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In memory of Giuliano Martinelli.

A colleague, a scientist, a friend



Foreword

This book is the collection of most of the papers presented at the 15th Italian
Conference on Sensors and Microsystems, promoted by the Italian Association on
Sensors and Microsystems (AISEM). The book includes also three tutorial papers,
which address basic concepts in the area of sensors and microsystems. This XV
Conference edition, organized by the University of Messina, was held in the
Faculty of Engineering, University of Messina, from 8 to 10th February 2010, in
conjunction with the SIOF (Italian Society of Optics and Photonics) and GS-CSI
(Sensor Group of the Italian Chemical Society).

Aim of AISEM 2010 Conference was to give an update overview of the
different aspects (Materials, Processes, Devices, Systems and Applications) in the
field of sensors and microsystems. At the Conference, organized in 5 topical
sessions, attended about 100 participants, with 3 plenary lectures, 48 oral com-
munications and 52 communications presented in the poster session. Plenary
lectures were given by important researchers from University and industrial world.
Luigi Campanella (University ‘‘La Sapienza’’, Rome) illustrated the multidisci-
plinary approach to sensors. Salvatore Coffa (STMicroelectronics, Catania)
explained the strategy, both at technical and management level, in the sensors
market. Anna Menini (SISSA, Trieste) presented the basic concepts of molecular
sensing mechanisms in biological olfactory systems. Nicola Pinna (University of
Aveiro) described the recent development in the synthesis of nanostructured metal
oxides for sensing applications.

At the end of the Conference, three awards, sponsored by the Conference
Organization, were assigned for the best posters. The Best Poster Award, was
assigned ex-aequo to the papers ‘‘Nonlinear MEMS mechanism for energy har-
vesting from mechanical vibrations’’ by B. Andò, S. Baglio, C. Trigona, and
‘‘Ultrasensitive detection of non amplified genomic DNA’’ by L. M. Zanoli,
R. D’Agata, G. Spoto, R. Corradini, R. Marchelli, C. Ferretti, M. Gatti and
‘‘A research study and development of a hydrogen sensor for fuel cells’’ by
A. Bonavita, G. Micali, G. Neri, N. Donato, M. Latino, S. Licoccia.

This book represents then an exhaustive summary of the excellent scientific
work presented at the Conference, with a deep discussion of the many subjects
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under study. We hope that it may contribute to a further development of the field
of sensors and microsystems in Italy and abroad. The appreciation by the readers
will be the best awards for the efforts and time expended.

Special thanks are given to Dr. Mariangela Latino for his effort and dedication
in the organization of the Conference and to the guys of LESST Lab.
(Dr. A. Bramanti, F. Cincotta, S. Trocino, E. Cardillo, Dr. D. Aloisio, E. Fulco) for
their support during the three days of the Conference. The Committee also thanks
the sponsors BioAge, Libreria Bonanzinga and FINE Permeation Tubes for their
support, and the artists Dr. G. Donato and Dr. V. Saija for their creations and the
graphical arrangement of the Conference documents.

P.S. One of us, Prof. Giuliano Martinelli, died this year 24 May!
He was a very good friend, a kind person, an excellent researcher and an

outstanding teacher. We will never forget the very sound contribution he gave to
the AISEM scientific growth. In our mind we will keep alive also his unique polite
and genteel behaviour and in our heart an immense pain.
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Università di Brescia

C. Malvicino
CRFiat Orbassano (To)

G. Martinelli
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Chapter 1
Odorant Detection and Discrimination
in the Olfactory System

Simone Pifferi and Anna Menini

Abstract The olfactory system excels in both discrimination and detection of
odorants. In mammals, it reliably discriminates more than 3000 structurally diverse
odorant molecules and has an amazingly high sensitivity that allows the detection of
very low amounts of specific odorant molecules. In addition, the olfactory system has
the capability to adapt to ambient odorants, allowing the recognition of a broad range
of stimuli. The discrimination among different odorants is achieved by using hun-
dreds of receptors, activated with a combinatorial code. Olfactory transduction uses a
canonical second messenger system providing two critical attributes: amplification
and high signal-to-noise characteristics, giving the system its remarkable detector
capabilities. In this review, we present an introduction to the basic molecular
mechanisms of olfactory transduction in olfactory sensory neurons.

1.1 Odorants

The process of chemosensation allows a living organism to detect and discriminate
different chemical molecules in the external environment. This task is essential for
survival of the individual and of the species, indeed it enables animals to locate
nutritious food and suitable mating partners, as well as to smell the presence of
predators and to avoid eating toxic substances [56].

The olfactory system is specialized in the detection of odorants, and many
mammalian species recognize and discriminate among thousands of odorants with
high specificity and sensitivity. For example, the threshold for human detection of
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ethyl mercaptan (ethanethiol), commonly added to natural gas as an odorant, is as
low as one part in 2.5 billion parts of air [58].

Odorants are mainly organic volatile compounds that bind to odorant receptors
(see Sect. 1.6). A common odorant is usually made by a mixture of different types
of volatile molecules and the relative concentrations of each component participate
to determine the particular perception response. Odorant components include
aliphatic and aromatic molecules with varied carbon backbones and diverse
functional groups, such as alkanes, aldehydes, alcohols, carboxylic acids, ketones,
esters, halides, formiates, amines, thiols, imines, cyanides, and others, as illus-
trated in Fig. 1.1 (for review see [38]).

1.2 The Olfactory Epithelium

Volatile molecules enter the nose during inspiration and contact the olfactory
epithelium, located in the interior of the nasal cavity. The olfactory epithelium is
made by three main types of cells: olfactory sensory neurons, which are devoted to
the function of transducing chemical information into electrical signals, supporting
cells and several types of basal cells (Fig. 1.2a). Olfactory sensory neurons are
continuously regenerated by basal cells throughout the life span. Some olfactory
glands, named glands of Bowman, produce most of the mucus that normally
covers the epithelium surface. It is of interest to note that some odorant-binding
proteins (OBPs) are found at high concentrations in the nasal mucus. Although
their affinity for odorants suggests a role in olfactory perception, their physiolo-
gical role in vertebrates is still unclear.

Olfactory sensory neurons have a bipolar morphology with a flask-like shape.
Their apical part, located at the surface of the epithelium, is slightly swelled into

Fig. 1.1 Chemical structures
of various functional groups
in some odorant molecules
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an olfactory knob from which several very fine cilia depart (Fig. 1.2b). The cilia
are embedded in the mucus covering the epithelium and expose their membrane to
odorant molecules arriving from the external environment. Olfactory sensory
neurons are primary sensory cells and their axons join in bundles to form the first
cranial nerve that reach the olfactory bulbs in the brain.

The diameter of the cell body is about 5–8 lm, while that of the dendrite is
about 1–2 lm. In mammals, the cilia are 15–50 lm long, while in some lower
vertebrates they can be as long as 200 lm [35, 52]. The diameter of a mammalian
cilium tapers from 0.28 lm near the base of the cilium to 0.19 lm in the distal
portion [35]. The presence of numerous cilia greatly increases the surface mem-
brane area that can interact with odorant molecules. Some estimations indicated
that cilia may increase the cell bare surface some one thousand or more times [15].

The cilia play a fundamental role in olfaction, since they are the site of the
sensory transduction apparatus (see Sect. 1.7). Indeed, olfactory sensory neurons
deprived of cilia are no longer able to respond to odorants. Furthermore, the
damage of the olfactory epithelium can produce a complete loss of the sense of
smell, called anosmia.

1.3 Electrical Responses of Olfactory Sensory Neurons
to Odorants

Even if olfactory sensory neurons are physiologically devoted to detect odorants,
measuring an odorant response in one of these neurons is very challenging.
The response to a brief pulse of odorant has been measured with several

Fig. 1.2 The olfactory epithelium and an isolated olfactory sensory neuron. a Schematic
diagram showing the various cell types composing the olfactory epithelium (OSN olfactory
sensory neuron, SC supporting cell, BC basal cell). b Photograph of an isolated frog olfactory
sensory neuron under differential interference optic, c cilia; d dendrite; s soma; a axon. Reprinted
from Kleene and Gesteland [22], copyright 1981, with permission from Elsevier
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electrophysiological techniques, including the patch-clamp technique (Fig. 1.3a).
The percentages of responses to odorants range from 2 to 30%, depending on the
choice of odorant. As shown in Fig. 1.3b, when the odorant stimulus causes the
excitation of the neuron, a transient inward current is generated that will depolarize
the neuron in situ. The response typically lasts 1 s or more. The latency between
the arrival of the stimulus and the onset of the current ranges from 150 to 600 ms
and, for a strong stimulus, the amplitude of the peak current can reach several
hundred pA [21, 36, 52].

The basic electrical properties of olfactory sensory neurons, as well as the ion
gradient across the ciliary membrane, play a fundamental role in shaping the
properties of the odorant-induced response. In 1989, Lynch and Barry [33]
reported that, in rat olfactory sensory neurons, the opening of a single ion channel
was sufficient to induce the generation of action potentials. This is due to the very
high input resistance, between 3 and 6 GX, typical of olfactory sensory neurons,
producing a large depolarization also for very small odorant-induced currents [48].
Resting membrane potentials ranges between -90 and -45 mV, with a mean
value of -55 mV [21, 28, 48, 52].

The electrical response to odorants is due to ion fluxes across the cell mem-
brane, and therefore ion homeostasis is very important in signal transduction.
Since the olfactory cilia are embedded in mucus covering the olfactory epithelium
the relevant physiological ion concentrations are those in the mucus and inside the
cilia. Data available about the intra- and extra-ciliary concentrations of major
physiological ions are summarized in Table 1.1.

Fig. 1.3 Electrical response to odorants of an isolated olfactory sensory neuron. a Exper-
imental method. An isolated olfactory sensory neuron was stimulated with odorants while the
electrical response was measured with the patch-clamp technique in the voltage-clamp whole-
cell configuration. b Current response evoked by the odorant amylacetate at the holding
potential of -50 mV. The top trace indicates timing and duration of the odorant stimulus.
Adapted by permission from Macmillan Publishers Ltd: (Nature) Kurahashi and Menini [25],
copyright, 1997
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1.4 Dose–Response of Odorant-Induced Currents

Electrophysiological recordings from individual olfactory sensory neurons have
shown that they respond to odorants in different ways: some neuron can detect
several odorants, and a given odorant can activate neurons with various odorant
specificity (Fig. 1.4a).

The relation between odorant dose and peak current is generally well fit by the
Hill equation:

I ¼ Imax

Cn

Cn þ Kn
1=2

where Imax is the maximal current, C is the concentration of odorant, K1/2 is the
odorant concentration producing 50% of the maximal current, and n is the Hill
coefficient. In the neuron illustrated in Fig. 1.4b, c, K1/2 was 53 lM. K1/2 values
for different odorants ranged between 3 and 100 lM. The Hill coefficient, n,
describes the slope of the rising phase of the dose–response relation and its values
ranges between 2.7 and 9.7. With such a non-linear amplification, only a slight
change in the concentration of odorant molecules produces a large change in the
response. As n decreases, the slope also decreases, causing an increase in the range
of stimulus strengths over which the neuronal response varies (dynamic range) (for
reviews see [21, 36, 52]).

1.5 Adaptation

It is common experience that olfactory sensation gradually decreases during
continuous or repeated exposures to odorant stimuli. This phenomenon involves
many processes along the entire olfactory pathway, but it begins in the cilia of
olfactory sensory neurons. Indeed, during application of a prolonged odorant

Table 1.1 Intracellular and extracellular ion concentrations at the apical side of olfactory
sensory neurons

Ion [Ion]in (mM) [Ion]out (mM) ENernst (mV)

Na+ 53 ± 31 55 ± 12 +1
K+ 172 ± 23 69 ± 10 -24
Free Ca2+ 40 ± 9 nM 4.8 +156
Cl2 54 ± 4 55 ± 11 0

[Ion]in and [Ion]out are respectively the intracellular and extracellular (in the mucus) ion con-
centrations. ENernst is the calculated Nernst potential from the reported ion concentrations. Most
of the ion concentrations were measured by energy-dispersive X-ray microanalysis in dendritic
knobs of rat olfactory sensory neurons [51]. Intracellular Ca2+ was from [30]; extracellular Ca2+

was evaluated as the midpoint of the range (2.6–7.1 mM) measured by [11]; intracellular Cl2

from [16]
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stimulus, the current amplitude decreases with time, despite the continued pres-
ence of the stimulus. Figure 1.5a shows that, when two brief odorant pulses
are delivered within a short interval, the amplitude of the response to the second
pulse is reduced. While the reduction is greater with shorter interstimulus intervals,
the current amplitude gradually recovers to the initial value increasing the interval
between odorant pulses (Fig. 1.5b).

It is important to note that sensory adaptation is not merely a reduction in
response amplitude, but its physiological role involves the adjustment of the
response to allow a cell to work over a broad range of stimuli (for review see [57]).
Indeed, in odorant adaptation to repetitive stimuli there is a shift of the dynamic
range (i.e. the range of stimulus concentrations over which the olfactory sensory
neuron is able to respond) toward higher odorant concentrations compared with the
control state.

Fig. 1.4 Odorant responses of olfactory sensory neurons. a Responses of three different neurons
to the odorants indicated at the top were measured with the voltage-clamp whole-cell
configuration at -55 mV holding potential. Different neurons respond to a specific subset of
odorants. Neuron 1 responded to all three odorants, while neuron 2 responded to only one
odorant, and neuron 3 to two of the tested odorants. b Response of an olfactory sensory neuron to
various concentrations of isoamylacetate. c Plot of the peak odorant-induced currents from
(b) versus the odorant concentration. The solid line is the best fit of the Hill equation to the data
with K1/2 = 53 lM and n = 4.2. Modified from Firestein et al. [13]
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1.6 Odorant Receptors

The identification of the genes encoding for odorant receptors opened a new
molecular era in olfactory research. The discovery of odorant receptor genes was
first published in 1991 by Buck and Axel [7], who obtained the Nobel Prize in
Physiology or Medicine in 2004 ‘‘for their discoveries of odorant receptors and the
organization of the olfactory system’’. Odorant receptors belong to the superfamily
of G-protein coupled receptors. The mouse repertoire contains about 1,000
potentially functional odorant receptor genes and is by far the largest gene
superfamily in a mammalian genome [10, 38, 60]. In humans, about 350 odorant
receptor sequences are potentially functional [37].

At the molecular level, odorant receptors share the same general structure of the
other G-protein coupled receptors, with seven a-helical membrane-spanning
domains connected by intracellular and extracellular loops of variable lengths, and
numerous conserved short sequences. The most critical residues involved in
odorant binding are hydrophopic and are located in the third, fifth and sixth
transmembrane regions, which may form the ligand-binding pocket for odorant
molecules [17]. The spatial localization of the binding pocket is similar to that for
other members of the family, although the environment is quite different. For
example catecholamines have been shown to form multiple electrostatic interac-
tions through ionic bonds with adrenergic receptors. In contrast, in odorant
receptors, the interaction of odorants with the binding pocket is based on hydro-
phobic and van der Waals interactions and therefore is rather weak, producing a
low-affinity ligand-binding. Importantly, odorant receptors are still capable of
selecting for shape, size and length of the ligand [17].

To understand how olfactory sensory neurons discriminate among odorants it is
important to know how many types of odorant receptor genes are expressed in

Fig. 1.5 Adaptation to repeated odorant stimuli. In each recording, the top trace indicates timing
and duration of the odorant stimuli. Two identical pulses of the odorant amylacetate were
delivered to an olfactory sensory neuron with different interstimulus intervals. The holding
potential was -50 mV. a When the interstimulus interval was 1.5 s the response to the second
pulse was reduced. b With a 4.5 s interval, the response to the second pulse was similar to the
initial value. Adapted by permission from Macmillan Publishers Ltd: (Nature) Kurahashi and
Menini [25], copyright, 1997
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each olfactory sensory neuron. It has been shown that every olfactory sensory
neuron expresses a single odorant receptor gene. Moreover, the choice seems to be
a stochastic process, which is likely to remain stable during the entire life of each
olfactory sensory neuron, although not all odorant receptors are chosen with the
same frequency [37, 38].

Another important information is the knowledge of how many and which
odorants bind to each odorant receptor. It has been well established that each
odorant receptor can be activated by several types of odorant molecules (Fig. 1.6).
On the other hand, one single type of odorant can activate several types of odorant
receptors. Thus, the odorant receptor family is used in a combinatorial manner to
discriminate odorants and each odorant is recognized by a unique combination of
receptors (Fig. 1.6) [34]. This scheme is consistent with previous observations that
single olfactory sensory neurons can be stimulated by multiple odorants
(Fig. 1.4a). Since each of these neurons expresses only one unknown odorant
receptor type, a given neuron responds to a small and unpredictable subset among
the many available odorants [13].

The combinatorial receptor coding scheme has the great advantage of allowing
the olfactory system to recognize a large number of odorants and also to dis-
criminate between odorants that have very similar but different structures, such as
aliphatic odorants with different carbon chain lengths. Unfortunately, the identi-
fication of ligands for odorant receptors is still very limited, due to the difficulty to
express odorant receptors in heterologous systems suitable for high-throughput
screening [37, 38].

1.7 Olfactory Transduction

How is the binding of odorant molecules to odorant receptors converted into an
electrical signal? When an odorant molecule binds to an odorant receptor, it

Fig. 1.6 Combinatorial code
used by the olfactory system
to discriminate between
odorant molecules. Figures
on the right represent odorant
receptors activated by the
odorants molecules on the
left. Each type of odorant
molecule activates a unique
combination of receptors.
Viceversa, each activated
combination of receptors
corresponds to one type of
odorant molecule
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initiates a cascade of molecular events that transforms the chemical energy of
binding into an electrical signal, as illustrated in Fig. 1.7.

The binding of an odorant molecule to an odorant receptor in the cilia induces a
conformational change of the receptor causing the activation of an interacting
G-protein. In turn, the G-protein stimulates the enzymatic activity of an adenylyl
cyclase (ACIII) generating an increase in the concentration of cyclic AMP
(cAMP). Cyclic nucleotide-gated (CNG) channels located in the ciliary membrane
are directly activated by cAMP, causing a depolarizing influx of Na+ and Ca2+

ions. The intracellular increase of Ca2+ concentration directly gates Ca2+-activated
Cl2 channels. As shown in Table 1.1, olfactory sensory neurons maintain an
unusually high internal concentration of Cl2, which is in the same range of the Cl2

concentration present in the mucus at the external side of the ciliary membrane.
Therefore, in physiological conditions, the opening of Ca2+-activated Cl2 channels
causes an efflux of Cl2 ions from the cilia, corresponding to an inward current that
further contributes to the depolarization of olfactory sensory neurons [16, 41, 42,
50–52]. The depolarization spreads passively to the dendrite and soma of the
neuron, triggering action potentials that are conducted along the axon to the
olfactory bulb.

Several mechanisms contribute to terminate the odorant response and to restore
the initial conditions in olfactory sensory neurons. The cilia contain a phospho-
diesterase that, after being activated by the complex Ca2+-Calmodulin (CaM),
hydrolyzes cAMP [4]; the G-protein is inactivated by its intrinsic GTPase func-
tion; the intracellular Ca2+ concentration is reduced by Ca2+-extrusion through a
Na+/Ca2+ exchanger and Ca2+-ATPase and, finally, the complex Ca2+-CaM
decreases the sensitivity of the CNG channel to cAMP, as further discussed in the
following section (for reviews see [21, 36, 47, 52]).

Fig. 1.7 Olfactory transduction in the cilia of olfactory sensory neurons. a A scanning electron
micrograph of the knob of a human olfactory sensory neuron showing the protrusion of several
cilia. Scale bar, 1 lm. Adapted from Morrison and Costanzo [39], with permission. b Schematic
representation of the olfactory transduction taking place in the cilia. OR odorant receptor; G,
G-protein, AC adenylyl cyclase, CNG channel cyclic nucleotide-gated channel, CaM calmodulin,
PDE phosphodiesterase. TMEM16B indicates the candidate Ca2+-activated Cl2 channel.
Modified from Pifferi et al. [43], with permission
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1.8 Cyclic Nucleotide-Gated Channels

Cyclic nucleotide-gated (CNG) channels are the mediators of the chemo-electrical
energy conversion in olfactory cilia. Indeed, information about odorant molecules
is first transmitted as chemical information and then is converted into an electrical
signal by ion fluxes through CNG channels activated by the increase in cAMP
concentration [24, 31, 40].

The ciliary CNG channels are composed of three types of subunits with a
stoichiometry of two CNGA2, one CNGA4, and one CNGB1b (Fig. 1.8a).
Transgenic mice lacking CNGA2 are completely anosmic, demonstrating the
importance of this channel in olfactory perception [3, 6, 60].

The topology of each CNG subunit consists of six transmembrane spanning
domains, a pore region between the fifth and the sixth transmembrane domain, and
intracellular N- and C-terminal regions. A cyclic nucleotide-binding site is located
near the C-terminal at the cytoplasmic side in each subunit, for a total of four
binding sites per each channel. Moreover, Ca2+-calmodulin binding sites are also
present at the cytoplasmic side (Fig. 1.8a) (for reviews see [18, 43]).

The relation between concentration of cAMP and CNG current is well fit with a
Hill equation. Half-maximal activation (K1/2) is in the micromolar range and varies
in different species between 2 and 19 lM. The Hill coefficient ranges from 1.3 to
2.3 suggesting that at least two molecules of cAMP must bind before the channel
gating (Fig. 1.8b, c).

The unitary conductance of single CNG channels in the presence of Ca2+ and
Mg2+ is very small, with a value of about 1 pS. A small single channel conduc-
tance plays a relevant physiological role since, by using a large number of tiny
events, the integrated current has a high signal-to-noise ratio.

It is important to note that, once open, CNG channels allow the flow along their
electrochemical gradient, not only of monovalent ions, such as Na+ and K+, but
also of Ca2+ [12]. The increase of Ca2+ increase in the intraciliary medium plays
several important roles in olfactory transduction, mainly in the amplification of the
odorant response (see Sect. 1.9) and in the adaptation process [26].

Kurahashi and Menini [25] investigated the localization of the principal
molecular mechanism for adaptation in the olfactory transduction process. To
determine whether the response reduction in the adapted state (Fig. 1.5a) was
attributable to a reduction in the cAMP production or was instead due to other
processes occurring after the production of cAMP, CNG channels in intact neurons
were directly activated by flash photolysis of caged cAMP. The ciliary cytoplasm
was loaded with caged cAMP through diffusion from a patch pipette and appli-
cation of ultraviolet flashes to the cilia caused the photorelease of various cAMP
concentrations. Therefore, cAMP-gated channels could be directly activated,
bypassing the early stages of odorant transduction (i.e. receptor activation and
G-protein and adenylate cyclase signalling). cAMP and odorant-induced responses
were found to have similar adaptation properties, indicating that the entire adap-
tation process takes place after the production of cAMP. Furthermore, by using a
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hydrolysis resistant caged cAMP analogue, caged 8Br-cAMP, Boccaccio et al. [2]
have shown that the hydrolysis of cAMP by PDE is not involved in adaptation. It
has also been shown that Ca2+-activated Cl2 channel are unrelated to olfactory
adaptation.

All together, the previous experiments indicate that Ca2+ is likely to act through
a negative feedback on the CNG channel. Indeed, micromolar concentrations of
intracellular Ca2+ decrease the channel sensitivity to cAMP, probably by activating
a Ca2+-responsive endogenous factor already pre-associated with the channel
[5, 9]. It has been proposed that the endogenous factor co-assembled with the CNG
channel is Ca2+-free calmodulin, called apocalmodulin, although a conclusive
demonstration is still lacking [43].

Fig. 1.8 Cyclic nucleotide-gated (CNG) channels. a Topological model and assembly of
subunits of the olfactory CNG channel. Each transmembrane domain is indicated by a number,
the pore loop is located between domains 5 and 6. The cyclic nucleotide-binding site is located in
the C-terminal domain. Ca2+-dependent calmodulin binding sites are shown in black. b A
membrane patch was excised in the inside-out configuration from the knob or ciliary region of an
olfactory sensory neuron. CNG channels were activated by the indicated concentrations of
cAMP. The holding potential was -50 mV. c Normalized currents from experiments as in (b).
The continuous lines is the best fit of the Hill equation to the data with K1/2 = 2.7 lM, n = 1.5.
Modified from Pifferi et al. [43], with permission
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