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“Although touched by technology, surgical pathology always has
been, and remains, an art. Surgical pathologists, like all artists, depict
in their artwork (surgical pathology reports) their interactions with
nature: emotions, observations, and knowledge are all integrated.
The resulting artwork is a poor record of complex phenomena.”

Richard J. Reed MD



Preface

In this volume, as in volumes 1 and 2, the emphasis is on the diagnosis, therapy,
and prognosis of brain tumors. In addition to describing strategies for advanced brain
tumor treatment, this volume presents information on understanding the unique biol-
ogy of the brain and its tumors. The information contained in this volume should
aid in the development of tools for better diagnosis and effective treatment of brain
malignancy.

The application of various imaging techniques, including MRI, MRSI, PET, and
CT, for diagnosing brain tumors including peripheral nerve sheath tumors is detailed.
The use of MRS modality for classifying brain tumors is presented. This volume also
contains information on the passage of malignancy to brain from tumors of other
organs such as female breast and lung (tumor to tumor).

The inception of both primary and secondary brain tumors is discussed. Also
is included the delivery of drugs into brain tumors, considering the presence of
blood brain barrier. A wide variety of treatments, such as conventional chemotherapy,
electrochemotherapy, conventional resection, stereotactic radiosurgery, and magnetic
resonance-guided focused ultrasound surgery in clinical practice, are explained in
detail. The use of radioresponsive gene therapy for malignant brain tumors is included
in this volume. The use of molecular markers as predictive and prognostic indicators
in treatment decisions for individual cases are already beginning to have a signifi-
cant positive effect on the clinical practice. A number of such markers are discussed
in the volume. This volume also discusses pain management following craniotomy,
antiepileptic drugs, and quality of life after brain tumor therapy and follow-up.

By bringing together a large number of experts (oncologists, neurosurgeons, physi-
cians, research scientists, and pathologists) in various aspects of this medical field, it
is my hope that substantial progress will be made against this terrible disease. It would
be difficult for a single author to discuss effectively the complexity of diagnosis, ther-
apy, and prognosis of any type of tumor in one volume. This volume was written by
69 authors representing 12 countries. I am grateful to contributors for their prompt-
ness in accepting my suggestions. Their practical experience highlights their writings,
which should build and further the endeavors of the readers in this important area of
disease. I respect and appreciate the hard work and exceptional insight into the nature
of cancer provided by these contributors. The contents of the volume are divided into
subgroups: Introduction, Diagnosis and Biomarkers, Therapy, and Prognosis for the
convenience of the readers.

It is my hope that the current volume will join the preceding volumes of this
series for assisting in the more complete understanding of globally relevant cancer
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syndromes. There exists a tremendous, urgent demand by the public and the scientific
community to address to cancer prevention, diagnosis, treatment, and hopefully cure.

I am thankful to Dr. Dawood Farahi, Dr. Kristie Reilly, and Mr. Philip Connelly
for recognizing the importance of medical research and publishing in an institution
of higher education, and providing the resources for completing this project.

Union, New Jersey M.A. Hayat
December 2010
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Chapter 1

Introduction

M.A. Hayat

Keywords Tumor · CNS · Survival rate · Prognosis ·
Radiation · Dose

Each year malignant tumors take a devastating toll on
people, and among the most feared are brain tumors.
Five-year survival rates per adults are disappointing,
and mortality rates have not improved during the last
3 decades. Although overall 5-year survival rates have
reached to 70% in children and mortality rates have
declined 25% since 1970, prognosis is still poor for
those inflicted with certain types of malignant tumors.
There are manifold reasons, known and unknown, for
lack of improved rates of survival. One of the main
reasons is the difficulty encountered by drugs to cross
the blood brain barrier that is a defense mechanism,
protecting the brain from blood-born pathogens. Even
when therapy is effective, its side-effects can cause
serious disabilities. Another reason is that the diffuse
infiltration of this neoplasm does not allow even the
smallest surgical instruments to resect only the tumor
cells bypassing the healthy neurons. In addition, these
malignant cells are highly resistant to external radi-
ation or systemic chemotherapy. Both radiation and
chemotherapy can also have toxic effects not only
on the tumor they are intended to treat but also on
brain function. In other words, these treatments also
kill normal brain cells. Functional deficits in patients
after radiotherapy are probably more common than is
currently reported. These deficits include mental retar-
dation in patients and memory or cognitive deficits

M.A. Hayat (�)
Department of Biological Sciences, Kean University, Union,
NJ 07083, USA
e-mail: ehayat@kean.edu

in adults. Nevertheless, radiation therapy is a major
component of the treatment of many primary and
metastatic brain tumors. Doses higher than 60 Gy
may produce vasogenic edema and necrosis in some
patients.

The 5-year relative survival rate following diagno-
sis of a primary malignant CNS tumor based on age is
given below (CBTRUS):

Age 0–19 years: 72.1%
Age 20–44 years: 55.9%
Age 45–54 years: 30.7%
Age 55–64 years: 16.7%
Age 65–74 years: 9.6%
Age 75 or older: 5.2%

From birth, males have a 0.67% lifetime risk of
being diagnosed with a primary malignant CNS tumor,
and 0.48% chance of dying from this cancer (exclud-
ing lymphomas, leukemias, and tumors of pituitary and
pineal glands and olfactory tumors of the nasal cav-
ity). From birth, females have a 0.54% lifetime risk of
being diagnosed with this tumor, and a 0.38% chance
of dying from this cancer.

The 5-year relative survival rate following diagnosis
of a primary malignant CNS tumor (including lym-
phomas and leukemias and tumors of pituitary and
pineal glands, and olfactory tumors of the nasal cavity)
is 33% for males and 37% for females. The esti-
mated prevalence rate for all primary CNS tumors is
209/100.000. Approximately, more than 612,000 per-
sons are living with this caner in the United States
(malignant tumor: >124,000 and nonmalignant tumor:
>488,000). The prevalence rate for all pediatric CNS
tumors is estimated at 35.4/100,000, with more than
28,000 children living with this cancer in the United
States.

1M.A. Hayat (ed.), Tumors of the Central Nervous System, Volume 3,
DOI 10.1007/978-94-007-1399-4_1, © Springer Science+Business Media B.V. 2011
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The above-mentioned sobering statistics clearly
indicate a considerable challenge to overcome brain
tumors. To respond to this challenge, various exper-
imental therapies have been administered, including
gene therepy, antisense treatment, boron neutron cap-
ture, locoregional redioimmunotherapy, ligand-toxin
conjugate administration and 5-aminolevulinic acid
photodynamic therapy. Methods for sensitizing glioma
cells to apoptosis induction and aiming at different tar-
gets such as the coagulation system have also been
tried. These efforts have failed to significantly increase
the overall survival of patients. Recently, Samnick
et al. (2009) have tested the efficacy of 131I-IPA com-
bined with external beam photon radiotherapy as a new
therapeutic approach against malignant glioma cells.
This approach is based on the finding that malignant
brain tumors accumulate amino acids more avidly than
do healthy brains, using PET or SPECT (Hellwig et al.,
2005). This finding led to the development of amino
acid-based radiopharmaceuticals for detecting brain
neoplasms. The use of this approach seems to merit
a clinical trial to ascertain its potential in malignant
glioma patients.

Causes of Developing Brain Tumors

Although little is known regarding the causes of
developing brain tumors, the following conditions
may increase the risk of developing this neoplasm.
Exposure to certain chemicals (e.g., vinyl chloride)
and mutation of relevant genes are risk factors.
Brain tumors can develop after medical radiation
to the scalp or brain. Brain metastatic tumors can
develop from cancer of other organs such as lung
and breast. Certain viruses (Epstein-Barr virus and
human cytomegalovirus) can also cause brain tumors.
Diseased organ transplant can lead to primary CNS
lymphoma. Genetic syndromes, such as neurofibro-
matosis types 1 or 2 and tuberous sclerosis, may
increase the risk of developing brain tumors. Immune
system disorders may also play a direct or indirect
roe in developing these tumors. Some types of brain
tumors tend to run in families. Although smoking,
alcohol consumption, and certain dietary habits are
associated with some types of cancer, they have not
been directly linked to primary CNS tumors. Brain and
spinal cord tumors are not contagious, and presently

are not preventable. CNS tumors rarely spread outside
the nervous system.

Distribution of Types of CNS Tumors

There are many types of brain and spinal cord
tumors (NCI): astrocytic tumors, embryonal tumors,
ependymal tumors, germ cell tumors, meningeal
tumors, mixed gliomas, oligodendroglial tumors,
pineal parenchymal tumors, pituitary tumors, CNS
lymphomas, tumors of the seller region, and other adult
brain tumors. Anaplastic astrocytomas and glioblas-
toma account for ∼27% of brain tumors.

Tumors that start in the brain are called primary
brain tumors. Often tumors found in the brain are ini-
tiated somewhere else in the body and spread to one
or more parts of the brain, and are called metastatic
brain tumors. Brain metastases outnumber primary
neoplasms by at least 10 to 1; the latter occur in
20–40% of cancer patients. The most common pri-
mary cancers metastasizing to the brain (tumor to
tumor) are lung cancer (50%), breast cancer (15–20%),
melanoma (10%), colon cancer (5%), and unknown
primary cancers (10–15%). Approximately, 80% of
brain metastases occur in the cerebral hemispheres,
15% occur in the cerebellum, and 5% occur in the brain
stem. Metastases to the brain are multiple in >70% of
cases, but solitary metastases also occur. Many brain
tumors recur after they have been treated, and the
recurrence may occur at the same cite or in other parts
of the brain.

Tumor Grading

Grading is based on the cellular make-up and loca-
tion of the tumors. Tumors are graded in biopsy tissue
or during surgery. The grade of a tumor can be used
to indicate the difference between slow- and fast-
growing types of the tumor. Grade I tumors (e.g.,
pilocytic astrocytoma) grow slowly, do not spread into
nearby tissues, and look like normal cells. It is possi-
ble to entirely remove this type of tumor by surgery.
Grade II tumors (e.g., diffuse astrocytomas) also grow
slowly, but may spread into nearby tissues, may recur
after treatment, and may become a higher-grade tumor.
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Grade III tumors (e.g., annaplastic astrocytomas) grow
rapidly, spread into nearby tissues, appear very differ-
ent from normal cells, and may progress to a higher
grade and become glioblastoma. Grade IV tumors
(e.g., glioblastoma) grow and spread very quickly; the
cells do not look like normal cells, and may show areas
of dead cells.

Symptoms

The symptoms caused by a brain tumor depend on its
location in the brain, functions controlled by that part
of the brain, and the size and grade of the tumor (NCI).
Although the following symptoms are seen in brain
tumor patients, other conditions may show the same
symptoms. Headaches in the morning, which go away
after vomiting. Frequent nausea and vomiting are not
uncommon. Problems in normal speech, vision, and
hearing are common. Trouble in walking and loss of
balance may also be present. Depending on the loca-
tion of the tumor in the brain, weakness on one side
of the body may be found. Other symptoms include
seizure, and unusual sleepiness and personal behavior.

Diagnosis

Early Symptoms (mentioned elsewhere in this chap-
ter and other chapters in this volume and in volume 1)
necessitate immediate consultation with a physician.
If the doctor suspects a brain tumor, a biopsy can be
done to remove a sample of the tissue from the brain
by removing a small part of the skull and using a nee-
dle. If a cancer is diagnosed under the microscope, the
surgeon may remove as much tumor as safely pos-
sible during the same surgery or later, after detailed
examination of the biopsy sample. A pathologist may
check the cancer cells in the biopsy to find out the
type and grade of the brain tumor and if the tumor is

likely to grow and spread. An imaging modality such
as computed tomography (CT) or magnetic resonance
imaging (MRI) can be used to find out if any cancer
cells remain after surgery. These and other imaging
procedures are also used to diagnose spinal tumors.

Prognosis

Prognosis (chance of recovery) and treatment depend
on a large number of factors, most of which are
enumerated below (NCI).

1. The Type, grade, and location of the tumor in the
brain.

2. Whether the tumor can be removed by surgery;
if not, radiotherapy or chemotherapy, or both are
alternate treatments.

3. Prognosis also depends on whether cancer cells
remain after surgery.

4. Late or early diagnosis and whether the cancer has
recurred.

5. The health and age of the patient.
6. The presence or absence of relevant gene mutations.
7. Whether there is a single tumor or more than one

tumor in the brain.
8. Use of an imaging procedure to determine whether

the tumor is responding to the treatment or is
continuing to grow and spread.
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Chapter 2

Brain Tumor Classification Using Magnetic Resonance
Spectroscopy

Juan M. García-Gómez

Abstract The systematic compilation of Magnetic
Resonance Spectroscopy (MRS) has allowed the appli-
cation of statistical and signal processing techniques
to analyze the contribution of metabolites and other
compounds in the brain tissues. The complex nature
of the MR spectra and the intrinsic difficulty of the
Brain Tumor (BT) classification has led researchers
towards the Machine Learning discipline, as an objec-
tive, as well as practical, methodology for discovering
common patterns in the MR spectra acquired from
the tumor tissues. This chapter tries to introduce the
reader in the classification of brain tumor using MRS.
The classification of the most prevalent types of brain
tumors using MRS has been largely studied by sev-
eral authors. Recently, classifiers for the childhood
and for a wider range of types of tumors have been
also obtained. Furthermore, incremental learning is
a promising solution for the dynamism of the clini-
cal environments. During the text we will justify the
necessity of agreed acquisition protocols and prospec-
tive evaluation of the automatic classifiers to improve
the predictive power of the classifiers. The aim of
this chapter is to give a practical perspective of the
automatic classification of brain tumors using mag-
netic resonance spectroscopy through the development
of Clinical Decision Support Systems (CDSSs) and
multicenter studies.
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Introduction

MRS is an in-vivo noninvasive methodology requiring
no ionizing radiation that allows a profile of the
metabolites within a tissue to be obtained. The
systematic compilation of MRS following agreed
acquisition protocols has allowed the application of
statistical and signal processing techniques to analyze
the contribution of metabolites and other compounds
in the brain tissues.

Since the publication of the seminal paper by Preul
et al. (1996), one major challenge during the last
2 decades has been the development of objective
procedures to assist radiologists in the diagnosis of
brain tumors by means of automatic classification of
MRS signals from the patients.

The complex nature of the MR spectra and the
intrinsic difficulty of the BT classification has led
researchers towards the Machine Learning discipline,
as an objective, as well as practical, methodology
for discovering common patterns in the MR spectra
acquired from the tumor tissues.

This chapter tries to introduce the reader in the clas-
sification of brain tumor using MRS. The application
of the machine learning methodology will guide the
exposition of the subject, illustrating the text through
examples involving multicenter datasets. Along the
chapter, we will try to range the next learning
objectives:

5M.A. Hayat (ed.), Tumors of the Central Nervous System, Volume 3,
DOI 10.1007/978-94-007-1399-4_2, © Springer Science+Business Media B.V. 2011
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1. The first learning objective of the chapter will be
to design of a brain tumor classification study with
MRS based on the machine learning methodology.
This general framework will lead us through the
different steps to solve the automatic classification.

2. To enumerate the pre-processing steps needed to
prepare the MR spectra for a correct classification
study.

3. To summarize the feature extraction techniques
applied to brain tumor diagnosis with MRS and to
review relevant results in multicenter studies.

4. To summarize the classification techniques applied
to brain tumor diagnosis with MRS and to review
relevant results in multicenter studies and trends.

5. To justify the necessity of a correct evaluation of
the classification results and to review a compar-
ative evaluation with retrospective and prospective
datasets.

6. To cite secondary outcomes of the automatic classi-
fication of brain tumors to analyze the contribution
of metabolites, discover heterogeneous patterns,
and detect outliers in the MRS datasets.

7. To cite Clinical Decision Support Systems (CDSSs)
for brain tumor diagnosis using MRS.

MRS Classification Overview

The life cycle of a Brain Tumor classification
study based on MR spectroscopy mainly follows the
Machine Learning methodology for solving a Pattern
Recognition problem. It is composed of two main
phases: the Training phase and the Recognition phase
(see Fig. 2.1). During the Training phase, a set of sig-
nals following (the training corpus) a acquisition pro-
tocol is used to adapt a classification function. In this
phase, a preprocessing and a features extracted from
the signals are established. Afterwards, an adaptive
model is fitted, selected and evaluated trying to obtain

the optimal generalization for predicting new cases.
Once the model is ready, it can be incorporated into a
CDSS to be used for the prediction of new cases, where
the preprocessing and feature extraction steps will be
carried out before applying the classification function.

The rest of the chapter reviews the main tech-
niques of each step of the Machine Learning method-
ology applied to Brain Tumor classification with MRS.
Section “MRS Classification Overview” specifies the
well-established pre-processing pipeline agreed in
the eTUMOR project for normalizing MR spec-
tra. In section “Preprocessing Magnetic Resonance
Spectroscopy” the main pattern recognition techniques
for extracting relevant features from MR spectra are
studied. That section ends with a review of the effect of
feature extraction from MRS in brain tumor classifica-
tion. Section “Feature Extraction” studies the Machine
Learning approach for classification, its techniques and
its application to different problems of brain tumor
diagnosis. The relevance of an accurate evaluation
is studied in section “Peak Integration” by compar-
ing retrospective and prospective evaluations of brain
tumor classifiers. The use of the classification results
to interpret of signal patterns, detect outliers, and per-
form quality control of MRS biobanks is presented
in section “Stepwise Algorithm for Feature Selection
in Classification”. Before conclusions, section “Relieff
Feature Selection” provides an enumeration of CDSS
for brain tumor diagnosis using MRS.

Preprocessing Magnetic Resonance
Spectroscopy

A spectrum acquired with a Time Echo (TE) <45 ms is
usually considered a Short TE spectrum, and a Long
TE spectrum otherwise. Different criteria have been
argued in favor and against every option (e.g. Majos
et al. (2004)), whereas the multicenter INTERPRET

Fig. 2.1 Design of a brain
tumor classification with MR
spectroscopy based on the
machine learning approach
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and eTUMOUR projects1 defined protocols based on
the acquisition of both Short TE and Long TE spectra
for the same patient.

Short TE (20–35 ms) 1H MRS allows to observe
several metabolites and other compounds considered
useful for tumor classification: macromolecules (MM;
5.4 ppm, 2.9 ppm, 2.25 ppm, 2.05 ppm, 1.4 ppm
and 0.87 ppm), myo-Inositol (mI) and Mobile Lipids
(ML). However, Short TE signals are more sensible to
artifacts, show a large number of overlapping peaks,
and a strong MM-/ML-originated baseline. Long TE
(about 135 ms) 1H MRS is less informative than Short
TE, because resonances with short T2 may be lost.
However, lipid resonances (1.3 and 0.9 ppm) and MM
will not be the dominating components at Long TE,
making easier the analysis of the spectrum and possible
the study of contributions from lactate (Lac, dou-
blet at 1.33 ppm) and alanine (doublet at 1.47 ppm).
BT classification requires the acquisition of homoge-
neous MRS. Therefore, acquisition protocols should be
agreed at the very beginning of a classification study
is started. As an example, data in the INTERPRET
and eTUMOUR projects were acquired with Single
Voxel (SV) 1H MRS at 1.5 T, avoiding areas of cysts
or necrosis and with minimum contamination from
the surrounding non-tumoral tissue. Volume of interest
size ranged between 1.5 × 1.5 × 1.5 cm3, (3.4 mL) and
2 × 2 × 2 cm3, (8 mL), depending on tumor dimen-
sions. Long TE spectra were acquired with the PRESS
sequence, and a recycling time (TR) between 1,500
and 2,020 ms, TE of 135 or 136 ms, spectral width of
1,000 or 2,500 Hz and 512 or 2,048 data points. Short
TE were acquired using PRESS or STEAM sequences,
with TR between 1,600 and 2,020 ms, TE of 20 or
30 ms, spectral width of 1,000 or 2,500 Hz and 512
or 2,048 data points. Before using the spectra for clas-
sification purposes, a quality control was carried out
over both Long TE and Short TE spectra. Once a case
is acquired following the agreed protocol, it is pre-
processed to make it compatible, independent on the
manufacturer and acquisition configuration. A wor-
thy idea for consideration is that the preprocessing
should be applied to each training and test case, hence,

1 Interpret acquisition protocols 2000. http://azizu.uab.es/
INTERPRET/mrsdata/mrsdata.html. eTUMOR acquisition pro-
tocols 2003. http://www.etumour.net

it is recommendable to be an automatic (or mostly
automatic) procedure.

The next automatic pipeline was agreed within the
eTUMOUR project. It has demonstrated its usefulness
in multicenter studies, such as the ones carried out by
Luts et al. (2008) and García-Gómez et al. (2009a).
It consists of eight steps applied consecutively to the
raw data file of a SV MR spectrum (Short or Long TE)
from which an unsuppressed water acquisition is also
available.

1. Eddy current correction is applied to the water-
suppressed Free Induction Decay (FID) of each
case using the Klose algorithm. An additional man-
ual zero-order and first-order phase correction can
be performed to improve the phase correction of the
MR spectra, being strongly recommended for 3 T
samples.

2. The residual water resonance is removed using
the Hankel-Lanczos Singular Value Decomposition
(HLSVD) time-domain selective filtering using
10 singular values and a water region of [4.33,
5.07] ppm.

3. An apodization with a Lorentzian function of 1 Hz
of damping is applied.

4. Before transforming the signal to the frequency
domain using the Fast Fourier Transform (FFT),
an interpolation is needed in order to increase the
frequency resolution of the low resolution spectra
to the maximum frequency resolution used in the
acquisition protocols. This can be carried out with
the zero-filling procedure.

5. Afterwards, the baseline offset, which can be esti-
mated as the mean value of the region [11, 9] U [–2,
–1] ppm, is subtracted from the spectrum.

6. The normalization of the spectral data vector to the
L2-norm is performed based on the data-points in
the region [–2.7, 4.33] U [5.07, 7.1] ppm.

7. Depending on the Signal-to-Noise Ratio (SNR) and
the tumor pattern, an additional frequency align-
ment check of the spectrum should be performed
by referencing the ppm-axis to (in order of prior-
ity) the total Creatine (Cr) at 3.03 ppm or to the
Choline (Cho) containing compounds at 3.21 ppm
or the Mobile Lipids (ML) at 1.29 ppm.

8. Finally, the region of interest is restricted to [0.5,
4.1] ppm.

This pipeline can be adapted for the preprocessing of
Magnetic Resonance Spectroscopic Imaging (MRSI) if

http://azizu.uab.es/INTERPRET/mrsdata/mrsdata.html
http://azizu.uab.es/INTERPRET/mrsdata/mrsdata.html
http://www.etumour.net
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we include few steps at the beginning of the process.
First, a filtering of k-space data by a Hanning filter is
applied. After that, a zero filling to 32×32 and a spa-
tial 2D Fourier transformation obtain the time domain
signals for each voxel.

Feature Extraction

Menze et al. (2006) defined two different approaches
for feature extraction from MR spectra: (a) the quan-
tification approach, and (b) the pattern recognition
approach. The quantification approach is based on an
inverse modeling of the resonance lines to infer the
absolute or relative concentrations of the biochem-
ical agents. Algorithms, such as AQSES, QUEST,
AMARES, or LCModel are based on this approach.

In this chapter, we will mainly discuss about the
second approach, based on feature extraction from
the spectra with no assumption of an underlined
model. Menze et al. (2006), Luts et al. (2008), and
García-Gómez et al. (2009a) have achieved high-
accurate results in brain tumor classification with
pattern recognition-based techniques, whereas Opstad
et al. (2007) and Weis et al. (2010) have argued in favor
of quantification methods based on LCModel. The fea-
ture extraction methods based on pattern recognition
can be applied directly to the spectra, with no case-
specific parameter to be tuned. Hence, pattern recog-
nition approach is considered to offer a good tradeoff
between usability of the technique and reproducibility
of the results.

Different methods have been applied for obtain-
ing relevant features for brain tumor classification
using MRS. Luts et al. (2008) examined the effect of
feature extraction methods, mainly from the pattern
recognition approach, prior to automated classifica-
tion based on MRS for BT diagnosis. In that study,
Peak Integration (PI) on selected metabolite resonance
regions, peak height of typical resonances (PPM),
Principal Component Analysis (PCA), Independent
Component Analysis (ICA) and Wavelet (WAV) trans-
formation, among others were compared on MRS and
MRSI real data. Additionally, García-Gómez (2009a)
evaluated these methods on multicenter prospective
datasets. Several studies have included the simple PPM
method to extract the maximum height values of the
resonance peaks (Table 2.1) of the metabolites as
inputs of the classification.

Table 2.1 Typical PPM of metabolite/molecule resonances
and other molecules observed in short TE and the interval of
integration used in PI

Resonance Resonance frequency (ppm) Region (ppm)

L2 0.92 0.15
L1 1.29 0.15
LAC 1.31 0.15
ALA 1.47 0.15
NAA 2.01 0.15
Cr 3.02 0.15
Cr2 3.92 0.15
Cho 3.21 0.15
Gly 3.55 0.15
Glx 2.04 0.15
GLx2 2.46 0.15
mI/Tau 3.26 0.15
mI2 3.53 0.15
Tau2 3.42 0.15
ALA2∗ 3.78 0.15
∗ALA and others alpha-CH from amino-acids (e.g. Glx)

Peak Integration

Peak Integration (PI) is a simply form of estimat-
ing a quantity relative to the metabolite concentration,
assuming that the amplitude of a metabolite resonance
is proportional to the integral of its corresponding
peaks in the spectrum. A precise estimation of the
peak integrals is difficult due to several factors, includ-
ing nonzero baseline, peak overlap, noise and also
the discrete nature of the spectrum. In contrast, Peak
Integration (PI) is a good choice when an accurate
estimation of the metabolites is the objective of the
study.

The areas of the regions around the resonance fre-
quencies of the metabolites can be estimated by the
trapezoidal rule. Let (x(f1), . . . ,x(fl)) be a discretized
sample of the function x(f) from which the integral with
respect to f in a the range (f1, . . . ,fl) is wanted to be

approximated I =
fl∫

f1

x(f )df . In practice, the trapezoidal

integration is computed as:

�f = ( f2 − f1,..., fl − fl−1)

x′ =
(

x( f1) + x( f2)

2
,...,

x( fl−1) + x( fl)

2

)

I = �f · x′
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For each selected metabolite resonance the area under
the frequency peak in the magnitude spectrum is calcu-
lated. Several studies have used fifteen ranges for Short
TE spectra integrated within a window of 0.15 ppm
around the expected chemical shift of the main reso-
nances of the metabolites (Table 2.1).

Stepwise Algorithm for Feature
Selection in Classification

StepWise (SW) is one of the most extended algorithms
for solving the feature selection task. SW consists in
a greedy hill climbing approach where the subset of
features with the highest performance measure will
be selected in each step and modified in the next
step by the addition or deletion of one variable in the
model. To select the next model, the algorithm com-
pares the visited models by a measure over a validation
dataset. Garczarek (2002) defined measures of the per-
formance, such as, the Ability to Separate (AS) to
check the unlike the classes are after the transformation
carried out by the model, by means of the euclidean
distance between the true posterior probability, p(c|x),
and the posterior probability of the model p(c|x;�).

Relieff Feature Selection

ReliefF is a feature selection method based on how
well features distinguish between instances that are
near to each other. In classification problems, the
quality of each variable is calculated by the accu-
mulation of the distance between randomly selected
instances and their k-nearest neighbors of a different
class minus the distance to the k neighbors of the
same class. To make comparable the variables, the
distance is normalized by the range of the feature. For
neighbors of different classes, a large distance for a
variable will substantially increase the quality of the
variable, whereas for neighbors of the same class, a
large distance for a variable will substantially decrease
its quality. As a result, a discriminative variable will
have a large distance with samples of other classes and
a short distance with samples of the same class.

Principal Components Analysis (PCA)

PCA is a well-known projection method for study-
ing the variability in multivariate data.Consequently,
when applied to MR spectra, we will assumed the case
x in frequency domain as a D-dimensional space of
variables (x1, . . . ,xD). PCA searches in the observa-
tional D-dimensional space those p directions (called
principal components) where data have the highest
variability. Each principal component i = 1, . . . , p
defines one direction of variability by means of a
loading vector wi, and for each case x, the principal
component score zi is given by zi = wT

i · x, assuming
zero empirical mean. PCA finds the loading vector w1

that maximizes the variance of the principal compo-
nent scores zi, i.e. w1 = arg max||w1||=1Var(z1), subject
to the constraint ||w1|| = 1. The second (or a higher)
principal component is defined is the same way, but
also constrained to orthogonality to the first (other)
component(s), w1 · w2 = 0. The transformation matrix
W, composed by the loading vectors wp is usually
computed by means of the eigenvalue decomposition
of the covariance matrix of the original cases. Once
principal components are obtained, it is usual to rep-
resent each case by means of a vector of the p-firsts
z-scores.

Functional Data Analysis

The MR spectrum can be seen as a function defined on
time, x(t), or on frequency, x(f), composed by the con-
tributions of a mixture of resonances of metabolites.
Pattern Recognition (PR) methods for classification
and clustering are usually applied on data of finite-
dimensional spaces, but they cannot be directly applied
to infinite-dimensional space (such as a function, a
temporal series, or a curve). Although the previous
methods are based on the discretization of the fre-
quency interval of interest, they have been successfully
applied for MRS classification in previous studies.
Nevertheless, the space resulting from this multidi-
mensional approach results in highly correlated high-
dimensional data that should be taken into account
when estimating the predictive models. Therefore, reg-
ularization techniques or dimensional reduction should
be applied to avoid overfitting.
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The alternative proposed by Ramsay and Silverman
(2002) consists in fitting the curve of each spectrum
to a linear combination of l basis functions x(f ) =∑l

i=1 αiυi(f ), such as cubic splines, or wavelets. This
can be carried out by the minimization of a least
squares fitting criterion with a regularization term over
the roughness of the second derivative of the fit. Then,
the resulting l-vector ααα of coefficients can be the input
of the classifiers as a finite-dimensional representation
of the spectrum.

In the functional version of PCA, each eigen vec-
tor wi of the multivariate data x now corresponds
to a eigen function ξi(f ) and the i eigen component
score is zi = ∫

ξi(f )x(f ). In fact, functional Principal
Component Analysis (fPCA) finds the eigen func-
tions ξi(f ) that maximizes the variance of the prin-
cipal component scores zi, subject to the constraint∫
ξ2

i
(f )df = 1 and the orthogonality to all the previous

principal components. As a result, we can represent
each function xi(f ) (MR spectrum) by a vector of
scores zi obtained by fPCA.

Wavelet Transform and Multi-resolution
Analysis

The wavelet transform consists in carrying out trans-
lations and scale transformations of a prototypical
wavelet function ψ in order to adjust the shape of a
signal and to successively obtain a linear expansion of
it with coefficients γ(s, τ ). Mathematically this can be
expressed as:

x(t) =
∫∫

γ (s, τ )ψs,τ (t)dτds,

where x(t) is the signal and the variables s and τ

are referred to the translation and scale dimension.
Each scaled and translated wavelet ψs,τ (t) is called
child wavelet and is generated from a common mother
wavelet ψ(t) by ψs,τ (t) = 1√

s
ψ( t−τ

s ).
The wavelet is defined as a finite length or fast

decay wave with the admissibility and the regular-
ity conditions. These properties imply that the Fourier
transform of ψ(t) tends to zero for low frequencies and
therefore their behavior is similar to a band pass filter.
Using this wavelet transform and taking into account

the filter behavior of the wavelet and scaling functions,
the signal can be divided into different resolution lev-
els. As a result, each MR spectrum can be represented
by the parameter-space composed by the γ(s, τ ) coef-
ficients. Afterwards it can be applied some feature
selection procedure (such as SW in 3.2) to obtain an
optimal input vector for classification.

Independent Component Analysis

The motivation to apply ICA to a set of MR spectra
is due to the presence of partial volume effects. Partial
volume effects result in the fact that a signal from a
specific voxel can contain components of different tis-
sue types. The input for the ICA method is the full
region of interest of the real spectrum.

Given n MR spectra (x1(t), . . . ,xn(t)), each one
composed as a linear combination of n indepen-
dent sources, xi(t) = ∑n

j=1 aijsj(t), ∀i = 1, ..., n, ICA
attempts to un-mix the sources sj(t). Let X = {xi(tk)}n

1
the m×n matrix of the discretized cases xi(t), such as,
X = SA, where S contains the independent sources
and A the linear mixing coefficients. ICA estimates the
un-mixing matrix W that makes XW = S.

Due to the Central Limit Theorem, ICA assumes
that the generative model X tends to be more Gaussian
than the sources S. As a consequence, the optimal
W is such that maximizes the non-gaussianity of the
sources. Once ICA is obtained for the training dataset,
coefficients in the S basis for a new case x∗(t) =
(x∗(t1), . . . ,x∗(tm)) it can be easily computed as
(STS)−1STx∗(t). Most ICA algorithms start with a
pre-whitening step, based on a PCA of the observa-
tions. After pre-whitening, a dimensionality reduction
is obtained in the source signal subspace.

Feature Extraction for Brain Tumor
Classification Based on MR Spectra

Several studies have investigated the effect of fea-
ture extraction for brain tumor classification based on
MR spectra. Despite of the simplicity of PI, García-
Gómez et al. (2009a) obtained high performances in
several pairwise and multi-class classification tasks


