the central part of this book. It presents a robust version of the Maxi-
mum Principle dealing with the construction of Min-Max control strategies for the
class of uncertain systems described by an ordinary differential equation with un-
known parameters from a given compact set. A finite collection of parameters cor-
responds to different scenarios of possible dynamics. The proof is based on the Tent
Method described in the previous part of the book. The Min-Max Linear Quadratic
(LQ) Control Problem is considered in detail. It is shown that the design of the
Min-Max optimal controller in this case may be reduced to a finite-dimensional op-
timization problem given at the corresponding simplex set containing the weight
parameters to be found. The robust LQ optimal control may be interpreted as a
mixture (with optimal weights) of the controls which are optimal for each fixed
parameter value. Robust time optimality is also considered (as a particular case of
the Lagrange problem). Usually, the Robust Maximum Principle appears only as a
necessary condition for robust optimality. But the specific character of the linear
time-optimization problem permits us to obtain more profound results. In partic-
ular, in this case the Robust Maximum Principle appears as both a necessary and
a sufficient condition. Moreover, for linear robust time optimality, it is possible to
establish some additional results: the existence and uniqueness of robust controls,
piecewise constant robust controls for the polyhedral resource set, and a Feldbaum-
type estimate for the number of intervals of constancy (or “switching”). All these
aspects are studied in detail in this part of the book. Dynamic Programming for
Min-Max problems is also derived. A comparison of optimal controllers, designed
by the Maximum Principle and Dynamic Programming for LQ problems, is car-
ried out. Applications of results obtained to Multimodel Sliding Mode Control and
Multimodel Differential Games are also presented.

Part IV deals with designing the Robust Maximum Principle for Stochastic Sys-
tems described by stochastic differential equations (with the Itô integral implemen-
tation) and subject to terminal constraints. The main goal of this part is to illustrate
the possibilities of the MP approach for a class of Min-Max control problems for
uncertain systems given by a system of linear stochastic differential equations with
controlled drift and diffusion terms and unknown parameters within a given finite
and, in general, compact uncertainty set, supplemented by a given measure. If in the
deterministic case the adjoint equations are backward ordinary differential equa-
tions and represent, in some sense, the same forward equation but in reverse time,
then in the stochastic case such an interpretation is not valid because any time re-
versal may destroy the nonanticipative character of the stochastic solutions, that is,
any obtained robust control should be independent of the future. The proof of the
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Robust Maximum Principle is also based on the use of the Tent Method, but with
a special technique specific to stochastic calculus. The Hamiltonian function used
for these constructions is equal to the Lebesgue integral over the given uncertainty
set of the standard stochastic Hamiltonians corresponding to a fixed value of the un-
certain parameter. Two illustrative examples, dealing with production planning and
reinsurance-dividend management, conclude this part.

Most of the material given in this book has been tested in class at the Steklov
Mathematical Institute (Moscow, 1962–1980), the Institute of Control Sciences
(Moscow, 1978–1993), the Mathematical Investigation Center of Mexico (CIMAT,
Guanojuato, 1995–2006), and the Center of Investigation and Advanced Education
of IPN (CINVESTAV, Mexico, 1993–2009). Some studies, dealing with multimodel
sliding-mode control and multimodel differential games, present the main results of
Ph.D. theses of our students defended during the last few years.
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Chapter 1
Introduction

In this book our main purpose is to obtain the Min-Max control arising whenever
the state of a system at time t ∈ [0, T ] as described by a vector

x(t) ∈ (x1(t), . . . , xn(t)
)T ∈R

n

evolves according to a prescribed law, usually given in the form of a first-order
vector ordinary differential equation

·
x(t)= f

α (
x(t), u(t), t

)
(1.1)

under the assignment of a vector valued control function

u(t)= (u1(t), . . . , ur (t)
)T ∈R

r ,

which is the control that may run over a given control region U ⊂ R
r , and α is a

parameter that may run over a given parametric set A. On the right-hand side, where

f α(x,u, t)= (f α
1 (x,u, t), . . . , f

α
n (x,u, t)

)T ∈R
n, (1.2)

we impose the usual restrictions: continuity with respect to the arguments x,u, mea-
surability on t , and differentiability (or the Lipschitz condition) with respect to x.
Here we will assume that the admissible u(t) may be only piecewise continuous
at each time interval from [0, T ] (T is permitted to vary). Controls that have the
same values except at common points of discontinuity will be considered as identi-
cal.

The Min-Max control, which we are interested in, consists of finding an ad-
missible control {u∗(·)}t∈[0,T ] which for a given initial condition x(0) = x0 and a
terminal condition x

α
(T ) ∈ M (α ∈ A) (M is a given compact from R

n) provides

V.G. Boltyanski, A.S. Poznyak, The Robust Maximum Principle,
Systems & Control: Foundations & Applications,
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2 1 Introduction

Fig. 1.1 Min-Max optimized
function

us with the following optimality property:
{
u∗(·)}

t∈[0,T ] ∈ arg min
admissible {u(·)}t∈[0,T ]

max
α∈A

Jα
(
u(·)),

J
(
u(·)) := h0

(
xα(T )

)+
∫ T

t=0
h
(
xα(t), u(t), t

)
dt, (1.3)

where h0 : Rn → R and h : Rn × R
r × R+ → R are functions that are smooth

enough and characterize the loss functional Jα(u(·)) for each fixed value of the
parameter α ∈ A.

In fact, the Min-Max problem (1.3) is an optimization problem in a Banach
(infinite-dimensional) space. So it would be interesting to consider first a Min-Max
problem in a finite-dimensional Euclidean space and to understand which specific
features of a Min-Max solution arise and what we may expect from their expansion
to infinite-dimensional Min-Max problems; also to verify whether these properties
remain valid or not.

The parametric set A is finite Consider the following simple static single-
dimensional optimization problem:

min
u∈R

max
α∈A

hα(u), (1.4)

where hα :R→R is a differentiable strictly convex function, and

A = {α1 ≡ 1, α2 ≡ 2, . . . , αN ≡N}
is a simple finite set containing only N possible parameter values, that is,

min
u∈R

max
{
h1(u),h2(u), . . . , hN(u)

}
. (1.5)

To find specific features of this problem let us reformulate it in a manner that is a
little bit different. Namely, it is not difficult to see that the problem (1.4) is equivalent
to the following one, which, in fact, is a conditional minimization problem that does
not contain any maximization operation, that is,

min
u∈R,v≥0

v

subject to hα(u)≤ v for all α ∈ A.
(1.6)
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Figure 1.1 gives a clear illustration of this problem for the case A = {1,2}. To solve
the optimization problem (1.6) let us apply the Lagrange Multiplier Method (see,
for example, Sect. 21.3.3 in Poznyak 2008) and let us consider the following uncon-
ditional optimization problem:

L(u, v,λ) := v +
N∑

i=1

λi
(
hi(u)− v

)

= v

(

1−
N∑

i=1

λi

)

+
N∑

i=1

λih
i(u)→ min

u,v∈R

max
λi≥0 (i=1,...,N)

. (1.7)

Notice that if
∑N

i=1 λi 
= 1, for example,

1−
N∑

i=1

λi > 0,

one can take v→−∞, which means that the minimum of L(u, v,λ) does not exist.
This contradicts our assumption that a minimum of the initial problem (1.6) does
exist (since the functions hα are strictly convex). The same is valid if

1−
N∑

i=1

λi > 0

and we take v→∞. So, the unique option leading to the existence of the solution
is

λ ∈ SN :=
{

λ ∈R
N : λi ≥ 0 (i = 1, . . . ,N),

N∑

i=1

λi = 1

}

, (1.8)

which implies that the initial optimization problem (1.6) is reduced to the following
one:

L(u, v,λ)=
N∑

i=1

λih
i(u)→min

u∈R

max
λ∈SN

; (1.9)

that is, the Lagrange function L(u, v,λ) to be minimized, according to (1.9), is
equal to the weighted sum (with weights λi ) of the individual loss functions hi(u)
(i = 1, . . . ,N ). Defining the joint Hamiltonian function H(u,λ) and the individual
Hamiltonians Hi(u,λi) by

H(u,λ)=−L(u, v,λ)=−
N∑

i=1

λih
i(u)=

N∑

i=1

Hi(u,λi),

Hi(u,λi) := −λihi(u),
(1.10)
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we can represent problem (1.9) in the Hamiltonian form

H(u,λ)→ max
u∈R

min
λ∈SN

. (1.11)

As can be seen from Fig. 1.1 the optimal solution u∗ in the case N = 2 satisfies the
condition

h1(u∗)= h2(u∗). (1.12)

This property is true also in the general case. Indeed, the complementary slackness
conditions (see Theorem 21.12 in Poznyak 2008) for this problem are

λ∗i
(
hi(u∗)− v

)= 0 for any i = 1, . . . ,N, (1.13)

which means that for any active indices i, j , corresponding to λ∗i , λ∗j > 0, we have

hi(u∗)= hj (u∗)= v (1.14)

or, in other words, for the optimal solution u∗ we find all loss functions hi(u∗) for
which λ∗i > 0 to be equal. So, one can see that the following two basic properties
(formulated here as a proposition) of the Min-Max solution u∗ exist.

Proposition 1.1

– The joint Hamiltonian H(u,λ) (1.10) of the initial optimization problem is equal
to the sum of the individual Hamiltonians Hi(u,λi) (i = 1, . . . ,N).

– In the optimal point u∗ all loss functions hi(u∗), corresponding to the active
indices for which λ∗i > 0, are equal.

The parametric set A is a compact In this case, when we deal with the origi-
nal Min-Max problem (1.4), written in the form (1.6), the corresponding Lagrange
function has the form

L(u, v,λ) := v+
∫

α∈A
λα
(
hα(u)− v

)
dα

= v

(
1−

∫

α∈A
λα dα

)
+
∫

α∈A
λαh

α(u)dα→ min
u,v∈R

max
λα≥0,α∈A

. (1.15)

By the same argument as for a finite parametric set, the only possibility here to have
a finite solution for the problem considered is to take

∫

α∈A
λα dα = 1, (1.16)

which, together with the nonnegativity of the multipliers λα , permits us to refer to
them as a “distribution” of the index α on the set A. Define the set of all possible



1 Introduction 5

distributions on A as

D =
{
λα, α ∈A : λα ≥ 0,

∫

α∈A
λα dα = 1

}
. (1.17)

Then problem (1.15) becomes

L(u, v,λ)=
∫

α∈A
λαh

α(u)dα→ min
u,v∈R

max
λα≥0,α∈A

(1.18)

or, in the corresponding Hamiltonian form,

H(u,λ)→ max
u,v∈R

min
λα≥0,α∈A

, (1.19)

where

H(u,λ)=−L(u, v,λ)

=
∫

α∈A
λαh

α(u)dα =
∫

α∈A
Hα(u,λα)dα,

Hα(u,λα) := −λαhα(u). (1.20)

Again, the complementary slackness conditions (see Theorem 21.12 in Poznyak
2008) for this problem are similar to (1.13)

λ∗α
(
hα(u∗)− v

)= 0 for any α ∈ A, (1.21)

which means that for any active indices α, α̃ ∈ A, corresponding to λ∗α > 0, it fol-
lows that

hα(u∗)= hα̃(u∗)= v (1.22)

or, in other words, for the optimal solution u∗ all loss functions hα(u∗), for which
λ∗α > 0, are equal. So, again one can state two basic properties (formulated as a
proposition) characterizing the Min-Max solution u∗ on a compact parametric set.

Proposition 1.2

– The joint Hamiltonian H(u,λ) (1.10) of the initial optimization problem is equal
to the integral of the individual Hamiltonians Hi(u,λi) (i = 1, . . . ,N) calculated
over the given compact set A.

– In the optimal point u∗ we see that all loss functions hα(u∗), corresponding to
active indices for which λ∗α > 0, are equal. If in the intersection point one function
(for example, f1) is beyond (over) the other f2, then for this case we have the
dominating function λ∗1 = 1 and λ∗2 = 0.

The main question that arises here is: “Do these two principal properties, for-
mulated in the propositions above for finite-dimensional Min-Max problems, remain
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valid for the infinite-dimensional case, formulated in a Banach space for a Min-Max
optimal control problem?”

The answer is: YES they do!

The detailed justification of this positive answer forms the main contribution of
this book.



Part I
Topics of Classical Optimal Control



Chapter 2
The Maximum Principle

This chapter represents the basic concepts of Classical Optimal Control related to
the Maximum Principle. The formulation of the general optimal control problem
in the Bolza (as well as in the Mayer and the Lagrange) form is presented. The
Maximum Principle, which gives the necessary conditions of optimality, for various
problems with a fixed and variable horizon is formulated and proven. All necessary
mathematical claims are given in the Appendix, which makes this material self-
contained.

This chapter is organized as follows. The classical optimal control problems in
the Bolza, Lagrange, and Mayer form, are formulated in the next section. Then in
Sect. 2.2 the variational inequality is derived based on the needle-shaped variations
and Gronwall’s inequality. Subsequently, a basic result is presented concerning the
necessary conditions of the optimality for the problem considered in the Mayer form
with terminal conditions using the duality relations.

2.1 Optimal Control Problem

2.1.1 Controlled Plant, Cost Functionals, and Terminal Set

Definition 2.1 Consider the controlled plant given by the following system of Or-
dinary Differential Equations (ODE):

{
ẋ(t)= f

(
x(t), u(t), t

)
, a.e. t ∈ [0, T ],

x(0)= x0,
(2.1)

where x = (x1, . . . , xn)T ∈R
n is its state vector, and u= (u1, . . . , ur )T ∈R

r is the
control that may run over a given control region U ⊂R

r with the cost functional

J
(
u(·)) := h0

(
x(T )

)+
∫ T

t=0
h
(
x(t), u(t), t

)
dt (2.2)
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