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Preface

Nowadays there are plenty of textbooks on Lie groups to choose from, so we
feel we should explain why we decided to add another one to the row. Most
of the readily available books on Lie groups either aim at an elementary in-
troduction mostly restricted to matrix groups, or else they try to provide
the background on semisimple Lie groups needed in harmonic analysis and
unitary representation theory with as little general theory as possible. In
[HN91], we tried to exhibit the basic principles of Lie theory rather than
specific material, stressing the exponential function as the means of trans-
lating problems and solutions between the global and the infinitesimal level.
In that book, written in German for German students who typically do not
know differential geometry but are well versed in advanced linear algebra, we
avoided abstract differentiable manifolds by combining matrix groups with
covering arguments. Having introduced the basic principles, we demonstrated
their power by proving a number of standard and not so standard results on
the structure of Lie groups. The choice of results included owed a lot to
Hochschild’s book [Ho65], which even then was not so easy to come by.

This book builds on [HN91], but after twenty years of teaching and re-
search in Lie theory we found it indispensable to also have the differential
geometry of Lie groups available. Even though this is not apparent from the
text, the reason for this is the large number of applications and further devel-
opments of Lie theory in which differential manifolds are essential. Moreover,
we decided to include a number of structural results we found to be useful in
the past but not readily available in the textbook literature. The basic line
of thought now is:

• Simple examples: Matrix groups
• Tools from algebra: Lie algebras
• Tools from geometry: Smooth manifolds
• The basic principles: Lie groups, their Lie algebras, and the exponential
function
• Structure theory: General Lie groups and special classes
• Testing methods on examples: The topology of classical groups
• A slight extension: Several connected components

While this book offers plenty of tested material for various introductory
courses such as Matrix Groups, Lie Groups, Lie Algebras, or Differentiable
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Manifolds, it is not a textbook to follow from A to Z (see page 6 for teaching
suggestions). Moreover, it contains advanced material one would not typically
include in a first course. In fact, some of the advanced material has not
appeared in any monograph before. This and the fact that we wanted the
book to be self contained is the reason for its considerable length. In order
to still keep the work within reasonable limits, for some topics which are
well covered in the textbook literature, we decided to include only what was
needed for the further developments in the book. This applies, e.g., to the
standard structure and classification theories of semisimple Lie algebras. Thus
we do not want to suggest that this book can replace previous textbooks. It
is meant rather to be a true addition to the existing textbook literature on
Lie groups.

As was mentioned before, we are well aware of the fact that modern
mathematics abounds with applications of Lie theory while this book hardly
mentions any of them. The reason is that most applications require addi-
tional knowledge of the field in which these applications occur, so describing
them would have meant either extensive storytelling or else a considerable
expansion in length of this book. Neither option seemed attractive to us, so
we leave it to future books to give detailed accounts of the beautiful ways in
which Lie theory enters different fields of mathematics.

Even though there was a forerunner book and many lecture notes pro-
duced for various courses over the years, in compiling this text we produced
many typos and made some mistakes. Many of those were shown to us by
a small army of enthusiastic proofreaders to whom we are extremely grate-
ful: Hanno Becker, Jan Emonds, Hasan Gündogan, Michael Klotz, Stéphane
Merigon, Norman Metzner, Wolfgang Palzer, Matthias Peter, Niklas Schaef-
fer, Henrik Seppänen, and Stefan Wagner read major parts of the manuscript,
and there were others who looked at particular sections. Of course, we know
that the final version of the book will also contain mistakes, and we assume
full responsibility for those.

We also would like to thank Ilka Agricola and Thomas Friedrich for some
background information on the early history of Lie theory.

Paderborn
Erlangen

Joachim Hilgert
Karl-Hermann Neeb
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1 Introduction

To locate the theory of Lie groups within mathematics, one can say that Lie
groups are groups with some additional structure that permits us to apply
analytic techniques such as differentiation in a group theoretic context.

In the elementary courses on calculus of one variable, one studies functions
on three levels:

(1) abstract functions between sets,
(2) continuous functions, and
(3) differentiable functions.

Going from level (1) to level (3), we refine the available tools at each step. At
level (1), we have no structure at all to do anything; at level (2), we obtain
results like the Intermediate Value Theorem or the Maximal Value Theorem
saying that each continuous function on a compact interval takes a maximal
value. The latter result is a useful existence theorem, but it provides no help
at all to calculate maximal values. For that we need refined tools such as the
derivative of a function and a transformation mechanism between properties
of a function and its derivative. The situation is quite similar when we study
groups. There is a level (1) consisting of abstract group theory which is
particularly interesting for finite groups because the finiteness assumption is
a powerful tool in the structure theory of finite groups. For infinite groups
G, it is good to have a topology on G which is compatible with the group
structure in the sense that the group operations are continuous, so that we
are at level (2), and G is called a topological group. If we want to apply
calculus techniques to study a group, we need Lie groups1, i.e., groups which
at the same time are differentiable manifolds such that the group operations
are smooth.

For Lie groups we also need a translation mechanism telling us how to pass
from group theoretic properties of G to properties of its “derivative” L(G),
which in technical terms is the tangent space T1(G) of G at the identity.

1 The Norwegian mathematician Marius Sophus Lie (1842–1899) was the first to
study differentiability properties of groups in a systematic way. In the 1890s, Sophus
Lie developed his theory of differentiable groups (called continuous groups at a time
when the concept of a topological space was not yet developed) to study symmetries
of differential equations.

J. Hilgert, K.-H. Neeb, Structure and Geometry of Lie Groups,
Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-84794-8 1, c© Springer Science+Business Media, LLC 2012
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2 1 Introduction

We think of L(G) as a “linear” object attached to the “nonlinear” object G
because L(G) is a vector space endowed with an additional algebraic structure
[·, ·], the Lie bracket, turning it into a Lie algebra. This algebraic structure is
a bilinear map L(G)× L(G)→ L(G), satisfying the axioms

[x, x] = 0 and
[
x, [y, z]

]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
= 0 for x, y, z ∈ L(G),

which can be considered as linearized versions of the group axioms. The
connecting element between the group and its Lie algebra is the exponential
function

expG : L(G)→ G

for which we have the Product Formula

expG(x+ y) = lim
k→∞

(
expG

(
1
kx
)
expG

(
1
ky
))k

and the Commutator Formula

expG
(
[x, y]

)
= lim

k→∞

(
expG

(
1
kx
)
expG

(
1
ky
)
expG

(
− 1
kx
)
expG

(
− 1
ky
))k2

connecting the algebraic operations (addition and Lie bracket on L(G)) to the
group operations (multiplication and commutator). For the important class of
matrix groups G ⊆ GLn(R), the Lie algebra L(G) is a set of matrices and the
exponential function is simply given by the power series expG(x) =

∑∞
n=0

xn

n! .
An important property of the Lie algebra L(G) is that we can extend L

to a smooth homomorphism ϕ : G1 → G2 of Lie groups by putting L(ϕ) :=
T1(ϕ) (the tangent map at 1) to obtain the so-called Lie functor, assigning
to Lie groups Lie algebras and to group homomorphisms of Lie algebras.
The compatibility of all that with the exponential function is encoded in the
commutativity of the diagram

L(G1)
L(ϕ)−−−−−−−−−→ L(G2)⏐

⏐
�expG1

⏐
⏐
�expG2

G1
ϕ−−−−−−−−−→ G2.

The exponential function of a Lie group always maps sufficiently small
0-neighborhoods U in L(G) diffeomorphically to identity neighborhoods in
G, so that the local structure of G is completely encoded in the multiplication

x ∗ y := (expG |U )−1(expG x expG y),

which turns out to be given by a universal power series,

x ∗ y = x+ y +
1

2
[x, y] +

1

12

[
x, [x, y]

]
+

1

12

[
y, [y, x]

]
+ · · · .
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Its summands are obtained by iterated Lie brackets whose precise structure
we know after fundamental work of H.F. Baker, J.E. Campbell, E.B. Dynkin,
and F. Hausdorff.

The basic philosophy of Lie theory now is that the local structure of the
group G is determined by its Lie algebra L(G), and that the description of
the global structure of a Lie group requires additional information that can
be obtained in topological terms involving covering theory.

In Part I of this book, we approach the general concept of a Lie group
by first discussing certain groups of matrices and groups arising in geometric
contexts (Chapter 2). All these groups will later turn out to be Lie groups.
In Chapter 3, we study the central tool in the theory of matrix groups that
permits us to reverse the differentiation process from a Lie group G to its
Lie algebra L(G): the exponential function expG : L(G) → G, which is ob-
tained by restriction from the matrix exponential function used in the theory
of linear differential equations with constant coefficients. Chapter 4 treats
Lie algebras of matrix groups and provides methods to calculate these Lie
algebras effectively.

In Part II, we study Lie algebras as independent algebraic structures. We
start in Chapter 5 by working out the standard approach: What are the sub-
structures? Under which conditions does a substructure lead to a quotient
structure? What are the simple structures? Does one have composition series?
This leads to concepts like Lie subalgebras and ideals, nilpotent, solvable, and
semisimple Lie algebras. In Chapter 6, we introduce Cartan subalgebras and
the associated root and weight decompositions as tools to study the structure
of (semi)simple Lie algebras. Further, we define abstract root systems and as-
sociated Weyl groups. Even though representation theory is not in the focus
of this book, we provide in Chapter 7 the basic theory as it repeatedly plays
an important role in structural questions. In particular, we introduce the
universal enveloping algebra and prove the Poincaré–Birkhoff–Witt (PBW)
Theorem on the structure of the enveloping algebra which implies in par-
ticular that each finite-dimensional Lie algebra sits in an associative algebra
which has the same modules. From this we derive Serre’s Theorem on the pre-
sentation of semisimple Lie algebras in terms of generators and relations, the
Highest Weight Theorem on the classification of the simple finite dimensional
modules, and Ado’s Theorem on the existence of a faithful finite-dimensional
representation of a finite-dimensional Lie algebra. Finally, we introduce basic
cohomology theory for Lie algebras and describe extensions of Lie algebras.

In Part III, we provide an introduction to Lie groups based on the the-
ory of smooth manifolds. The basic concepts and results from differential
geometry needed for this are introduced in Chapter 8. In particular, we dis-
cuss vector fields on smooth manifolds and their integration to local flows.
Chapter 9 is devoted to the subject proper of this book—Lie groups, defined
as smooth manifolds with group structure such that all structure maps are
smooth. Here we introduce the key tools of Lie theory. The Lie functor which
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associates a Lie algebra with a Lie group and the exponential function from
the Lie algebra to the Lie group. They provide the means to translate global
problems into infinitesimal ones and to lift infinitesimal solutions to local
and, with the help of some additional topology, global ones. As a first set of
applications of these methods, we identify the Lie group structures of closed
subgroups of Lie groups and show how to construct Lie groups from local
and infinitesimal data. Further, we explain covering theory for Lie groups.
Finally, we prove Yamabe’s Theorem asserting that any arcwise connected
subgroup of a Lie group carries a natural Lie group structure, and this allows
us to equip any subgroup of a Lie group with a canonical Lie group structure.

As we have explained before, a key method in Lie theory is to study the
structure of Lie groups by translating group theoretic problems into linear
algebra problems via the Lie functor, solving these problems, and translating
the solutions back using the exponential function. In Part IV, we illustrate
this general method by deriving a number of important structural results
about Lie groups. Since in practice Lie groups often occur as symmetry groups
which are not connected but have a finite number of connected components,
we prove the results in this generality whenever it is possible without too
much extra effort.

We start with quotient structures in Chapter 11, which also leads to homo-
geneous spaces, semidirect products, and eventually to a complete description
of connected nilpotent and 1-connected solvable Lie groups.

In Chapter 12, we turn our attention to compact Lie groups and their
covering groups. Again we first study the corresponding Lie algebras which
are, by abuse of terminology, called compact. Then we prove Weyl’s Theorem
saying that the simply connected covering of a semisimple compact Lie group
is compact. Further, we prove the important fact that a compact connected
Lie group is the union of its maximal tori and show that such a Lie group is
the semidirect product of its (semisimple) commutator subgroup and a torus
subgroup. We also show that each compact Lie group is linear, i.e., can be
realized as a closed subgroup of some GLn(R). It is possible to describe the
fundamental group in terms of the Lie algebra and the exponential map. In
this context, we introduce the analytic Weyl group and a number of relevant
lattices (i.e., discrete additive subgroups of maximal rank) in the Lie algebra
t of a maximal torus T and its dual t∗. The techniques are finally extended
a little to prove that fixed point sets of automorphisms of simply connected
groups are connected, a fact that is very useful, e.g., in the study of symmetric
spaces.

Chapter 13 is devoted to the Cartan and the Iwasawa decomposition of
noncompact semisimple Lie groups. These two decompositions are really only
the starting point for a very rich structure theory which, in contrast to some
other topics we present in this book, is very well covered in the existing
literature (see, e.g., [Wa88] and [Kn02]). Therefore, we decided to keep this
chapter brief.
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In Chapter 14, we return to the general structure theory and show that
each Lie group with finitely many connected components admits a maximal
compact subgroup which is unique up to conjugation. In fact, it turns out that
the group is diffeomorphic to a product of the maximal compact subgroup and
a finite dimensional vector space (the Manifold Splitting Theorem 14.3.11).
In particular, the topology of a Lie group with finitely many connected com-
ponents is completely determined by any of its maximal compact subgroups.
Before we can prove that we have to characterize the center of a connected
Lie group as a certain subset of the exponential image (Theorem 14.2.8). The
techniques developed for the proof of the Manifold Splitting Theorem also
allow us to prove Dixmier’s Theorem which characterizes the 1-connected
solvable Lie groups for which the exponential function is a diffeomorphism.
Finally, we study in detail under which circumstances one finds integral sub-
groups which are not closed, i.e., proper dense subgroups of their closure. In
particular, we give a series of verifiable sufficient conditions for an integral
subgroup to be closed. These results build on the classification of finitely
generated abelian groups for which we provide a proof in Appendix 14.6.

In Chapter 15, we explain how to complexify Lie groups. It turns out that
each Lie group G has a universal complexification GC, but G does in general
not embed into GC. If G is compact, however, it does embed into its universal
complexification, and this gives rise to the class of linearly complex reductive
Lie groups. They can be characterized by the existence of a holomorphic
faithful representation and the fact that all holomorphic representations are
completely reducible, hence the name (see Theorem 15.3.11). On the way to
this characterization, we study abelian complex connected Lie groups in some
detail and introduce the linearizer of a complex group which measures how
far the group is from being complex linear.

In the literature, one finds a lot of different notions of reductive groups, for
many of which one imposes extra linearity properties. This is why in Chap-
ter 16 we take a closer look at the structural implications of the existence
of a faithful continuous finite dimensional representation of a Lie group. In
particular, we introduce a real linearizer and the notion of linearly real re-
ductive groups. Combining these notions with suitable Levi complements, we
obtain a characterization of connected Lie groups which admit such faithful
representations (see Theorems 16.2.7 and 16.2.9). The results of this chapter
rely heavily on the results of Chapter 15. Conversely, we use the results of
Chapter 16 to complete the discussion of the existence of faithful holomorphic
representations in Section 16.3.

In Chapter 17, we apply the general results to compact and noncom-
pact classical groups in order to provide explicit structural and topological
information. In particular, we determine connected components and funda-
mental groups. Moreover, we include a rather detailed discussion of spin
groups which builds on the material on Clifford algebras and related groups
presented in Appendix B.3. Here we also explain a number of isomorphisms
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of low-dimensional groups. This discussion, as well as the one on conformal
groups in Section 17.4 exemplifies the way Lie theory can be used to study
groups defined in geometric terms. For a more detailed information of this
kind, we refer to [GW09] for the classical and to [Ad96] for the exceptional
Lie groups.

The examples from Chapter 17 show that many geometrically defined Lie
groups have several connected components. While only the connected com-
ponent of the identity is accessible to the methods built on the exponential
function, there are still tools to analyze nonconnected Lie groups. In Chap-
ter 18, we present some of these tools. The key notion is that of an extension
of a discrete group by a (connected) Lie group. We explain how to classify
such extensions in terms of group cohomology and apply this result to charac-
terize those Lie groups with a finite number of connected components which
admit a simply connected covering group.

1.1 Teaching Suggestions

For a one-semester course on Lie algebras, one could use Chapter 5 with
possible additions from Sections 6.1 or 7.1. In a two-semester course on Lie
algebras, one can cover most of the material in Chapters 5, 6, and 7.

A one-semester course on the Lie theory of Matrix groups can be drawn
from Chapters 2 to 4. Chapter 8, together with Sections 10.2 and 10.3, makes
a one-semester course on Calculus on manifolds. Building on such a course
one can use Chapter 9 to teach a one-semester course on Lie groups.

Combining Chapters 9, 10, and 11, one obtains the material for a two-
semester course on Lie groups with an emphasis on general structure theory
using the exponential map. If one wants a two-semester course on Lie groups
with an emphasis on semisimple and reductive groups, one should rather
combine Chapters 9, 12, and 13, adding the necessary bits from Sections 10.4
and 11.1.

The remaining Chapters 14 through 18 are not interdependent, so they
can be used to teach various different topics courses on Lie groups.

1.2 Fundamental Notation

Throughout this book K denotes either the field R of the real numbers or
the field C of the complex numbers. All vector spaces will be K-vector spaces
if not otherwise specified. We write Mn(K) for the ring of (n × n)-matrices
with entries in K, 1 for the identity matrix, and GLn(K) for its group of
units, the general linear group. Further, we write N := {1, 2, . . . } for the
set of the natural numbers and denote (half-)open intervals as ]a, b] :=
{x ∈ R : a < x ≤ b}, [a, b[ := {x ∈ R : a ≤ x < b}, and ]a, b[ :=
{x ∈ R : a < x < b}.
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Matrix Groups



2 Concrete Matrix Groups

In this chapter, we mainly study the general linear group GLn(K) of invertible
n×n-matrices with entries inK = R or C and introduce some of its subgroups.
In particular, we discuss some of the connections between matrix groups and
also introduce certain symmetry groups of geometric structures like bilinear
or sesquilinear forms. In Section 2.3, we introduce also groups of matrices
with entries in the quaternions H.

2.1 The General Linear Group

We start with some notation. We write GLn(K) for the group of invertible
matrices in Mn(K) and note that

GLn(K) =
{
g ∈Mn(K) :

(
∃h ∈Mn(K)

)
hg = gh = 1

}
.

Since the invertibility of a matrix can be tested with its determinant,

GLn(K) =
{
g ∈Mn(K) : det g �= 0

}
.

This group is called the general linear group.
On the vector space K

n, we consider the euclidian norm

‖x‖ :=
√
|x1|2 + · · ·+ |xn|2, x ∈ K

n,

and on Mn(K) the corresponding operator norm

‖A‖ := sup
{
‖Ax‖ : x ∈ K

n, ‖x‖ ≤ 1
}

which turns Mn(K) into a Banach space. On every subset S ⊆ Mn(K), we
shall always consider the subspace topology inherited from Mn(K) (otherwise
we shall say so). In this sense, GLn(K) and all its subgroups carry a natural
topology.

Lemma 2.1.1. The group GLn(K) has the following properties:

(i) GLn(K) is open in Mn(K).

J. Hilgert, K.-H. Neeb, Structure and Geometry of Lie Groups,
Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-84794-8 2, c© Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-387-84794-8_2
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(ii) The multiplication map m : GLn(K)×GLn(K)→ GLn(K) and the inver-
sion map η : GLn(K) → GLn(K) are smooth and in particular continu-
ous.

Proof. (i) Since the determinant function

det : Mn(K)→ K, det(aij) =
∑

σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n)

is continuous and K
× := K \ {0} is open in K, the set GLn(K) = det−1(K×)

is open in Mn(K).
(ii) For g ∈ GLn(K), we define bij(g) := det(gmk)m �=j,k �=i. According to

Cramer’s Rule, the inverse of g is given by

(
g−1
)
ij
=

(−1)i+j
det g

bij(g).

The smoothness of the inversion therefore follows from the smoothness of the
determinant (which is a polynomial) and the polynomial functions bij defined
on Mn(K).

For the smoothness of the multiplication map, it suffices to observe that

(ab)ik =

n∑

j=1

aijbjk

is the (ik)-entry in the product matrix. Since all these entries are quadratic
polynomials in the entries of a and b, the product is a smooth map. 
�

Definition 2.1.2. A topological group G is a Hausdorff space G, endowed
with a group structure, such that the multiplication map mG : G × G → G
and the inversion map η : G → G are continuous, when G × G is endowed
with the product topology.

Lemma 2.1.1(ii) says in particular that GLn(K) is a topological group. It
is clear that the continuity of group multiplication and inversion is inherited
by every subgroup G ⊆ GLn(K), so that every subgroup G of GLn(K) also
is a topological group.

We write a matrix A = (aij)i,j=1,...,n also as (aij) and define

A� := (aji), A := (aij), and A∗ := A
�
= (aji).

Note that A∗ = A� is equivalent to A = A, which means that all entries of
A are real. Now we can define the most important classes of matrix groups.

Definition 2.1.3. We introduce the following notation for some important
subgroups of GLn(K):
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(1) The special linear group: SLn(K) := {g ∈ GLn(K) : det g = 1}.
(2) The orthogonal group: On(K) := {g ∈ GLn(K) : g� = g−1}.
(3) The special orthogonal group: SOn(K) := SLn(K) ∩On(K).
(4) The unitary group: Un(K) := {g ∈ GLn(K) : g∗ = g−1}. Note that

Un(R) = On(R), but On(C) �= Un(C).
(5) The special unitary group: SUn(K) := SLn(K) ∩Un(K).

One easily verifies that these are indeed subgroups. One simply has to use
that (ab)� = b�a�, ab = ab and that

det : GLn(K)→ (K×, ·)

is a group homomorphism.
We write Hermn(K) := {A ∈ Mn(K) : A∗ = A} for the set of hermitian

matrices. For K = C, this is not a complex vector subspace of Mn(K), but it
is always a real subspace. A matrix A ∈ Hermn(K) is called positive definite
if for each 0 �= z ∈ K

n we have 〈Az, z〉 > 0, where

〈z, w〉 :=
n∑

j=1

zjwj

is the natural scalar product on K
n. We write Pdn(K) ⊆ Hermn(K) for the

subset of positive definite matrices.

Lemma 2.1.4. The groups

Un(C), SUn(C), On(R), and SOn(R)

are compact.

Proof. Since all these groups are subsets of Mn(C) ∼= C
n2

, by the Heine–Borel
Theorem we only have to show that they are closed and bounded.

Bounded: In view of

SOn(R) ⊆ On(R) ⊆ Un(C) and SUn(C) ⊆ Un(C),

it suffices to see that Un(C) is bounded. Let g1, . . . , gn denote the rows of
the matrix g ∈ Mn(C). Then g∗ = g−1 is equivalent to gg∗ = 1, which
means that g1, . . . , gn form an orthonormal basis for Cn with respect to the
scalar product 〈z, w〉 =

∑n
j=1 zjwj which induces the norm ‖z‖ =

√
〈z, z〉.

Therefore, g ∈ Un(C) implies ‖gj‖ = 1 for each j, so that Un(C) is bounded.
Closed: The functions

f, h : Mn(K)→Mn(K), f(A) := AA∗ − 1 and h(A) := AA� − 1

are continuous. Therefore, the groups

Un(K) := f−1(0) and On(K) := h−1(0)

are closed. Likewise SLn(K) = det−1(1) is closed, and therefore the groups
SUn(C) and SOn(R) are also closed because they are intersections of closed
subsets. 
�
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2.1.1 The Polar Decomposition

Proposition 2.1.5 (Polar decomposition). The multiplication map

m : Un(K)× Pdn(K)→ GLn(K), (u, p) �→ up

is a homeomorphism. In particular, each invertible matrix g can be written
in a unique way as a product g = up of a unitary matrix u and a positive
definite matrix p.

Proof. We know from linear algebra that for each hermitian matrix A there
exists an orthonormal basis v1, . . . , vn for K

n consisting of eigenvectors of
A, and that all the corresponding eigenvalues λ1, . . . , λn are real (see [La93,
Thm. XV.6.4]). From that it is obvious that A is positive definite if and only
if λj > 0 holds for each j. For a positive definite matrix A, this has two
important consequences:

(1) A is invertible, and A−1 satisfies A−1vj = λ−1
j vj .

(2) There exists a unique positive definite matrix B with B2 = A which
will be denoted

√
A: We define B with respect to the basis (v1, . . . , vn) by

Bvj =
√

λjvj . Then B2 = A is obvious and since all λj are real and the vj
are orthonormal, B is positive definite because

〈
B

(∑

i

μivi

)
,
∑

j

μjvj

〉
=
∑

i,j

μiμj〈Bvi, vj〉 =
n∑

j=1

|μj |2
√

λj > 0

for
∑

j μjvj �= 0 and real coefficients μj . It remains to verify the uniqueness.

So assume that C is positive definite with C2 = A. Then CA = C3 = AC
implies that C preserves all eigenspaces of A, so that we find an orthonormal
basis w1, . . . , wn consisting of simultaneous eigenvectors of C and A (cf. Ex-
ercise 2.1.1). If Cwj = αjwj , we have Awj = α2

jwj , which implies that C

acts on the λ-eigenspace of A by multiplication with
√
λ, which shows that

C = B.
From (1) we derive that the image of the map m is contained in GLn(K).
m is surjective: Let g ∈ GLn(K). For 0 �= v ∈ K

n we then have

0 < 〈gv, gv〉 = 〈g∗gv, v〉,

showing that g∗g is positive definite. Let p :=
√
g∗g and define u := gp−1.

Then

uu∗ = gp−1p−1g∗ = gp−2g∗ = g(g∗g)−1g∗ = gg−1(g∗)−1g∗ = 1

implies that u ∈ Un(K), and it is clear that m(u, p) = g.
m is injective: If m(u, p) = m(w, q) = g, then g = up = wq implies that

p2 = p∗p = (up)∗up = g∗g = (wq)∗wq = q2,
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so that p and q are positive definite square roots of the same positive definite
matrix g∗g, hence coincide by (2) above. Now p = q, and therefore u =
gp−1 = gq−1 = w.

It remains to show that m is a homeomorphism. Its continuity is obvi-
ous, so that it remains to prove the continuity of the inverse map m−1. Let
gj = ujpj → g = up. We have to show that uj → u and pj → p.
Since Un(K) is compact, the sequence (uj) has a subsequence (ujk) con-
verging to some w ∈ Un(K) by the Bolzano–Weierstraß Theorem. Then
pjk = u−1

jk
gjk → w−1g =: q ∈ Hermn(K) and g = wq. For each v ∈ K

n,
we then have

0 ≤ 〈pjkv, v〉 → 〈qv, v〉,

showing that all eigenvalues of q are ≥ 0. Moreover, q = w−1g is invertible,
and therefore q is positive definite. Now m(u, p) = m(w, q) yields u = w and
p = q. Since each convergent subsequence of (uj) converges to u, the sequence
itself converges to u (Exercise 2.1.9), and therefore pj = u−1

j gj → u−1g = p.

�

We shall see later that the set Pdn(K) is homeomorphic to a vector space
(Proposition 3.3.5), so that, topologically, the group GLn(K) is a product of
the compact group Un(K) and a vector space. Therefore, the “interesting”
part of the topology of GLn(K) is contained in the compact group Un(K).

Remark 2.1.6 (Normal forms of unitary and orthogonal matrices).
We recall some facts from linear algebra:

(a) For each u ∈ Un(C), there exists an orthonormal basis v1, . . . , vn
consisting of eigenvectors of g (see [La93, Thm. XV.6.7]). This means that
the unitary matrix s whose columns are the vectors v1, . . . , vn satisfies

s−1us = diag(λ1, . . . , λn),

where uvj = λjv and |λj | = 1.
The proof of this normal form is based on the existence of an eigenvector

v1 of u, which in turn follows from the existence of a zero of the characteristic
polynomial. Since u is unitary, it preserves the hyperplane v⊥1 of dimension
n − 1. Now one uses induction to obtain an orthonormal basis v2, . . . , vn
consisting of eigenvectors.

(b) For elements of On(R), the situation is more complicated because real
matrices do not always have real eigenvectors.

Let A ∈Mn(R) and consider it as an element of Mn(C). We assume that
A does not have a real eigenvector. Then there exists an eigenvector z ∈ C

n

corresponding to some eigenvalue λ ∈ C. We write z = x+ iy and λ = a+ ib.
Then

Az = Ax+ iAy = λz = (ax− by) + i(ay + bx).

Comparing real and imaginary part yields
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Ax = ax− by and Ay = ay + bx.

Therefore, the two-dimensional subspace generated by x and y in R
n is in-

variant under A.
This can be applied to g ∈ On(R) as follows. The argument above implies

that there exists an invariant subspace W1 ⊆ R
n with dimW1 ∈ {1, 2}. Then

W⊥
1 :=

{
v ∈ R

n : 〈v,W1〉 = {0}
}

is a subspace of dimension n−dimW1 which is also invariant (Exercise 2.1.14),
and we apply induction to see that Rn is a direct sum of g-invariant subspaces
W1, . . . ,Wk of dimension ≤ 2. Therefore, the matrix g is conjugate by an
orthogonal matrix s to a block matrix of the form

d = diag(d1, . . . , dk),

where dj is the matrix of the restriction of the linear map corresponding to
g to Wj .

To understand the structure of the dj , we have to take a closer look at
the case n ≤ 2. For n = 1 the group O1(R) = {±1} consists of two elements,
and for n = 2 an element r ∈ O2(R) can be written as

r =

(
a ∓b
b ±a

)
with det r = ±

(
a2 + b2

)
= ±1,

because the second column contains a unit vector orthogonal to the first one.
With a = cosα and b = sinα we get

r =

(
cosα ∓ sinα
sinα ± cosα

)
.

For det r = −1, we obtain

r2 =

(
a b
b −a

)(
a b
b −a

)
= 1,

but this implies that r is an orthogonal reflection with the two eigenvalues
±1 (Exercise 2.1.13), hence has two orthogonal eigenvectors.

In view of the preceding discussion, we may therefore assume that the
first m of the matrices dj are of the rotation form

dj =

(
cosαj − sinαj
sinαj cosαj

)
,

that dm+1, . . . , d� are −1, and that d�+1, . . . , dn are 1:
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cosα1 − sinα1

sinα1 cosα1

. . .

cosαm − sinαm
sinαm cosαm

−1
. . .

−1
1

. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For n = 3, we obtain in particular the normal form

d =

⎛

⎝
cosα − sinα 0
sinα cosα 0
0 0 ±1

⎞

⎠ .

From this normal form we immediately read off that det d = 1 is equivalent
to d describing a rotation around an axis consisting of fixed points (the axis
is Re3 for the normal form matrix).

Proposition 2.1.7. (a) The group Un(C) is arcwise connected.
(b) The group On(R) has the two arc components

SOn(R) and On(R)− :=
{
g ∈ On(R) : det g = −1

}
.

Proof. (a) First we consider Un(C). To see that this group is arcwise con-
nected, let u ∈ Un(C). Then there exists an orthonormal basis v1, . . . , vn of
eigenvectors of u (Remark 2.1.6(a)). Let λ1, . . . , λn denote the corresponding
eigenvalues. Then the unitarity of u implies that |λj | = 1, and we therefore
find θj ∈ R with λj = eθji. Now we define a continuous curve

γ : [0, 1]→ Un(C), γ(t)vj := etθjivj , j = 1, . . . , n.

We then have γ(0) = 1 and γ(1) = u. Moreover, each γ(t) is unitary because
the basis (v1, . . . , vn) is orthonormal.

(b) For g ∈ On(R), we have gg� = 1, and therefore 1 = det(gg�) =
(det g)2. This shows that

On(R) = SOn(R) ∪̇On(R)−

and both sets are closed in On(R) because det is continuous. Therefore, On(R)
is not connected, and hence not arcwise connected. Suppose we knew that
SOn(R) is arcwise connected and x, y ∈ On(R)−. Then 1, x−1y ∈ SOn(R)
can be connected by an arc γ : [0, 1] → SOn(R), and then t �→ xγ(t) defines
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an arc [0, 1]→ On(R)− connecting x to y. So it remains to show that SOn(R)
is arcwise connected.

Let g ∈ SOn(R). In the normal form of g discussed in Remark 2.1.6, the
determinant of each two-dimensional block is 1, so that the determinant is
the product of all −1-eigenvalues. Hence their number is even, and we can
write each consecutive pair as a block

(
−1 0
0 −1

)
=

(
cosπ − sinπ
sinπ cosπ

)
.

This shows that with respect to some orthonormal basis for R
n the linear

map defined by g has a matrix of the form

g =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cosα1 − sinα1

sinα1 cosα1

. . .

cosαm − sinαm
sinαm cosαm

1
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now we obtain an arc γ : [0, 1]→ SOn(R) with γ(0) = 1 and γ(1) = g by

γ(t) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos tα1 − sin tα1

sin tα1 cos tα1

. . .

cos tαm − sin tαm
sin tαm cos tαm

1
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.


�
Corollary 2.1.8. The group GLn(C) is arcwise connected and the group
GLn(R) has two arc-components given by

GLn(R)± :=
{
g ∈ GLn(R) : ± det g > 0

}
.

Proof. If X = A×B is a product space, then the arc-components of X are the
sets of the form C ×D, where C ⊆ A and D ⊆ B are arc-components (easy
Exercise!). The polar decomposition of GLn(K) yields a homeomorphism

GLn(K) ∼= Un(K)× Pdn(K).

Since Pdn(K) is an open convex set, it is arcwise connected (Exercise 2.1.6).
Therefore, the arc-components of GLn(K) are in one-to-one correspondence
with those of Un(K) which have been determined in Proposition 2.1.7. 
�
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2.1.2 Normal Subgroups of GLn(K)

We shall frequently need some basic concepts from group theory which we
recall in the following definition.

Definition 2.1.9. Let G be a group with identity element e.
(a) A subgroup N ⊆ G is called normal if gN = Ng holds for all g ∈ G.

We write this as N � G. The normality implies that the quotient set G/N
(the set of all cosets of the subgroup N) inherits a natural group structure
by

gN · hN := ghN

for which eN is the identity element and the quotient map q : G→ G/N is a
surjective group homomorphism with kernel N = ker q = q−1(eN).

On the other hand, all kernels of group homomorphisms are normal sub-
groups, so that the normal subgroups are precisely those which are kernels
of group homomorphisms.

It is clear that G and {e} are normal subgroups. We call G simple if
G �= {e} and these are the only normal subgroups.

(b) The subgroup Z(G) := {g ∈ G : (∀x ∈ G)gx = xg} is called the center
of G. It obviously is a normal subgroup of G. For x ∈ G, the subgroup

ZG(x) := {g ∈ G : gx = xg}

is called its centralizer. Note that Z(G) =
⋂
x∈G ZG(x).

(c) If G1, . . . , Gn are groups, then the product set G := G1×· · ·×Gn has
a natural group structure given by

(g1, . . . , gn)(g
′
1, . . . , g

′
n) := (g1g

′
1, . . . , gng

′
n).

The group G is called the direct product of the groups Gj , j = 1, . . . , n.
We identify Gj with a subgroup of G. Then all subgroups Gj are normal
subgroups and G = G1 · · ·Gn.

In the following, we write R
×
+ := ]0,∞[.

Proposition 2.1.10. (a) Z(GLn(K)) = K
×1.

(b) The multiplication map

ϕ : (R×
+, ·)× SLn(R)→ GLn(R)+, (λ, g) �→ λg

is a homeomorphism and a group isomorphism, i.e., an isomorphism of topo-
logical groups.

Proof. (a) It is clear that K
×1 is contained in the center of GLn(K). To

see that each matrix g ∈ Z(GLn(K)) is a multiple of 1, we consider the
elementary matrix Eij := (δij) with the only nonzero entry 1 in position
(i, j). For i �= j, we then have E2

ij = 0, so that (1+Eij)(1−Eij) = 1, which
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implies that Tij := 1 + Eij ∈ GLn(K). From the relation gTij = Tijg we
immediately get gEij = Eijg for i �= j, so that for k, � ∈ {1, . . . , n} we get

gkiδj� = (gEij)k� = (Eijg)k� = δikgj�.

For k = i and � = j, we obtain gii = gjj ; and for k = j = �, we get gji = 0.
Therefore, g = λ1 for some λ ∈ K.

(b) It is obvious that ϕ is a group homomorphism and that ϕ is continuous.
Moreover, the map

ψ : GLn(R)+ → R
×
+ × SLn(R), g �→

(
(det g)

1
n , (det g)−

1
n g
)

is continuous and satisfies ϕ ◦ ψ = id and ψ ◦ ϕ = id. Hence ϕ is a homeo-
morphism. 
�

Remark 2.1.11. The subgroups

Z
(
GLn(K)

)
and SLn(K)

are normal subgroups of GLn(K). Moreover, for GLn(R) the subgroup
GLn(R)+ is a proper normal subgroup and the same holds for R×

+1. One can
show that these examples exhaust all normal arcwise connected subgroups of
GLn(K).

2.1.3 Exercises for Section 2.1

Exercise 2.1.1. Let V be a K-vector space and A ∈ End(V ). We write
Vλ(A) := ker(A − λ1) for the eigenspace of A corresponding to the eigen-
value λ and V λ(A) :=

⋃
n∈N

ker(A−λ1)n for the generalized eigenspace of A
corresponding to λ.

(a) If A,B ∈ End(V ) commute, then

BV λ(A) ⊆ V λ(A) and BVλ(A) ⊆ Vλ(A)

holds for each λ ∈ K.
(b) If A ∈ End(V ) is diagonalizable and W ⊆ V is an A-invariant sub-

space, then A|W ∈ End(W ) is diagonalizable.
(c) If A,B ∈ End(V ) commute and both are diagonalizable, then they are

simultaneously diagonalizable, i.e., there exists a basis for V which consists
of eigenvectors of A and B.

(d) If dimV <∞ and A ⊆ End(V ) is a commuting set of diagonalizable
endomorphisms, then A can be simultaneously diagonalized, i.e., V is a direct
sum of simultaneous eigenspaces of A.

(e) For any function λ : A → V , we write Vλ(A) =
⋂
a∈A Vλ(a)(a) for

the corresponding simultaneous eigenspace. Show that the sum
∑

λ Vλ(A) is
direct.



2.1 The General Linear Group 19

(f) If A ⊆ End(V ) is a finite commuting set of diagonalizable endomor-
phisms, then A can be simultaneously diagonalized.

(g) Find a commuting set of diagonalizable endomorphisms of a vector
space V which cannot be diagonalized simultaneously.

Exercise 2.1.2. Let G be a topological group. Let G0 be the identity com-
ponent , i.e., the connected component of the identity in G. Show that G0 is
a closed normal subgroup of G.

Exercise 2.1.3. SOn(K) is a closed normal subgroup of On(K) of index 2
and, for every g ∈ On(K) with det(g) = −1,

On(K) = SOn(K) ∪ g SOn(K)

is a disjoint decomposition.

Exercise 2.1.4. For each subset M ⊆Mn(K), the centralizer

ZGLn(K)(M) :=
{
g ∈ GLn(K) : (∀m ∈M)gm = mg

}

is a closed subgroup of GLn(K).

Exercise 2.1.5. We identify C
n with R

2n by the map z = x + iy �→ (x, y)
and write I(x, y) := (−y, x) for the real linear endomorphism of R2n corre-
sponding to multiplication with i. Then

GLn(C) ∼= ZGL2n(R)

(
{I}
)

yields a realization of GLn(C) as a closed subgroup of GL2n(R).

Exercise 2.1.6. A subset C of a real vector space V is called a convex cone
if C is convex and λC ⊆ C for each λ > 0.

Show that Pdn(K) is an open convex cone in Hermn(K).

Exercise 2.1.7. Show that

γ : (R,+)→ GL2(R), t �→
(

cos t sin t
− sin t cos t

)

is a continuous group homomorphism with γ(π) =
(−1 0

0 −1

)
and im γ =

SO2(R).

Exercise 2.1.8. Show that the group On(C) is homeomorphic to the topo-
logical product of the subgroup

On(R) ∼= Un(C) ∩On(C) and the set Pdn(C) ∩On(C).

Exercise 2.1.9. Let (X, d) be a compact metric space and (xn)n∈N a se-
quence in X. Show that limn→∞ xn = x is equivalent to the condition that
each convergent subsequence (xnk

)k∈N converges to x.
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Exercise 2.1.10. If A ∈ Hermn(K) satisfies 〈Av, v〉 = 0 for each v ∈ K
n,

then A = 0.

Exercise 2.1.11. Show that for a complex matrix A ∈Mn(C) the following
are equivalent:

(1) A∗ = A.
(2) 〈Av, v〉 ∈ R for each v ∈ C

n.

Exercise 2.1.12. (a) Show that a matrix A ∈ Mn(K) is hermitian if and
only if there exists an orthonormal basis v1, . . . , vn for Kn and real numbers
λ1, . . . , λn with Avj = λjvj .

(b) Show that a complex matrix A ∈Mn(C) is unitary if and only if there
exists an orthonormal basis v1, . . . , vn for Kn and λj ∈ C with |λj | = 1 and
Avj = λjvj .

(c) Show that a complex matrix A ∈ Mn(C) is normal, i.e., satisfies
A∗A = AA∗, if and only if there exists an orthonormal basis v1, . . . , vn for
K
n and λj ∈ C with Avj = λjvj .

Exercise 2.1.13. (a) Let V be a vector space and 1 �= A ∈ End(V ) with
A2 = 1 (A is called an involution). Show that

V = ker(A− 1)⊕ ker(A+ 1).

(b) Let V be a vector space and A ∈ End(V ) with A3 = A. Show that

V = ker(A− 1)⊕ ker(A+ 1)⊕ kerA.

(c) Let V be a vector space and A ∈ End(V ) an endomorphism for which
there exists a polynomial p of degree n with n different zeros λ1, . . . , λn ∈ K

and p(A) = 0. Show that A is diagonalizable with eigenvalues λ1, . . . , λn.

Exercise 2.1.14. Let β : V × V → K be a bilinear map and g : V → V with
β(gv, gw) = β(v, w) be a β-isometry. For a subspace E ⊆ V , we write

E⊥ :=
{
v ∈ V : (∀w ∈ E) β(v, w) = 0

}

for its orthogonal space. Show that g(E) = E implies that g(E�) = E�.

Exercise 2.1.15 (Iwasawa decomposition of GLn(R)). Let

T+
n (R) ⊆ GLn(R)

denote the subgroup of upper-triangular matrices with positive diagonal en-
tries. Show that the multiplication map

μ : On(R)× T+
n (R)→ GLn(R), (a, b) �→ ab

is a homeomorphism.

Exercise 2.1.16. Let K be a field and n ∈ N. Show that

Z
(
Mn(K)

)
:=
{
z ∈Mn(K) :

(
∀x ∈Mn(K)

)
zx = xz

}
= K1.
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2.2 Groups and Geometry

In Definition 2.1.3, we have defined certain matrix groups by concrete condi-
tions on the matrices. Often it is better to think of matrices as linear maps
described with respect to a basis. To do that, we have to adopt a more ab-
stract point of view. Similarly, one can study symmetry groups of bilinear
forms on a vector space V without fixing a certain basis a priori. Actually,
it is much more convenient to choose a basis for which the structure of the
bilinear form is as simple as possible.

2.2.1 Isometry Groups

Definition 2.2.1 (Groups and bilinear forms). (a) (The abstract general
linear group) Let V be a K-vector space. We write GL(V ) for the group of
linear automorphisms of V . This is the group of invertible elements in the
ring End(V ) of all linear endomorphisms of V .

If V is an n-dimensional K-vector space and v1, . . . , vn is a basis for V ,
then the map

Φ : Mn(K)→ End(V ), Φ(A)vk :=

n∑

j=1

ajkvj

is a linear isomorphism which describes the passage between linear maps and
matrices. In view of Φ(1) = idV and Φ(AB) = Φ(A)Φ(B), we obtain a group
isomorphism

Φ|GLn(K) : GLn(K)→ GL(V ).

(b) Let V be an n-dimensional vector space with basis v1, . . . , vn and
β : V × V → K a bilinear map. Then B = (bjk) := (β(vj , vk))j,k=1,...,n is an
(n × n)-matrix, but this matrix should NOT be interpreted as the matrix
of a linear map. It is the matrix of a bilinear map to K, which is something
different. It describes β in the sense that

β

(∑

j

xjvj ,
∑

k

ykvk

)
=

n∑

j,k=1

xjbjkyk = x�By,

where x�By with column vectors x, y ∈ K
n is viewed as a matrix product

whose result is a (1× 1)-matrix, i.e., an element of K.
We write

Aut(V, β) :=
{
g ∈ GL(V ) : (∀v, w ∈ V )β(gv, gw) = β(v, w)

}

for the isometry group of the bilinear form β. Then it is easy to see that

Φ−1
(
Aut(V, β)

)
=
{
g ∈ GLn(K) : g�Bg = B

}
.


