C.M.A. Vasques J. Dias Rodrigues *Editors*

Vibration and Structural Acoustics Analysis

Current Research and Related Technologies

Vibration and Structural Acoustics Analysis

C.M.A. Vasques • J. Dias Rodrigues Editors

Vibration and Structural Acoustics Analysis

Current Research and Related Technologies

Editors

C.M.A. Vasques INEGI Universidade do Porto Campus da FEUP R. Dr. Roberto Frias 400 4200-465 Porto Portugal cmay@fe.up.pt J. Dias Rodrigues Faculdade de Engenharia Universidade do Porto R. Dr Roberto Frias s/n 4200-465 Porto Portugal jdr@fe.up.pt

ISBN 978-94-007-1702-2 e-ISBN DOI 10.1007/978-94-007-1703-9 Springer Dordrecht Heidelberg London New York

e-ISBN 978-94-007-1703-9

Library of Congress Control Number: 2011935121

© Springer Science+Business Media B.V. 2011

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: VTeX UAB, Lithuania

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Vibration and structural acoustics analysis is nowadays an essential requirement for high-quality structural and mechanical design in order to assure acoustic comfort and the integrity, reliability and fail-safe behavior of structures and machines. In some conditions vibration and radiated sound in structures and machines is desirable, as is the case of the motion of a tuning fork, the enjoyable melody that a classical guitar may produce or the motion induced by vibration conveyors. More often, vibration and the underlying radiated noise are undesirable and inconvenient, as is the case of the vibrational motion of internal combustion engines, the noise generated by railway traffic, the imperfections in the milling and turning processes due to machine tool chatter or the vibration instability of light-weight aerospace structures.

The underlying technologies of this field of multidisciplinary research are evolving very fast and their dissemination is usually scattered over different and complementary scientific and technical publication means. In order to make it easy for developers and technology end-users to follow the latest developments and news on the field, this book collects into a single volume selected, extended, updated and revised versions of the papers presented at the *Symposium on Vibration and Structural Acoustics Analysis*, coordinated by J. Dias Rodrigues and C.M.A. Vasques, of the *3rd International Conference on Integrity, Reliability & Failure* (IRF'2009), co-chaired by J.F. Silva Gomes and Shaker A. Meguid, held at the Faculty of Engineering of the University of Porto, Portugal, 20–24 July 2009. The selected papers where chosen among the more than 60 papers presented at the conference symposium.

Written by experienced practitioners and researchers in the field, this book brings together recent developments in the field, spanning across a broad range of themes: vibration analysis, analytical and computational structural acoustics and vibration, material systems and technologies for noise and vibration control, vibration-based structural health monitoring/evaluation, machinery noise/vibration and diagnostics, experimental testing in vibration and structural acoustics, applications and case studies in structural acoustics and vibration. Each chapter somewhat presents and describes the state of the art, presents current research results and discusses the need for future developments in a particular aspect of vibration and structural acoustics analysis.

The book is envisaged to be an appellative text for newcomers to the subject and a useful research study tool for advanced students and faculty members. Practitioners and researchers may also find this book an appellative reference that addresses current and future challenges in this field. The variety of case studies is expected to stimulate a holistic view of sound and vibration and related fields and to appeal to a broad spectrum of engineers such as the ones in the mechanical, aeronautical, aerospace, civil and electrical communities.

With the synergistic combination of efforts of authors, editors and invited reviewers, this book brings together so many interrelated and yet diverse topics in a single volume. Hopefully, the editors expect it allows the readers to get an updated sense of the interest, technical diversity and applicability of this ever evolving research field, and that it may be used as a road-map to the required practical understanding and technical skills required to analyze and engineer new solutions for problems on vibration and structural acoustics fields.

University of Porto Porto, Portugal C.M.A. Vasques J. Dias Rodrigues

Acknowledgements

The editors strongly acknowledge the valuable efforts of all book contributors and authors. Putting forward this book was only possible due to their positive answer to the call for papers and to the number of contributions submitted and evaluated from where the best were selected.

The contributions in this volume have undergone a full peer-review. In view of this, we are particular indebted to all peer reviewers that have kindly accepted the invitation to take part in the reviewing process and that provided valuable comments which certainly led to improvements in the chapters contained in this book. In particular, we would like to acknowledge the collaboration of:

Aassif, E.H.	Collet, M.
(Ibn Zohr University, MA)	(University of Franche-Comté, FR)
Abdo, J.	Devriendt, C.
(Sultan Qaboos University, OM)	(Vrije Universiteit Brussel, BE)
Albarbar, A.	Ducarne, J.
(Manchester Metropolitan Univ., UK)	(Thales Alenia Space, FR)
Alfano, M.	Duffey, T.
(Università della Calabria, IT)	(Consulting Engineer, US)
Anthonis, J.	Dutta, D.
(Katholieke Universiteit Leuven, BE)	(Carnegie Mellon University, US)
Bard, D.	Fidlin, A.
(Lund University, SE)	(Karlsruhe Institute of Technology, DE)
Beck, B.	Foltête, E.
(Georgia Institute of Technology, US)	(University of Franche-Comté, FR)
Borza, D.	Gil, L.
(INSA de Rouen, FR)	(Univ. Politècnica de Catalunya, ES)
Chen, JT.	Gu, Y.
(National Taiwan Ocean Univ., TW)	(Queensland Univ. of Technology, AU)

Acknowledgements

Han, J.-G. (Hainan University, CN)

Kessler, S.S. (Metis Design Corporation, US)

Küchler, S. (University of Stuttgart, DE)

Latif, R. (Ibn Zohr University, MA)

Lee, D.-H. (Dong-Eui University, KR)

Li, H.J. (Ocean University of China, CN)

Loendersloot, R. (University of Twente, NL)

Martarelli, M. (Univ. Politecnica delle Marche, IT)

Matter, M. (EPF Lausanne, CH)

Montalvão, D. (Instituto Politécnico de Setúbal, PT)

Neubauer, M. (Leibniz Universität Hannover, DE)

Oudjene, M. (ENSTIB, FR)

Ouisse, M. (University of Franche-Comté, FR)

Pérez, M.A. (Univ. Politècnica de Catalunya, ES)

Pierro, E. (Politecnico di Bari, IT)

Qiao, P. (Washington State University, US)

Ravina. E. (University of Genova, IT) Ribeiro, A.M.R. (Technical University of Lisbon, PT) Ripamonti, F. (Politecnico di Milano, IT) Samandari, H. (University of Tabriz, IR) Sarigül, A.S. (Dokuz Eylül University, TR) Secgin, A. (Dokuz Eylül University, TR) Sinha, J.K. (University of Manchester, UK) Sohn, H. (KAIST, KR) Stubbs, N. (Texas A&M University, US) Thomas, M. (Université du Québec, CA) Trollé, A. (Université de Lyon, FR) Tronchin, L. (Università di Bologna, IT) Varoto, P.S. (University of São Paulo, BR) Woodhouse, J. (Cambridge University, UK) Zhou, S. (Northeastern University, CN) Zhu, O.

(Oyama Nat. College of Technology, JP)

For helping putting forward this book, special thanks are also addressed to the Publishing Editor, Nathalie Jacobs, for the enthusiasm and support given to the editors in an early stage of the book planning and preparation.

Last but not least, we wish also to express our gratitude to the IRF'2009 conference co-chairs, J.F. Silva Gomes and Shaker A. Meguid, for the consideration of a special symposium on Vibration and Structural Acoustics Analysis in IRF'2009 conference, from where the papers were selected.

Contents

1	The	Dynamic Analysis of Thin Structures Using a Radial
	Inte	rpolator Meshless Method
	L.M	J.S. Dinis, R.M. Natal Jorge, and J. Belinha
	1.1	Introduction
	1.2	Overview of the State of the Art
	1.3	The Natural Neighbour Radial Point Interpolation Method 3
	1.4	Dynamic Discrete System of Equations
	1.5	Dynamic Examples
		1.5.1 Cantilever Beam
		1.5.2 Variable Cross Section Beams
		1.5.3 Shear-Wall
		1.5.4 Square Plates
		1.5.5 Shallow Shell
	1.6	Prospects for the Future
	1.7	Summary
	1.8	Selected Bibliography
		References
•	X 7*1	
2	VID	ration Testing for the Evaluation of the Effects of Moisture
	Con	tent on the In-Plane Elastic Constants of Wood Used in Musical
	Inst	$\mathbf{ruments} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	M.A	. Perez Martinez, P. Poletti, and L. Gil Espert
	2.1	
	2.2	Overview of the State of the Art
	2.3	Orthotropic Nature of Wood Properties
	2.4	Influence of Moisture Changes on Wood
	2.5	Experimental Modal Analysis of Wooden Specimens
	2.6	Numerical Model of Wooden Plate
		2.6.1 The Finite Element Method
		2.6.2 Free Vibrations of Kirchhoff Plates
		2.6.3 Perturbation of the Equation of Motion

	2.7	Elastic Constants from Plate Vibration Measurements	44
	2.8	Results	47
	2.9	Concluding Remarks	53
	2.10	Prospects for the Future	55
	2.11	Summary	55
		References	56
3	Shor	t-Time Autoregressive (STAR) Modeling for Operational	
	Mod	al Analysis of Non-stationary Vibration	59
	VH	. Vu, M. Thomas, A.A. Lakis, and L. Marcouiller	
	3.1	Introduction	60
	3.2	Overview of the State of the Art	60
		3.2.1 Operational Modal Analysis	60
		3.2.2 Non-stationary Vibration	60
		3.2.3 Fluid-Structure Interaction	61
		3.2.4 Development of a New Method for Investigating Modal	
		Parameters of Non-stationary Systems by Operational	
		Modal Analysis	61
	3.3	Vector Autoregressive (VAR) Modeling	62
	3.4	The Short Time Autoregressive (STAR) Method	63
		3.4.1 Order Updating and a Criterion for Minimum Model	
		Order Selection	63
		3.4.2 Working Procedure	66
	3.5	Numerical Simulation on a Mechanical System	66
		3.5.1 Discussion on Data Block Length	67
		3.5.2 Simulation on Mechanical System with Time-Dependent	
		Parameters	68
	3.6	Experimental Application on an Emerging Steel Plate	72
	3.7	Prospects for the Future	73
	3.8	Summary	75
	3.9	Selected Bibliography	75
		References	76
4	A N	umerical and Experimental Analysis for the Active Vibration	
	Con	trol of a Concrete Placing Boom	79
	G. C	azzulani, M. Ferrari, F. Resta, and F. Ripamonti	
	4.1	Introduction	79
	4.2	Overview of the State of the Art	80
	4.3	The System	82
		4.3.1 Test Rig	82
		4.3.2 Numerical Model	83
	4.4	Active Modal Control	85
		4.4.1 Independent Modal Control	86
		4.4.2 The Modal Observer	87
		4.4.3 Numerical Analysis of Modal Control	88

	4.5	Feed-Forward Control	90
		4.5.1 The Feed-Forward Control Logic	90
		4.5.2 Numerical Analysis of the Feed-Forward Control	91
	4.6	Experimental Testing	93
	4.7	Prospects for the Future	94
	4.8	Summary	95
	4.9	Selected Bibliography	95
		References	96
5	Mod	leling and Testing of a Concrete Pumping Group Control System	99
	C. G	hielmetti, H. Giberti, and F. Resta	
	5.1	Introduction	99
	5.2	Overview of the State of the Art	101
	5.3	Description of the Entire System	102
	5.4	Experimental Tests	104
	5.5	Mathematical Model	107
		5.5.1 Oil Continuity Equations	107
		5.5.2 Concrete Continuity Equations	108
		5.5.3 Equations of Motion	109
	5.6	Comparison Between Numerical and Experimental Results	110
	5.7	Control System Design	112
	5.8	Prospects for the Future	117
	5.9	Summary	117
	5.10	Selected Bibliography	118
		References	119
6	Vibr	ation Based Structural Health Monitoring and the Modal	
	Stra	in Energy Damage Index Algorithm Applied to a Composite	
	T-Be	am	121
	R. L	oendersloot, T.H. Ooijevaar, L. Warnet, A. de Boer, and R. Akkerman	
	6.1		123
	6.2	Overview of the State of the Art	124
		6.2.1 Vibration Based Structural Health Monitoring	124
		6.2.2 Modal Strain Energy Damage Index Algorithm	125
	6.3	T-Beam with T-Joint Stiffener	126
	6.4	Theory of the Modal Strain Energy Damage Index Algorithm	126
	6.5	Finite Element Model	129
	6.6	Experimental Analysis of the T-Beam	132
	6.7	Results and Discussion	136
		6.7.1 Validation of Numerical Model	137
		6.7.2 Length and Starting Point of Delamination	140
		6.7.3 Position of Evaluation Points	141
		6.7.4 Number of Evaluation Points	142
	<i></i>	6.7.5 Incorporation of Torsion Modes	144
	6.8	Prospects for the Future	145
	60	Summary	146

	6.10	Selecte	ed Bibliography		147
		Refere	ences	• •	148
7	An I	Efficien	t Sound Source Localization Technique via Boundary		
	Elen	nent M	ethod		151
	A. S	eçgin aı	nd A.S. Sarıgül		
	7.1	Introdu	uction		151
	7.2	Overv	iew of the State of the Art		153
	7.3	Helmh	noltz Integral Equation and Boundary Element Method .		154
		7.3.1	Full-Space Case	• •	156
		7.3.2	Half-Space Case	•••	160
	7.4	Theore	etical Examples: Sound Field Determination	•••	163
	7.5	Case S	Study: Sound Source Localization	•••	165
		7.5.1	Surface Velocity Measurements	• •	166
		7.5.2	Boundary Element Operations	•••	168
		7.5.3	Sound Source Identification and Characterization	•••	169
	7.6	Prospe	ects for the Future	•••	173
	7.7	Summ	ary	•••	173
	7.8	Selecte	ed Bibliography	•••	173
	App	endix A		• •	174
	App	endix B	• • • • • • • • • • • • • • • • • • • •	•••	176
		Refere	ences	• •	179
8	Disp	ersion	Analysis of Acoustic Circumferential Waves Using		
	Tim	e-Frequ	uency Representations		183
	R. L	atif, M.	Laaboubi, E.H. Aassif, and G. Maze		
	8.1	Introdu	uction		184
	8.2	Overv	iew of the State of the Art		185
	8.3	Time-l	Frequency Representations		186
		8.3.1	Wigner-Ville Distribution		186
		8.3.2	Spectrogram Distribution		187
		8.3.3	Reassignment Spectrogram		187
	8.4	Acous	tic Measured Signal Backscattered by an Elastic Tube		191
		8.4.1	Experimental Setup		191
		8.4.2	Measured Acoustic Response		192
		8.4.3	Resonance Spectrum		193
	8.5	Time-l	Frequency Images of Experimental Acoustic Signal		194
		8.5.1	Spectrogram and Wigner-Ville Images		194
		8.5.2	Reassigned Spectrogram Image		196
	8.6	Disper	rsion of the Circumferential Waves		199
		8.6.1	Determination of Dispersion Curves of Circumferential		
			Waves by the Theoretical Method		199
		8.6.2	Determination of Dispersion Curves of Circumferential		
			Waves by the Reassigned Spectrogram Image		200
	8.7	Prospe	ects for the Future		201

	8.9	Selected Bibliography	203
		References	203
9	Visc	coelastic Damping Technologies: Finite Element Modeling and	
	Арр	lication to Circular Saw Blades	207
	C.M	I.A. Vasques and L.C. Cardoso	
	9.1	Introduction	208
	9.2	Overview of the State of the Art	209
	9.3	Configurations of Viscoelastic Damping Treatments	213
	9.4	Viscoelastic Constitutive Behavior	216
	9.5	Finite Element Modeling of Viscoelastic Structural Systems	218
		9.5.1 Some Comments on Deformation Theories	219
		9.5.2 Spatial Modeling and Meshing	220
		9.5.3 Damping Modeling and Solution Approaches	227
		9.5.4 Frequency- and Time-Domain Implementations	231
		9.5.5 Commercial FE Software	232
	9.6	Vibroacoustic Simulation and Analysis	236
	9.7	Circular Saw Blades Damping: Modeling, Analysis and Design	240
		9.7.1 Geometric and Material Properties of the "Saw"	240
		9.7.2 FE Modeling and Vibroacoustic Media Discretization	242
		9.7.3 Results	244
	9.8	Prospects for the Future	251
	9.9	Summary	254
		References	256
10	Vib	roacoustic Energy Diffusion Ontimization in Beams and Plates	
10	by N	Means of Distributed Shunted Piezoelectric Patches	265
	M	Collet M Ouisse K A Cunefare M Ruzzene B Beck L Airoldi	200
	and	F Casadei	
	10.1	Introduction	266
	10.1	Overview of the State of the Art	260
	10.2	Classical Tools for Designing RL and RCneg Shunt Circuits	268
	10.5	10.3.1 Piezoelectric Modeling and Shunt Circuit Design	268
	104	Controlling the Dispersion in Beams and Plates	275
	10.1	10.4.1 Waves Dispersion Control by Using RL and Negative	215
		Canacitance Shunts on Periodically Distributed	
		Piezoelectric Patches	276
		10.4.2 Periodically Distributed Shunted Piezoelectric Patches for	270
		Controlling Structure Borne Noise	276
	10.5	Ontimizing Wave's Diffusion in Beam	280
	10.5	10.5.1 Description and Modeling of a Periodic Ream System	200
		10.5.1 Description and Modering of a Feriodic Deam System	285
		Capacitance Shunt Circuits	200
		10.5.3 Optimization of Waya Reflection and Transmission	∠00 201
	10.4	Drospacts for the Future	291
	10.0	Summary	290 200
	10.7	Deferences	299
			299

11	Identification of Reduced Models from Optimal Complex
	Eigenvectors in Structural Dynamics and Vibroacoustics 303
	M. Ouisse and E. Foltête
	11.1 Introduction
	11.2 Overview of the State of the Art
	11.3 Properness Condition in Structural Dynamics
	11.3.1 Properness of Complex Modes
	11.3.2 Illustration of Properness Impact on Inverse Procedure 307
	11.3.3 Properness Enforcement
	11.3.4 Experimental Illustration
	11.4 Extension of Properness to Vibroacoustics
	11.4.1 Equations of Motion
	11.4.2 Complex Modes for Vibroacoustics
	11.4.3 Properness for Vibroacoustics
	11.4.4 Methodologies for Properness Enforcement
	11.4.5 Numerical Illustration
	11.4.6 Experimental Test-Case
	11.5 Prospects for the Future
	11.6 Summary
	11.7 Selected Bibliography
	References

Contributors

E.H. Aassif LMTI, Faculty of Science, Ibn Zohr University, Agadir, Morocco, aassifh@menara.ma

L. Airoldi School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, USA, luca.airoldi@gatech.edu

R. Akkerman Engineering Technology, Production Technology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands, r.akkerman@utwente.nl

B. Beck G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA, benbeck@gatech.edu

J. Belinha Institute of Mechanical Engineering—IDMEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, jorge.belinha@fe.up.pt

A. de Boer Engineering Technology, Applied Mechanics, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands, a.deboer@utwente.nl

L.C. Cardoso INEGI, Universidade do Porto, Campus da FEUP, R. Dr. Roberto Frias 400, 4200-465 Porto, Portugal, luis.carlos.cardoso@fe.up.pt

F. Casadei School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, USA, filippo.casadei@gatech.edu

G. Cazzulani Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy, gabriele.cazzulani@mail.polimi.it

M. Collet FEMTO-ST Institute, Applied Mechanics, University of Franche-Comté, 25000 Besançon, France, manuel.collet@univ-fcomte.fr

K.A. Cunefare G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA, ken.cunefare@me.gatech.edu

L.M.J.S. Dinis Faculty of Engineering of the University of Porto—FEUP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, ldinis@fe.up.pt

M. Ferrari Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy, matteo.ferrari@mail.polimi.it

E. Foltête FEMTO-ST Institute, Applied Mechanics, University of Franche-Comté, 25000 Besançon, France, emmanuel.foltete@univ-fcomte.fr

C. Ghielmetti Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy, christian.ghielmetti@mecc.polimi.it

H. Giberti Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy, hermes.giberti@polimi.it

L. Gil Espert Laboratori per a la Innovació Tecnològica d'Estructures i Materials, Universitat Politècnica de Catalunya, C/Colon, 11 TR45, 08225 Terrassa, Barcelona, Spain, lluis.gil@upc.edu

M. Laaboubi LMTI, Faculty of Science, Ibn Zohr University, Agadir, Morocco, laaboubi@gmail.com

A.A. Lakis École Polytechnique, Montréal, QC, H3C 3A7, Canada, ouni.lakis@polymtl.ca

R. Latif ESSI, National School of Applied Science, Ibn Zohr University, Agadir, Morocco, latif@ensa-agadir.ac.ma

R. Loendersloot Engineering Technology, Applied Mechanics, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands, r.loendersloot@utwente.nl

L. Marcouiller Institut de Recherche Hydro Québec, Varennes, QC, J3X 1S1, Canada, marcouiller.luc@ireq.ca

G. Maze LOMC, Le Havre University, Le Havre, France, gerard.maze@univ-lehavre.fr

R.M. Natal Jorge Faculty of Engineering of the University of Porto—FEUP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal, rnatal@fe.up.pt

T.H. Ooijevaar Engineering Technology, Production Technology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands, t.h.ooijevaar@utwente.nl

M. Ouisse FEMTO-ST Institute, Applied Mechanics, University of Franche-Comté, 25000 Besançon, France, morvan.ouisse@univ-fcomte.fr

M.A. Pérez Martínez Department of Strength of Materials and Structures, Universitat Politècnica de Catalunya, C/Colon, 11 TR45, 08225 Terrassa, Barcelona, Spain, marco.antonio.perez@upc.edu

P. Poletti Department of Sonology, Escola Superior de Música de Catalunya, C/Padilla, 155, 08013 Barcelona, Spain, paul@polettipiano.com

F. Resta Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy, ferruccio.resta@polimi.it

F. Ripamonti Mechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy, francesco.ripamonti@polimi.it

M. Ruzzene School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, USA, massimo.ruzzene@aerospace.gatech.edu

A.S. Sarıgül Department of Mechanical Engineering, Dokuz Eylül University, 35100 Bornova, Izmir, Turkey, saide.sarigul@deu.edu.tr

A. Seçgin Department of Mechanical Engineering, Dokuz Eylül University, 35100 Bornova, Izmir, Turkey, abdullah.secgin@deu.edu.tr

M. Thomas École de Technologie Supérieure, 1100 Notre Dame West, Montréal, QC, H3C 1K3, Canada, marc.thomas@etsmtl.ca

C.M.A. Vasques INEGI, Universidade do Porto, Campus da FEUP, R. Dr. Roberto Frias 400, 4200-465 Porto, Portugal, cmay@fe.up.pt

V.-H. Vu École de Technologie Supérieure, 1100 Notre Dame West, Montréal, QC, H3C 1K3, Canada, viet-hung.vu.1@ens.etsmtl.ca

L. Warnet Engineering Technology, Production Technology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands, l.warnet@utwente.nl

List of Figures

Fig. 1.1	(a) Influence cell of interest point \mathbf{x}_I . (b) Construction process of integration points	4
Fig. 1.2	Shell-like nodal and integration mesh construction and distribution	5
Fig. 1.3	Cantilever beam. Examples of 2D and 3D, regular and irregular meshes	10
Fig. 1.4	Cross section of the variable beams and respective nodal arrangement for the 2D and 3D modulation: (a) beam A and (b) beam B	11
Fig. 1.5	Shear wall with four openings and respective mesh discretization for the 2D and the 3D modulation	13
Fig. 1.6	Examples of used meshes	14
Fig. 1.7	Thin clamped cylindrical shell panel geometric and material properties and regular and irregular meshes examples used in	
Fig. 1.8	 the analysis (a) Maximum deflection varying along time for a suddenly applied load (load case A) and for a load that suddenly vanishes (load case B) and (b) absolute value of the amplitude versus the 	15
Fig. 2.1	load normalized frequency	16
	material. The longitudinal axis L is parallel to the cylindrical trunk and the tangential axis T is perpendicular to the long grain and tangential to the annual growth rings	26
Fig. 2.2	Distortion caused by changes in humidity when a wooden plate is restrained on one side only. Both pieces of spruce (<i>Picea</i> <i>Abies</i>) were cut sequentially from the same plank. The width of	
Fig. 2.3	the samples is approximately 14 cm	30
	employed	34

Fig. 2.4	Experimental modes results with variations in moisture content. The maximum variation in moisture content which could	
	be obtained was between 0% a 25%, the latter of which corresponds with saturation. The nomenclature (m, n) identifies	
	the different mode types, where m and n refer to the number of	
	nodal lines parallel to the v direction and x direction respectively	35
Fig. 2.5	Kinematics of thin plate deformation under the Kirchhoff's	00
8	assumptions	40
Fig. 2.6	Evolution of the first ten resonant frequencies as a function of	
U	the number of DoFs. Higher order modes converge slower than	
	the lower order modes	42
Fig. 2.7	The procedure, based on [28], is essentially an iterative process	
	to minimize the difference between the numerical and the	
	experimental response. An initial estimation of the elastic	
	constants is required. The error function which defines the	
	convergence criterion is based solely on frequency values. The	
	updating of variables ensures a rapid convergence	45
Fig. 2.8	Percentage variations of the numerical frequencies of the	
	ten first resonance modes caused by a 15% increase in the	10
E ' 2 0	references values for the elastic moduli E_L , E_R , G_{LR} and v_{LR} .	46
F1g. 2.9	Convergence graph of the iterative process for the specimen with	
	the first three modes, since the undets is done only using them	17
Fig. 2.10	Changes in longitudinal (<i>laft</i>), radial and shear moduli (<i>right</i>) as	47
Fig. 2.10	a function of moisture content. The most significant variation	
	is found in the radial modulus, and consequently in resonance	
	modes associated therewith	49
Fig. 2.11	Comparison between the numerical and experimental modal	.,
0	analysis for the first ten mode shapes under 6.01% moisture	
	content conditions. The subscripts $_{E}$ and $_{S}$ denote experimental	
	and simulated results, respectively. Possible sources of error are	
	wood's heterogeneity, thickness irregularities, non-uniformity in	
	the cross-grain direction and densities, as well as inaccuracies	
	in geometrical or mass measurements	52
Fig. 2.12	Percentage variations of the numerical frequencies of the ten	
	first resonance modes caused by increasing the nominal values	50
E' 0.10	of length, width, thickness and mass by 5%	53
F1g. 2.13	Percentage errors in estimating the elastic properties E_L , E_R	
	and G_{LR} introduced by increasing the nominal values of length, width thickness and mass by 5%	52
Fig. 2.14	Curvature adopted by the plate under moisture conditions	55
1 ig. 2.14	due to the imperfect perpendicularity between the earlywood	
	and latewood, δ denotes deflection, and L. R and T are the	
	longitudinal, radial and tangential directions, respectively	54
Fig. 3.1	Three DOF mechanical system	66
-	•	

Fig. 3.2	Modal parameter identification with block size	67
Fig. 3.3	Optimal model order at different data block sizes	68
Fig. 3.4	Simulated time-varying mass function	68
Fig. 3.5	Monitoring of minimum order on simulation	69
Fig. 3.6	Monitoring of block size on simulation	69
Fig. 3.7	Monitoring of frequencies on simulation	70
Fig. 3.8	Monitoring of damping ratios on simulation	71
Fig. 3.9	Plate test configuration	72
Fig. 3.10	Plate temporal response	72
Fig. 3.11	Monitoring of plate minimum model order	73
Fig. 3.12	Monitoring of plate natural frequencies	74
Fig. 3.13	Short time Fourier transform	74
Fig. 4.1	The test rig	83
Fig. 4.2	Sketch of the 2D model of the flexible boom	84
Fig. 4.3	Reference systems for the numerical model of the flexible boom	84
Fig. 4.4	Block diagram of the active modal control logic	85
Fig. 4.5	Block diagram of the modal observer	88
Fig. 4.6	Large motion reference for the boom links; starting/final	
e	configuration (a) and rotation time history of the links (b)	89
Fig. 4.7	Numerical comparison of the acceleration of the end of the	
e	boom third link with and without modal control; (a) the large	
	motion time history and (b) the spectrum	89
Fig. 4.8	Block diagram of the feed-forward control logic	91
Fig. 4.9	Numerical simulations without (initial part) and with (final part)	
•	the FF control logic application; the three link ends acceleration	
	with one (<i>case A</i>) and three (<i>case B</i>) active actuators	92
Fig. 4.10	Experimental comparison of the acceleration of the end of the	
-	boom third link with and without modal control; (a) the large	
	motion time history and (b) the spectrum	94
Fig. 4.11	Experimental data without (initial part) and with (final part) the	
-	FF control logic application; the third link end acceleration with	
	one active actuator	94
Fig. 5.1	Pumping group system, CAD 3D	100
Fig. 5.2	Test rig	102
Fig. 5.3	Test rig block diagram	102
Fig. 5.4	Diagram of pumping group	103
Fig. 5.5	Oil chambers pressure profile, varying rpm of the pump	105
Fig. 5.6	Pressure in oil chambers, varying the input oil flow	106
Fig. 5.7	Oil chambers pressure profile, varying the reducing valves area .	106
Fig. 5.8	Pressure in the oil chambers	107
Fig. 5.9	Translational friction model	110
Fig. 5.10	Numerical vs experimental results (oil chambers pressure)	111
Fig. 5.11	Numerical vs experimental results (CLS back pressure)	111
Fig. 5.12	Numerical vs experimental results (CLS back pressure)	112
Fig. 5.13	Control system diagram	113

Fig. 5.14	Numerical vs experimental results (diff function)	114
Fig. 5.15	Comparison between controlled and non-controlled numerical results	114
Fig. 5.16	Numerical application of control	115
Fig. 5.17	Oil chambers pressure, experimental comparison with and without control	115
Fig. 5.18	CLS pumped concrete, numerical comparison with and without control	116
Fig. 5.19	Percentage difference of pumped fluid, numerical comparison with and without control	116
Fig. 6.1	Position of the vibration based structural health monitoring (VB-SHM) techniques with respect to other damage identification methods	124
Fig. 6.2	Traditional double L-shaped stiffener versus the new stiffener concept developed by Stork–Fokker AESP and the NLR.	124
Fig. 6.3	(a) fraditional stiffener, (b) new stiffener concept $\dots \dots \dots \dots$ [0/90/0/90/0/90/0/90] _s laminate lay-up and dimensions. The global coordinate system xyz is indicated as well as the material	126
	orientations 123 in the skin and the stiffeners	127
Fig. 6.4	Cross-section of the T-beam, that is extruded to obtain the T-beam model	130
Fig. 6.5	Bottom view of the T-beam in the <i>xz</i> -plane	131
Fig. 6.6	Cross-sectional view in the <i>yz</i> -plane at $x = 0$ of the T-beam showing the delamination. The <i>open circles</i> represent the nodes connected to both the skin (<i>thick line at the bottom</i>) and the stiffener, the <i>filled circles</i> represent two nodes, one connected to the skin, the other to the stiffener. Note that only nodes at the skin-stiffener interface are indicated by markers	131
Fig. 6.7	Dynamic set-up and data acquisition for the experimental investigation	133
Fig. 6.8	Location of the excitation point and the 3×30 measurement grid points at the T-beam (bottom view in the <i>xz</i> -plane). The 60 mm wide <i>light gray area</i> at the right-hand side of the T-beam is the clamped area	134
Fig. 6.9	Comparison of the frequency response functions (FRF) of the intact and delaminated T-beam. A distinct shift in the higher natural bending frequencies can be observed, whereas the natural frequencies of the torsion modes remain relatively unaffected. (Single point FRF from point R1)	134
Fig. 6.10	Normalized mode shapes (amplitude A) of the 5th bending mode. The delamination between 500 and 600 mm from the clamping can be easily observed. Iso-view on top, yz-view at the bottom. (a) Intact, $F_N = 840$ Hz, (b) delaminated, $F_N = 816$ Hz	136
Fig. 6.11	General procedure to calculate the modal strain energy damage index, based on the nodal displacements of each natural mode share of a structure	127
		13/

Fig. 6.12	Comparison between calculated (n) and measured (e) natural	
	bending and torsion frequencies. The <i>light gray bars</i> refer	
	to the intact T-beam, whereas the <i>dark gray bars</i> refer to	
	the delaminated T-beam. (a) Natural bending frequencies,	
	(b) natural torsion frequencies	38
Fig. 6.13	Damage indices for delamination lengths varying between 10	
	and 100 mm. A peak in the damage index indicates damage.	
	Delamination starting at (a) 300 mm from the clamping, (b) 500	
	mm from the clamping, (c) 700 mm from the clamping 14	40
Fig. 6.14	Damage indices for delamination lengths varying between 10	
	and 100 mm, measured at 0.041 m from the center line of the	
	T-beam. The tip of the delamination is located at 500 mm from	
	the clamping	41
Fig. 6.15	The sum of the damage index values exceeding a threshold	
	value of 2 for delamination lengths of 10-100 mm plot as a	
	function of the perpendicular distance x to the delamination.	
	The gray area covers the cases in which the probability of	
	detection is low	42
Fig. 6.16	Damage indices for delamination lengths varying between	
-	10 and 100 mm, using equidistant data points. A peak in the	
	damage index indicates damage. (a) Damage index based on	
	33 equidistant data points. (b) Damage index based on 17	
	equidistant data points	43
Fig. 6.17	Damage indices for delamination lengths varying between 10	
C	and 100 mm, using clustered sets of data points. A peak in the	
	damage index indicates damage. (a) Damage index based on 25	
	clustered data points (3 per cluster). (b) Damage index based on	
	13 clustered data points (3 per cluster)	44
Fig. 6.18	Damage indices for delamination lengths varying between 10	
C	and 100 mm, using the first 12 torsion modes. Note the different	
	scales for the axis of β . (a) Damage index using the torsion	
	strain energy formulation (6.9) . (b) Damage index using the	
	bending strain energy formulation (6.8)	45
Fig. 7.1	Representation of (a) full-space, (b) half-space, (c) quarter-space	
U	and (d) half-space-contact geometries	56
Fig. 7.2	(a) A sphere in half space; (b) two spheres in full space 10	53
Fig. 7.3	Boundary element discretization of the sphere	63
Fig. 7.4	Near field of a dilating sphere near a rigid surface ($z = 0$,	
e	b = 3a, ka = 1)	54
Fig. 7.5	Near field of a dilating sphere near a rigid surface ($z = 0$,	
0	b = 2a, ka = 1)	54
Fig. 7.6	Near field of a dilating sphere near a rigid surface ($z = a/3$,	
0	b = 2a, ka = 1	65
Fig. 7.7	Near field of a dilating sphere near a rigid surface ($z = 2a/3$.	
0	b = 2a, ka = 1	65

Fig. 7.8	Near field of a dilating sphere near a rigid surface $(z = 0,$
E: 7 0	b = 2a, ka = 0.1)
F1g. 7.9	Near field of a dilating sphere near a rigid surface ($z = 0$,
E' 7 10	$b = 2a, ka = 2) \qquad . \qquad $
Fig. 7.10	The tested retrigerator
F1g. 7.11	Measurement system
Fig. 7.12	Variation of internal temperature of the refrigerator with time 168
Fig. 7.13	Layout of the boundary element model
Fig. 7.14	Measured surface velocity distributions at (a) 50 Hz and
	(b) 100 Hz
Fig. 7.15	Predicted surface pressure distributions at (a) 50 Hz and
	(b) 100 Hz
Fig. 7.16	Near field sound radiation patterns at the horizontal cross-
	section through the compressor at (a) 50 Hz and (b) 100 Hz;
	zoomed view at (c) 50 Hz and (d) 100 Hz. ($a = 0.71$ m,
	b = 0.69 m)
Fig. 7.17	Near field sound radiation patterns at the horizontal cross-
	section through the fan at (a) 50 Hz and (b) 100 Hz; zoomed
	view at (c) 50 Hz and (d) 100 Hz ($a = 0.71 \text{ m}, b = 0.69 \text{ m}$) 172
Fig. 7.A1	A boundary element
Fig. 7.B1	An interface of 'in-house BEM code' conforming the
	co-ordinates and incidence matrix defining the geometry of the
	refrigerator
Fig. 8.1	The time-frequency plan decomposed into small rectangular
	windows, called the Heisenberg boxes
Fig. 8.2	Field form of the reassignment vector orientations of the energy
	distribution in the time-frequency plan
Fig. 8.3	Experimental setup
Fig. 8.4	Experimental signal backscattered by an air-filled aluminium
	tube immersed in water with radius ratio 0.9; (b) is a zoom of
	the selection part of the signal in (a)
Fig. 8.5	Mechanism of echoes showing the specular reflection (1) ,
	circumferential waves (2) and Scholte wave (3)
Fig. 8.6	Resonance spectrum for the signal given in Fig. 8.4 193
Fig. 8.7	Time-frequency spectrogram images (Gabor transform) of
	an experimental signal backscattered by an aluminium tube
	$b/a = 0.9$ (the window used is Gaussian with $\alpha = 0.01$ and the
	window size is 65 points for (a) and (c) and is 200 points for (b)
	and (d)
Fig. 8.8	Time-frequency Wigner-Ville image of the experimental signal
	backscattered by an aluminium tube with radius ratio 0.9 (the h
	window size is 256 points and the g window size is 3 points) 195

Fig. 8.9	The Blackman analysis windows employed in the three Short Time Fourier Transforms used to compute reassigned times
	and frequencies. Waveform (a) is the original window function,
	waveform (b) is time weighted window function, and waveform
	(c) is the frequency-weighted window function
Fig. 8.10	Time-frequency spectrogram images of the signal backscattered
	by an aluminium tube; (a) is the image with vector field of
	displacement and (b) is the reassigned spectrogram image 198
Fig. 8.11	Time-frequency images of the signal backscattered by a copper
	tube with radius ratio 0.9; (a) is the spectrogram and (b) is the
	reassigned spectrogram images
Fig. 8.12	Time-frequency Wigner-Ville images of the signal backscattered
	by a copper tube with radius ratio 0.9 (the <i>h</i> window size is 256
	points and the window g size is 20 points) $\ldots \ldots \ldots \ldots \ldots 199$
Fig. 8.13	The group velocity dispersion curve of the symmetric
	circumferential wave S0
Fig. 8.14	The group velocity dispersion curve of the anti-symmetric
	circumferential wave A1
Fig. 8.15	The group velocity dispersion curve of the symmetric
	circumferential wave S1
Fig. 9.1	Viscoelastic damping treatments configurations:
	(a) unconstrained layer damping (ULD); (b) passive
	constrained layer damping (PCLD); (c) PCLD with the strain
	magnifying effect of a spacer-layer; (d) active constrained layer
	damping (ACLD)
Fig. 9.2	Generic viscoelastically damped sandwich or constrained plate
	and elemental volume
Fig. 9.3	"Composite" FE plate (or shell) models of viscoelastically
	damped structures using existing commercial or in-house FE
	codes/elements
Fig. 9.4	Discrete-layer (layerwise) 2D FE plate (or shell) models of
	viscoelastically damped structures using new dedicated FE
	codes/elements
Fig. 9.5	FE-based viscoelastic time and frequency domain solution
	alternatives
Fig. 9.6	Curve fitted ADF curves with 1 and 3 series of parameters at
	27 °C
Fig. 9.7	FE mesh and zoom of the discretized annular plate (<i>light gray</i>),
	viscoelastic damping layer (green) and constraining layer (dark
	gray), and clamped inner cylindrical surface (red)
Fig. 9.8	Undamped (flexural) mode shapes and natural frequencies of
	the bare annular plate (saw); *, duplicated modes; cold color
	(dark blue) meaning zero transverse displacement, as is the case
	for example in the clamped inner circle, and hot color (red)
	meaning relevant transverse flexural displacement

XX	V1
	•••

Fig. 9.9	Driving-point receptance, measured at the outer radius,	
	mean-square (MS) velocity and radiated sound power per unit	
	force applied at the outer radius of the undamped (<i>dotted line</i>)	
	and viscoelastically damped (<i>solid line</i>) annular plate (saw)	
	configurations	248
Fig. 10.1	Schematic of a used niezo composite heam: (a) Shunted with a	210
1 ig. 10.1	resistive (P) circuit: (b) chunt with P and negative Conscitance	
	(DCnee) signif	260
F : 10.2	(RCneg) circuit	268
Fig. 10.2	Root locus induced by a resistive shunt circuit	2/1
Fig. 10.3	The effective shunted piezoelectric composite stiffness [35] as a	
	function of the connected negative capacitance term	272
Fig. 10.4	Different R induced mono-modal root loci with different	
	negative capacitance part in the connected shunt	273
Fig. 10.5	Plate with RL piezo-shunted device	273
Fig. 10.6	(a) Piezo-shunted RLC effect on resonance: (b) example of	
1.8.1010	multimodal electric circuit	274
Fig. 10.7	(a) Example of periodic structure: (b) associated hand gaps	271
1 lg. 10.7	diagram on which the <i>blue domains</i> correspond to evenescent	
	ulagram on which the <i>blue ubmums</i> correspond to evaluescent	275
F : 10.0		215
F1g. 10.8	Comparison of periodically distributed shunted piezoelectric	
	patches with RL and RC (negative) circuits for controlling a	
	plate. The <i>upper part</i> shows the band gaps estimation δ and the	
	<i>lower part</i> the corresponding collocated FRFs: (a) Two bimodal	
	RL circuits ruled according two sets of different blocking	
	circuits; (b) RC (negative) circuits with two different resistors	277
Fig. 10.9	Periodic piezoelectric plate and associated RL shunt circuits	278
Fig. 10.10	Spatial average of the plate velocity frequency response function	
U	with RL circuits tuned at $f_{tun} = 1720$ Hz with two different	
	resistors	278
Fig. 10.11	Visualization of the velocity distribution $[m/(sV)]$ over the plate	270
11g. 10.11	when with the velocity distribution $[III(s, v)]$ over the plate	
	when violating at 1/20 Hz in the short (a) and closed (b) KL	270
E: 10.10	circuit cases tuned at the same frequency	279
Fig. 10.12	Experimental FRF of the hybrid configuration with RL circuits	
	tuned at 1150 Hz and $R = 100\Omega$	279
Fig. 10.13	Panel vibration and corresponding cavity pressure at 650 Hz	
	with (a) short circuited patches and (b) RL shunted patches	
	tuned at the same frequency	280
Fig. 10.14	(a) Experimental set-up for structural acoustic control and	
-	comparison between (b) measured sound pressure levels without	
	any connected circuit and with (c) RL shunt circuit tuned at	
	1600 Hz connected to the periodically distributed piezoelectric	
	natches	281
Fig. 10.15	Concept overview and view of one call of the periodic	201
11g. 10.15	nizzalastria natah distribution	202
E'. 10.16		282
F1g. 10.16	katio of the transmitted flexural power flux as a function of	200
	negative capacitance shunt at 30 Hz, 1500 Hz and 3000 Hz	290

Fig. 10.17	Optimal shunt capacitance for reflection optimization (C-shunt) 292
Fig 10.18	Ontimal shunt resistance for reflection optimization (RC -shunt) 292
Fig. 10.19	Criterion value vs freq for transmission ontimization with RC
1 ig. 10.17	shunt 203
Fig. 10.20	$10 cells damped power function for D_{10} $
Fig. 10.20	Criterion value vs. freq. for transmission optimization with PC
Fig. 10.21	chieffon value vs. neq. for transmission optimization with KC
$E_{10} = 10.22$	Siluit
Fig. 10.22	10 certs damped power function: D_{10}
Fig. 11.1	Impact of noise on eigenvectors on properness norm
Fig. 11.2	Impact of noise on eigenvectors on error on identified matrices . 308
F1g. 11.3	Eigenvectors of the first mode in complex plane: initial shapes
	(dashed line), modified shapes (continuous line) and proper
	shapes (<i>dashdot line</i>)
Fig. 11.4	Eigenvectors of the second mode in complex plane: initial
	shapes (dashed line), modified shapes (continuous line) and
	proper shapes (dashdot line)
Fig. 11.5	Eigenvectors of the third mode in complex plane: initial shapes
	(dashed line), modified shapes (continuous line) and proper
	shapes (dashdot line)
Fig. 11.6	Eigenvectors of the fourth mode in complex plane: initial shapes
	(dashed line), modified shapes (continuous line) and proper
	shapes (dashdot line)
Fig. 11.7	Experimental test-case: two bending beams coupled by common
U	clamping device
Fig. 11.8	Comparison of measured and synthesized FRF11
Fig. 11.9	Comparison of measured and synthesized FRF12
Fig. 11.10	Comparison of measured and synthesized FRF22
Fig. 11.11	Methodologies for properness enforcement on numerical test-case 322
Fig. 11.12	Methodologies for properness enforcement on guitar
ð 	measurements

List of Tables

Table 1.1	Convergence of the first natural frequency ω (rad/s) varying the number of nodes dis-cretizing the cantilever beam domain	10
Table 1.2	First ten natural frequencies ω (rad/s) obtained for the	10
	cantilever beam	11
Table 1.3	Obtained natural frequencies ω (rad/s) with the meshless	
	solutions and FEM for beam A	12
Table 1.4	Obtained natural frequencies ω (rad/s) with the meshless	
	solutions and FEM for beam B	12
Table 1.5	First five natural frequencies ω (rad/s) obtained for the shear-wall	13
Table 1.6	Convergence of the first natural frequency ω (rad/s) varying the	
	number of nodes dis-cretizing the square plate domain	14
Table 1.7	Convergence of the first natural frequency ω (rad/s) varying	
	the number of nodes dis-cretizing the thin clamped cylindrical	
	shell domain	15
Table 2.1	Results of the influence of moisture content β on the geometric	
	parameters and mass. Units in mm, g and kg/m ³ , respectively	31
Table 2.2	Initial and final estimated Young's and shear moduli (E_L, E_R)	
	and G_{LR} , respectively, in MPa) percentage error and elastic	
	ratios under different states of moisture content β	48
Table 2.3	Experimental (Exp) and numerical (FEM) resonant modes (in	
	Hz), corresponding mode shapes and percentage deviation	
	between frequencies under different moisture conditions β	51
Table 3.1	Modal identification of the emerging plate	73
Table 4.1	Decrease in RMS of acceleration due to FF control with one	
	and three active actuators	93
Table 6.1	Homogenized material properties of the uni-directional	
	composite, based on the measured material data	130
Table 6.2	Dimensions and number of elements in the different sections of	
	the T-beam. Note that the width to the right and left are equal	
	for a symmetric T-beam	131

Table 6.3	Experimentally determined natural bending and torsion
	frequencies F_N [Hz] and viscous damping coefficients ζ [%]
	for the intact and delaminated T-beam 135
Table 6.4	Natural frequencies [Hz] calculated by the numerical
	model, including the relative error [%] with respect to the
	experimentally determined natural frequency [30] (the natural
	frequency is not measured in case no error value is given). The
	absolute maximum error is indicated by the bold-face numbers,
	the mean value is based on the absolute error values
Table 7.1	Benefits and limitations of some sound source determination
	procedures
Table 7.B1	Computed coordinates of front surface of the refrigerator 176
Table 7.B2	Incidence matrix for the front surface of refrigerator
Table 9.1	Main features of the "composite" and discrete-layer elemental
	models
Table 9.2	Damping modeling capabilities and general features available
	in some commercial FE softwares
Table 9.3	Material and geometric properties of the vibroacoustic system . 241
Table 9.4	Identified GHM and ADF parameters for 3M ISD112 at 27 °C
	using three series $(n = 3)$
Table 9.5	Resonant frequencies, modal loss factors and response
	reductions for the plate with and without the PCLD treatment 249

Chapter 1 The Dynamic Analysis of Thin Structures Using a Radial Interpolator Meshless Method

L.M.J.S. Dinis, R.M. Natal Jorge, and J. Belinha

Abstract In this chapter an improvement of the Natural Neighbour Radial Point Interpolation Method (NNRPIM), a recently developed meshless method, is presented. A new approach of the NNRPIM is proposed, the NNRPIM 3D Shell-Like formulation, in order to analyse dynamically thin three-dimensional structures. The NNRPIM uses the Natural Neighbour concept to enforce the nodal connectivity and to construct the integration background mesh (totally node-dependent), which is used in the numerical integration of the NNRPIM interpolation functions. The essential and natural boundaries are imposed directly once the NNRPIM interpolation functions possess the delta Kronecker property. Several dynamic plate and shell problems are studied to demonstrate the effectiveness of the method.

1.1 Introduction

In this chapter it is presented a recently developed meshless method, the Natural Neighbour Radial Point Interpolation Method (NNRPIM), applied to the dynamic analysis of thin three-dimensional structures. The scope of this chapter is to show the flexibility and the accuracy of this meshless method. The main motivation in the development of the NNRPIM was, without doubt, to create a meshless method: (a) easy to implement; (b) with interpolation functions (to simplify the essential and natural boundary imposition); (c) accurate; (d) with a low computational cost.

All these purposed goals were successfully achieved, however the authors felt that the efficiency of the method could be improved, particularly in the analysis of

Faculty of Engineering of the University of Porto—FEUP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

e-mail: ldinis@fe.up.pt

R.M. Natal Jorge e-mail: rnatal@fe.up.pt

J. Belinha

L.M.J.S. Dinis (🖾) · R.M. Natal Jorge

Institute of Mechanical Engineering—IDMEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal e-mail: jorge.belinha@fe.up.pt

thin three-dimensional structures. As so, for this kind of structures, a new NNRPIM approach was developed, the NNRPIM 3D Shell-Like formulation.

The outline of this chapter is as follow: In Sect. 1.3 the NNRPIM 3D Shell-Like approach is presented, the creation of the influence-cells and the used integration scheme are summarized, as well as the construction of the interpolation functions. In Sect. 1.4 the dynamic discrete system of equations is presented and developed. In Sect. 1.5 benchmark dynamic examples of plates and shells in free and force vibration are solved. The article ends with the prospects for the future in Sect. 1.6 and the conclusions and remarks in Sect. 1.7.

1.2 Overview of the State of the Art

The assemblage of spatial thin shells structures permits the construction of several engineering structures, such as roof structures, boat hulls and aeroplane fuselages, among many others. Nowadays, shell structures are design to be light, being the shells themselves the load main supporting structure, reducing the number of structure stiffeners. On the other hand this structural material optimization has a design disadvantage, it leads to lower fundamental frequencies, increasing the risk of collapse by resonance. Thus the dynamic analysis became an important part in shell structures design. Numerical methods are an important tool in the modulation of such complex structures. For many years the Finite Element Method (FEM) was the most widespread numerical method used [1]. However in the last fifteen years meshless methods [2] enlarge their application field, and are today a competitive and alternative approach in structural analysis.

Numerous shell structures present elaborated curvatures and several holes or discontinuous essential boundaries, and for these conditions meshless methods are efficient. As it was in the beginning with the FEM, in this work the analysed thin structures are solved as three-dimensional (3D) problems, with some awareness in the integration along the smallest dimension in order to obtain the most reliable results. In meshless methods [3], generally, the nodes discretizing the problem domain can be randomly distributed, since the field functions are approximated within a flexible influence domain rather an element. In meshless methods the influence domains may and must overlap each other, in opposition to the no-overlap rule between elements in the FEM.

Meshless methods that use the weak form solution can be divided in two categories, the ones that use approximation functions [4–9] and others that use interpolation functions. Meshless methods based in approximation functions have been successfully applied in computational mechanics and even its difficulty on imposing the essential and natural boundary conditions, due to the lack of the delta Kronecker property, has been overcome with the use of efficient numerical methods [10]. At the time, to solve the mentioned difficulty of the approximation functions, several meshless methods, using interpolation functions, were developed [11–17].

More recently meshless methods [2] were extended to numerous engineering fields. In the biomechanical field [18] meshless methods were applied from bone