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Preface

Vibration and structural acoustics analysis is nowadays an essential requirement for
high-quality structural and mechanical design in order to assure acoustic comfort
and the integrity, reliability and fail-safe behavior of structures and machines. In
some conditions vibration and radiated sound in structures and machines is desir-
able, as is the case of the motion of a tuning fork, the enjoyable melody that a
classical guitar may produce or the motion induced by vibration conveyors. More
often, vibration and the underlying radiated noise are undesirable and inconvenient,
as is the case of the vibrational motion of internal combustion engines, the noise
generated by railway traffic, the imperfections in the milling and turning processes
due to machine tool chatter or the vibration instability of light-weight aerospace
structures.

The underlying technologies of this field of multidisciplinary research are evolv-
ing very fast and their dissemination is usually scattered over different and com-
plementary scientific and technical publication means. In order to make it easy for
developers and technology end-users to follow the latest developments and news on
the field, this book collects into a single volume selected, extended, updated and
revised versions of the papers presented at the Symposium on Vibration and Struc-
tural Acoustics Analysis, coordinated by J. Dias Rodrigues and C.M.A. Vasques,
of the 3rd International Conference on Integrity, Reliability & Failure (IRF’2009),
co-chaired by J.F. Silva Gomes and Shaker A. Meguid, held at the Faculty of Engi-
neering of the University of Porto, Portugal, 20-24 July 2009. The selected papers
where chosen among the more than 60 papers presented at the conference sympo-
sium.

Written by experienced practitioners and researchers in the field, this book brings
together recent developments in the field, spanning across a broad range of themes:
vibration analysis, analytical and computational structural acoustics and vibration,
material systems and technologies for noise and vibration control, vibration-based
structural health monitoring/evaluation, machinery noise/vibration and diagnostics,
experimental testing in vibration and structural acoustics, applications and case
studies in structural acoustics and vibration. Each chapter somewhat presents and
describes the state of the art, presents current research results and discusses the need
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for future developments in a particular aspect of vibration and structural acoustics
analysis.

The book is envisaged to be an appellative text for newcomers to the subject and
a useful research study tool for advanced students and faculty members. Practition-
ers and researchers may also find this book an appellative reference that addresses
current and future challenges in this field. The variety of case studies is expected
to stimulate a holistic view of sound and vibration and related fields and to appeal
to a broad spectrum of engineers such as the ones in the mechanical, aeronautical,
aerospace, civil and electrical communities.

With the synergistic combination of efforts of authors, editors and invited review-
ers, this book brings together so many interrelated and yet diverse topics in a single
volume. Hopefully, the editors expect it allows the readers to get an updated sense
of the interest, technical diversity and applicability of this ever evolving research
field, and that it may be used as a road-map to the required practical understanding
and technical skills required to analyze and engineer new solutions for problems on
vibration and structural acoustics fields.

University of Porto C.M.A. Vasques
Porto, Portugal J. Dias Rodrigues
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Chapter 1
The Dynamic Analysis of Thin Structures Using
a Radial Interpolator Meshless Method

L.M.J.S. Dinis, R.M. Natal Jorge, and J. Belinha

Abstract In this chapter an improvement of the Natural Neighbour Radial Point
Interpolation Method (NNRPIM), a recently developed meshless method, is pre-
sented. A new approach of the NNRPIM is proposed, the NNRPIM 3D Shell-Like
formulation, in order to analyse dynamically thin three-dimensional structures. The
NNRPIM uses the Natural Neighbour concept to enforce the nodal connectivity
and to construct the integration background mesh (totally node-dependent), which
is used in the numerical integration of the NNRPIM interpolation functions. The
essential and natural boundaries are imposed directly once the NNRPIM interpola-
tion functions possess the delta Kronecker property. Several dynamic plate and shell
problems are studied to demonstrate the effectiveness of the method.

1.1 Introduction

In this chapter it is presented a recently developed meshless method, the Natural
Neighbour Radial Point Interpolation Method (NNRPIM), applied to the dynamic
analysis of thin three-dimensional structures. The scope of this chapter is to show
the flexibility and the accuracy of this meshless method. The main motivation in
the development of the NNRPIM was, without doubt, to create a meshless method:
(a) easy to implement; (b) with interpolation functions (to simplify the essential and
natural boundary imposition); (c) accurate; (d) with a low computational cost.

All these purposed goals were successfully achieved, however the authors felt
that the efficiency of the method could be improved, particularly in the analysis of
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thin three-dimensional structures. As so, for this kind of structures, a new NNRPIM
approach was developed, the NNRPIM 3D Shell-Like formulation.

The outline of this chapter is as follow: In Sect. 1.3 the NNRPIM 3D Shell-Like
approach is presented, the creation of the influence-cells and the used integration
scheme are summarized, as well as the construction of the interpolation functions.
In Sect. 1.4 the dynamic discrete system of equations is presented and developed.
In Sect. 1.5 benchmark dynamic examples of plates and shells in free and force
vibration are solved. The article ends with the prospects for the future in Sect. 1.6
and the conclusions and remarks in Sect. 1.7.

1.2 Overview of the State of the Art

The assemblage of spatial thin shells structures permits the construction of several
engineering structures, such as roof structures, boat hulls and aeroplane fuselages,
among many others. Nowadays, shell structures are design to be light, being the
shells themselves the load main supporting structure, reducing the number of struc-
ture stiffeners. On the other hand this structural material optimization has a design
disadvantage, it leads to lower fundamental frequencies, increasing the risk of col-
lapse by resonance. Thus the dynamic analysis became an important part in shell
structures design. Numerical methods are an important tool in the modulation of
such complex structures. For many years the Finite Element Method (FEM) was
the most widespread numerical method used [1]. However in the last fifteen years
meshless methods [2] enlarge their application field, and are today a competitive
and alternative approach in structural analysis.

Numerous shell structures present elaborated curvatures and several holes or dis-
continuous essential boundaries, and for these conditions meshless methods are ef-
ficient. As it was in the beginning with the FEM, in this work the analysed thin
structures are solved as three-dimensional (3D) problems, with some awareness in
the integration along the smallest dimension in order to obtain the most reliable
results. In meshless methods [3], generally, the nodes discretizing the problem do-
main can be randomly distributed, since the field functions are approximated within
a flexible influence domain rather an element. In meshless methods the influence
domains may and must overlap each other, in opposition to the no-overlap rule be-
tween elements in the FEM.

Meshless methods that use the weak form solution can be divided in two cate-
gories, the ones that use approximation functions [4-9] and others that use inter-
polation functions. Meshless methods based in approximation functions have been
successfully applied in computational mechanics and even its difficulty on imposing
the essential and natural boundary conditions, due to the lack of the delta Kronecker
property, has been overcome with the use of efficient numerical methods [10]. At
the time, to solve the mentioned difficulty of the approximation functions, several
meshless methods, using interpolation functions, were developed [11-17].

More recently meshless methods [2] were extended to numerous engineering
fields. In the biomechanical field [18] meshless methods were applied from bone



