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1

Introduction

Hybrid Systems: Why, How?
This introductory chapter provides an overview of the prob-

lems addressed in this book, and a summary of the book and its
contributions.

The chapter is organized as follows. Section 1.1 provides a brief
history of hybrid systems and motivates this work and its ap-
proach. A summary of the book and its organization are given in
Section 1.2 and Section 1.3 provides some concluding remarks.

1.1 Motivation and History

The field of Hybrid Systems (HS) is in the midst of rapid changes,
evolution and development. One generally accepted attribute of
hybrid systems is that they include both discrete (or digital) and
continuous behaviour. By ‘include’, we mean that both discrete
and continuous variables, dynamics, and, conditions, which we will
refer to collectively as ‘domains’, are required in order to fully
characterize the behaviour of interest.

With a term like ‘hybrid’ modifying another term like ‘system’,
the need to precisely describe the term ‘hybrid system’ is impor-
tant. The need for and difficulty in assigning a precise meaning to
the term hybrid system is compounded by the fact that ambigu-
ity in what hybrid systems are has allowed a number of different
problems and areas to come to be referred to as being ‘hybrid’. In
this section, we plan to describe the meaning of hybrid systems,
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2 1 Introduction

to place them in context and to motivate the need to study hybrid
systems and the approaches taken in this work.

The problems, questions and methods that arise in hybrid sys-
tems would seem to be distinct enough from other existing areas
of systems and control, that we feel justified in referring to hybrid
systems as a field of systems and control. To the best of our knowl-
edge, a generally accepted definition of hybrid systems does not
exist and we do not attempt to give one here. In fact, at this fairly
early stage in the field’s development when there still are many
open problems and diverse approaches being explored, it is rea-
sonable to leave hybrid systems undefined. Instead, it does seem
possible to characterize hybrid systems according to attributes of
the problems and/or methods used in solving these problems in a
definitive way. It would seem that diverse yet related investigations
will help crystallize a scientific consensus based on fundamental
needs and ideas of hybrid systems.

A question may arise “wasn’t this behaviour present earlier”; to
which one would answer “yes”. However, it is the recognition that
the inclusion and integration of continuous and discrete behaviour
into the modeling formalism better reflects reality, that problems
can be posed and answered combining these two domains, and that
solving these problems is both theoretically interesting and practi-
cally valuable. Furthermore, hybrid–type behaviour also arises by
allowing a larger class of possible control action. Hybrid systems
in terms of physical systems, have existed for decades. However,
the formalization of the problems and methods that they involve
is much more recent.

A brief recent history of the hybrid systems field is given next,
with a focus towards control of hybrid systems. This will be done
without careful reference to specific literature but rather relative
to main contributions and their apparent impact on the field. A
more formal and specific literature review is given in Section 2.4.
It is a recent history that is in the stages of significant and rapid
development and evolution.

In the early 1980’s, the work of Ramadge and Wonham [78]
on control of supervisory control of discrete–event systems intro-
duced a control–theoretic approach to problems involving logical
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plant descriptions and performance specifications. This initiated
the field of Discrete–Event Systems (DES) and spawned a rich ar-
ray of investigations into problems of control, observation, decen-
tralization and hierarchy, among others. In the late 1980’s, Varaiya
and colleagues [43] and Benveniste and colleagues [16] introduced
and examined questions involving systems having continuous and
discrete domains. The work of Varaiya and colleagues was moti-
vated by problem in highway automation [91]. The coupling be-
tween practical and theoretical problems is one that was present
in the early stages of hybrid systems and continues to be the case.
Benveniste’s approach to hybrid systems was to characterize a sys-
tem as hybrid based on a computer programming language and the
behaviours that it could describe. Also in the late 1980’s, work by
Caines and colleagues [23] initiated an approach for integrating
logic and control, or as put in their early work, “. . . to show that
Artificial intelligence and systems and control theory have an inter-
section (or product!) containing a set of problems that possess the
conceptual features of both subjects.” [23]. Also in the late 1980’s
a Task Force report on future trends and directions for the con-
trol systems field was published [63]. Many of the comments and
recommendations in this report reflect problems and approaches
that are being investigated as part of the hybrid system activities.

In the early 1990’s, an annual Hybrid System Workshops series
was initiated. The first was held at the Mathematical Sciences
Institute, Cornell University in 1991. The Workshops address a
variety of hybrid systems questions related to modeling, control,
analysis, verification, design, simulation and applications, with the
post–Workshop proceedings being published in the Lecture Notes
in Computer Science series. The diversity of methods and views
towards hybrid systems becomes apparent in these collections. As
has often been noted and remarked by hybrid researchers, hybrid
systems are being studied by persons from a variety of disciplines
including engineering, mathematics, and computer science. This
fact could be said to be seen as further contributing to the diversity
of interests, methods, and ‘tools’ found within the hybrid systems
field.
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In the early 1990’s, Kohn discussed an approach to intelligent
real–time control based on a Declarative Control Architecture [47].
A high-level decomposition of system behaviour was given based
on the following three principles: conservation, constraint, and in-
variance. These apply to both physical and non–physical systems
and can be used in guiding the problem definitions and the re-
quired theoretical techniques.

In the first Lecture Notes series published in 1993, the work
of Nerode and Kohn [68] considered a number of issues, problems
and approaches for hybrid systems, in particular, their control, and
has provided direction for a number of different investigations. An
underlying premise of their work is the treatment of the plant and
controller of the hybrid system as an automaton. On the other
hand, the work of Branicky, appearing in full in [18], of consid-
ering hybrid systems relative to the continuous domain is a com-
plementary approach. Both of these approaches and much of the
work by others on control of hybrid systems, consider questions
of optimality and/or state invariance in the presence of hybrid
phenomena.

Although there is no ‘explicit’ consensus on what makes a sys-
tem hybrid, we could suggest that there would seem to be some
‘implicit’ consensus developing. A list of some observations that
could be taken as points that are beginning to form a consensus
is as follows: (i) HS involves continuous and discrete domains, (ii)
a main issue in HS is being able to consider continuous and dis-
crete domains in a unified and consistent way, (iii) there is a rich
collection of existing hybrid models describing a number of hy-
brid phenomena, (iv) solutions to control problems will often be
algorithmic and require approximations, (v) there is a rich set of
practical problems, both small and large–scale, to which HS can
be applied. We remark about Item (ii) that although this appears
to be a fairly well–accepted assumption and perhaps even ‘intu-
itively obvious’, the clear advantages, gains, and needs to consider
the two domains in a unified and consistent way has not been
formally proven to the best of our knowledge. Of course, the fact
that these two domains appear in many situations and applica-
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tions could be taken as a strong motivation and justification for
this need.

In [48], the following problem is stated as the fundamental prob-
lem of hybrid systems:

Find algorithms which, given continuous plant differen-
tial equations and plant performance specifications (which
may include logical constraints), extract digital control
programs (mode switching programs) that force the state
trajectories of the system to obey their performance spec-
ifications.

A typical hybrid closed-loop system is shown in Figure 1.1. The
plant represents the process to be controlled. The Analog-to-Digital
(AD) Converter maps continuous measurements into symbolic in-
puts that are supplied to the Digital Control Automaton (DCA).
The DCA control strategy operates on a (finite) number of in-
puts to generate a (finite) number of outputs. These outputs are
sent to the Digital-to-Analog Converter (DA) which generates a
continuous control input based on the control automaton’s output
which can then be applied to the plant. The AD and DA are often
grouped together and referred to as the interface.

As discussed in [70], two approaches that can be taken when
considering systems and their control, is what is referred to as
‘bottom-up’ versus ‘top-down’. In the context of control of hybrid
systems, the former would begin, for example, by partitioning the
state space and designing a control solution to satisfy the perfor-
mance specifications while the latter would use the performance
specifications to derive the required partition. We believe that this
distinction is fundamental to hybrid systems and to the problems
that can be solved. We adopt the ‘top-down’ philosophy in this
work.

Taking a ‘top-down’ approach has implications at all problem
stages; we consider here those imposed on the hybrid model. What
we need to ask (and answer) is “what should be the basis for how
the way of decomposing the continuous space(s)”? The answer we
give, guided by the ‘top-down’ methodology, is that the decompo-
sition should be based on the available control laws. Any uncon-
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Fig. 1.1. Typical hybrid closed-loop system (from (Branicky et al., 1994)).

trolled transition behaviour should be able to be accounted for by
the description of the plant. Along with being consistent with the
top-down approach, this point of view also avoids the need to con-
sider questions arising, for example, in the incorporation of logical
reasoning as part of the control decision capabilities. We believe
that having logical reasoning capabilities within the hybrid setting
is important in achieving a unified hybrid framework. However,
this has not been considered in this work. A logical framework
would seem to need to be defined in a consistent and comple-
mentary way to the requirements imposed by the continuous–time
qualitative properties.

We next turn to a more detailed discussion on the motivation of
this work. The main issue that we consider is to ensure that certain
qualitative properties of the dynamical systems exhibiting hybrid
behaviour can be ensured through control. The control problem
requires the design of control devices to generate control actions
that realize these properties.

There are two main types of hybrid phenomena that we are
interested in: (1) transitions in states, and (2) transitions in dy-
namics. The first is not explicitly modeled but rather is accounted
for as part of the control design process. The second is explicitly
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modeled. A modeling framework is considered that accounts for (1)
multi–valued state evolution, and (2) nonsmooth state constraint
performance specifications. The first phenomena is considered as
a means of dealing with multiple dynamic modes and model un-
certainties. The second phenomena provides a means to handle
encoding of logical conditions into the state space.

Next the viability control problem is stated where the desired
control action is required to keep states starting within some user
specified set to remain within this set for all time.

Viability Control Problem (VCP): Given the dynamics describ-
ing the evolution of the system state over time, the set of possible
control action, and the performance specifications in the form of
constraints that the systems state must satisfy for all time, find a
control decision methodology that selects from the available control
action to ensure that the system state satisfies the performance
specifications.

Referring back to the fundamental problem of hybrid systems,
the above problem is subsumed by the more general fundamental
problem statement. We include ‘control’ explicitly in the above
descriptions of the problem to make clear that it intrinsically re-
quires that a control solution be found. Omitting the term ‘control’
defines the same qualitative problems except that a control solu-
tion is not required to be found. This can be then considered as a
problem of analysis (or verification) versus control (or synthesis).
In Figure 1.2, we illustrate the VCP problem for continuous–time
system dynamics with discrete phenomena, where V S denotes the
state constraint set required for VCP.

1.2 Summary and Organization

Throughout this book, we assume that (i) the system dynamics are
given by time-invariant (autonomous), finite–dimensional systems
(ordinary differential equations or ordinary differential inclusions),
(ii) all continuous plant states can be observed with observations
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Fig. 1.2. Illustration of the Viability Control Problem.

taken at uniform time intervals separated by Δ > 0, and (iii)
disturbances on the plant are ignored.

The following give chapter summaries for the body of the book.
Chapter 3 Hybrid Model

A modeling formalism is adopted in which a continuous–time
plant, described by an ordinary differential equation (or inclusion)
is coupled to an control automaton through AD and DA mappings.
The plant and control automata can be viewed as input–output
devices. We refer to this as an instance of a simple hybrid sys-
tem. This model captures the five characteristics of controlled hy-
brid systems that we are interested in. Three forms of uncertainty,
transition dynamics, structural uncertainty, and parametric un-
certainty are introduced and a way to express each in a manner
that is consistent with the HCLS is given. Transition dynamics are
considered in detail, with four transition dynamics models given.
These models can be considered to vary from having ‘minimal’
knowledge to ‘maximal’ knowledge of the transition behaviour.
We examine the basic three–tank example using this modeling
and consider a variety of modifications that can be made to the
basic problem. This problem is examined in some detail at this
stage since it is used throughout the remainder of the book as an
example problem. We will not make further specific mention of
this example relative to the summaries in Chapters 3–4 below.
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Two related notions of a hybrid trajectory are given based on
the instance of the simple hybrid system model. A means of or-
dering segments of these trajectories is provided. A general rela-
tionship that applies to each of the three control law classes is
established between continuity of a mapping, the existence of a
fixed point of this mapping, and the existence of a hybrid tra-
jectory that satisfies the qualitative property defined by the fixed
point of the mapping.

Chapter 4 Viability

Control design for ensuring viability in the case of time–
independent and time–dependent state constraints is considered.
In both cases, the control laws are assumed to be generated by a
finite control automaton. Three classes of admissible control law
sets are considered: (i) piecewise constant control (PWCΔ), in
which a transition between constituent control systems is allowed
only at the sampling instants, (ii) piecewise constant control with
finite switching (PWCΔ,k), in which a finite number of transitions
between constituent control systems is allowed within the sam-
pling interval, and (iii) piecewise constant with polynomial control
(PWCPCΔ,k), in which the control law for the sample interval is
determined at each sampling instant, with the control law choos-
ing the constituent system (as in the case of sample switching) as
well as the continuous control law to be applied for the sampling
interval taken as a polynomial of fixed order in time.

For the time–independent viability problem, an approach is
given using the solution set. Piecewise constant control comes
equipped with a finite set of control laws, this not being the case
for the other two control law classes. One approach to dealing with
this non–finiteness is by extending the approach in the finite case.
An analogous theoretical basis for the time–dependent problem is
given.

Chapter 5 Robust Viability

Three forms of uncertainty for hybrid systems are considered:
transition dynamics, structural uncertainty, and parametric un-
certainty. Two extensions to the controllability operator are intro-
duced for handling uncertainty of hybrid systems: the uncertain
controllability operator and the uncertainty operator. The uncer-
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tain controllability operator encodes the effect of uncertainty di-
rectly into the computation of the controllability operator. The
uncertainty operator encodes the effect of uncertainty onto the
nominal value of the controllability operator.

Chapter 6 Viability in Practice

Two simulation applications of viability are considered. The
first is an Active Magnetic Bearing system in which viability is
satisfied by computation of the reachable set for a differential in-
clusion. The second application is that of a batch polymerization
process in which viability is satisfied by cascade control of a viable
controller with an existing PID controller. In both cases, satisfac-
tion of viability is demonstrated through simulation.

Chapter 7 An Operator Approach to Viable Attain-

ability of Hybrid Systems

The problem of viable attainability is addressed based on the
operator approach initiated by Nerode and colleagues for viability
of hybrid systems. Firstly, attainability is addressed whereby at-
tainability refers to reaching some target set of state space within
some finite time horizon. This is done by introducing an attain-
ability operator and providing an algorithm for computation of
the attainability kernel. Having specified attainability, viable at-
tainability whereby both viability and attainability are required
to be satisfied is achieved by intersection of the controllability and
attainability operators. Attainability and viable attainability are
demonstrated using the three fluid–filled tank example.

Chapter 8 Some Topics Related to the Controlla-

bility Operator

In this chapter, we collect facts and properties of the control-
lability operator. Firstly, we show that the εn(x0)–balls which are
removed as part of the satisfaction of viability are continuous func-
tions. This leads to establishing continuity of the controllability
operator. Secondly, we consider the lattice properties of the con-
trol laws. Two orderings of the control law classes are defined, one
weak and one strong ordering. Having this, it is established that
the set of control law classes with the order relation and over set
intersection and union form a lattice. Next conditions for satisfying
the order relations are derived. Thirdly, homotopies are defined to
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consider the variation in the value of the controllability operator
relative to the base admissible control law class PWCΔ which cor-
responds to the collection of piecewise continuous functions over
the sampling interval Δ.

1.3 Summary

The term viability appears to have its origin in continuous–time
Viability Theory by Aubin and colleagues [11], [7]. On the other
hand, the term invariance has been adopted in the work of Clarke
and colleagues [27], [28] within the context of nonsmooth analysis,
with weak invariance being an equivalent notion to viability. In
this work, we choose to adopt the term viability mainly since it
has come to be used within the hybrid systems field.



2

Literature Review

Hybrid Systems: Who, What, When?
In this chapter, we review existing literature on hybrid systems

that is related to this work. This is carried out by first consider-
ing three specific approaches to viability of hybrid systems, these
being due to Nerode and colleagues, Aubin and colleagues and
Deshpande–Varaiya. This review is carried out in Sections 2.1–
Section 2.3. In Section 2.4, literature related specifically to Chap-
ters 3–8 is then reviewed. Some concluding remarks are made
in Section 2.5. Given that hybrid systems is a field that encom-
passes a variety of problem domains and disciplines, there exists
a vast body of related work. Although we do provide some gen-
eral overview of the field, we will focus on approaches to hybrid
systems, and in particular their control, that have the most direct
impact on this work.

2.1 Nerode et al Approach to Viability of
Hybrid Systems [49], [70]

In [49], the fundamental problem which is tackled is to extract,
given a continuous plant simulation model and performance speci-
fication on plant state trajectories, a finite automaton which forces
the hybrid system to satisfy the performance specification. More
specifically, they wish to capture conditions under which finite
state control automata exist which ensure viability is satisfied.
The situation is such that Kohn et al assume that they are given

G. Labinaz, M. Guay, Viability of Hybrid Systems, Intelligent Systems,
Control and Automation: Science and Engineering 55,
DOI 10.1007/978-94-007-2521-8 2,
© Springer Science+Business Media B.V. 2012
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a continuous feedback control function which enforces viable tra-
jectories for a plant and that the objective is to investigate how to
extract finite automaton which exhibit controllable and observable
behaviour and enforce the same viability as in the continuous time
case.

In this work, all hybrid systems are assumed to be simple hybrid
systems with fixed control intervals. A simple hybrid system runs
open loop within a time interval [nΔ, (n+1)Δ] based on a control
function cn and disturbance dn supplied at time nΔ. The control
automaton receives as input at time nΔ the current state x of
the plant, then runs open loop with no further inputs until the
time (n + 1)Δ. Based on its state at time (n + 1)Δ, the control
automaton transmits a new control function cn+1 to the plant to
be used for the time interval [(n + 1)Δ, (n + 2)Δ] and this process
repeats. It is assumed that the plant is described by a vector first
order differential equation

ẋ = f(x, c, d)

with parameters c, d. It is further assumed that

ẋ(t) = f(x, c̃(t), d̃(t))

is such that for any time t0, for any initial state x(t0), for any
admissible control and disturbance functions c̃(t), d̃(t) defined on
[0,∞], there is a unique solution x(t) defined on [0,∞] satisfying
the differential equation.

The initial value of ẋ(t) for the interval [nΔ, (n + 1)Δ] is not
inherited from the previous interval, but is computed from the
differential equation based on the current plant state, the initial
value of the new control function and the new disturbance at nΔ.
This results in the vector field changing direction abruptly at time
nΔ which is characteristic of hybrid control.

Since the plant differential equation is taken as autonomous in
this work, the behaviour in an interval of length Δ is the translate
of the behaviour in any other interval of length Δ. Therefore, c(t)
and d(t) will be assumed to be defined on [0, Δ] and translate them
by nΔ for use on the interval [nΔ, (n + 1)Δ].
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Definition 2.1.The continuous plant induces an automaton, which
is called the Δ-plant automaton associated with a simple hybrid
system. It has two input alphabets, the set D of admissible distur-
bance functions and the set C of admissible control functions. Its
set of internal states is the set of plant states. Its transition func-
tion assigns to input letters control c(t) and disturbance d(t) and
automaton current state s0, the new automaton state x(Δ) where
x(t) is a plant state trajectory such that x(0) = s0 is the solution
to the differential equation

ẋ = f(x(t), c(t), d(t)).

The viability set is denoted as V S, a subset of plant states
which is usually assumed to be closed and compact.

Definition 2.2. A trajectory x(t) over an interval of time [0, Δ]
is called viable of for all t in that interval, x(t) ∈ V S. Similarly,
a trajectory extending over [0,∞] is viable if for all n ≥ 0, the
trajectory xn(t) = x(t − nΔ) over [0, Δ] is viable.

Associated with viability of a simple hybrid system are three
definitions of local graphs given next.

Definition 2.3. The abstract viability graph is an obvious ana-
logue to the viability kernels of continuous time systems. Non-
empty closed compact subsets of this graph and closed viability sets
lead to finite automata that enforce viability.

Definition 2.4. The sturdy local viability graph is such that non-
empty closed compact subsets lead to finite automata that force
viability and also are “safe” under small errors in state and control
measurements.

Definition 2.5. The e-sturdy local viability graph represents those
hybrid systems with a sensor of plant states with error bounded by
a fixed e. This leads to finite state control automata whose analog
to digital converter, or sensor of plant state has error bounded by
e and also enforces viability.
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The latter two graphs are not developed extensively in [49] and
so will not be considered here in any detail. Next, definitions for
nodes and edges of the abstract local viability graph are given.

Definition 2.6. The nodes of the local viability graph are those
pairs

(c0, s0) ∈ C × V S

such that for any disturbance d0 ∈ D, the trajectory x(t) deter-
mined by d0, control c0 and initial state s0 is viable.

Definition 2.7. There is a directed edge from node (c0, s0) to node
(c1, s1) if and only if

1. (c0, s0) and (c1, s1) both nodes of the local viability graph and
2. There is a disturbance d0 ∈ D such that the trajectory x(t) with

disturbance d0 and control c0 and initial condition x(0) = s0

has x(Δ) = s1.

The pair (c0, s0) is referred to as the tail and (c1, s1) is referred
to as the head of the directed edge. There may be nodes of the
abstract local viability graph that are not heads nor tails of any
edges. In this case, these nodes are dropped at the beginning of
the construction of the graph.

For the local viability automaton

• The input alphabet is the set of viable plant states V S.
• The states are the set of controls.
• The non–deterministic transition relation maps a pair (c0, s1) ∈

C × V S to a control c1 if and only if there exists an edge in
the abstract local viability graph with tail (c0, s0) and head
(c1, s1). This is a partially defined transition relation. The in-
terpretation is that c0 should be thought of as the control used
in the previous control interval which has, due to a disturbance,
produced the current plant state s1. Then, with input letter s1

when in local viability automaton state c0, the local viability
automaton moves to state c1 and outputs letter c1.

Next we consider viability over the interval [0,∞]. Assume we
are given a directed graph T which consists of a non-empty set T
of nodes and a subset E of T × T of its directed edges such that
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each node is incident on at least one edge. Each subset T ′ of T
defines a subgraph with edges E ′ = E∩(T ′×T ′). A path is a finite
or infinite sequence of edges such that the head of each edge is the
tail of the next edge. An end node of a graph is a node which is
not the tail of any edge in that graph. Let P (T ) denote the power
set of T .

Definition 2.8. Suppose graph T is given.

1. Define a monotone decreasing operator F : P (T ) → P (T ) by
letting F (T ′) be the set of nodes of T ′ which are not end nodes
of T ′ and which are on at least one edge of T ′.

2. For each ordinal α, define an operator Fα : P (T ) → P (T ) by
transfinite induction as
a) F 0(T ′) = F (T ′),
b) Fα+1(T ′) = F (Fα(T )),
c) F λ(T ′) =

⋂
α>λ Fα(T ′) if λ is a limit ordinal.

Proposition 2.9. Suppose that T ′ ⊆ T .

1. Then T ′ is a fixed point of F if and only if every node of T ′ is
the initial node of some infinite path in T ′.

2. There is a least ordinal α such that

Fα+1(T ′) = Fα(T )

3. If αis the least ordinal such that Fα+1(T ′) = Fα(T ), then
Fα(T ′) is the largest fixed point of F contained in T ′.

Proposition 2.10. Suppose that:

1. The nodes of T are elements of a separable metric space and
2. T ′ is a subgraph of T such that for every ordinal α and for

every end node of Fα(T ′) or node on no edge of Fα(T ′), there
is a neighbourhood containing that node and no other node of
Fα(T ′). (Here we interpret F 0 to be the identity map on P (T ).)

Then

1. The least ordinal α such that Fα(T ′) = Fα+1(T ′) is a countable
ordinal.

2. If T ′ is closed, then F (T ′) is closed.


