Lecture Notes in Electrical Engineering 91

Giovanni Neri Nicola Donato Arnaldo d'Amico Corrado Di Natale *Editors*

Sensors and Microsystems

AISEM 2010 Proceedings

Lecture Notes in Electrical Engineering

Volume 91

For further volume http://www.springer.com/series/7818 Giovanni Neri · Nicola Donato Arnaldo d'Amico · Corrado Di Natale Editors

Sensors and Microsystems

AISEM 2010 Proceedings

Giovanni Neri Department of Industrial Chemistry and Materials Engineering University of Messina Contrada Di Dio 98166 Messina Italy e-mail: neri@ingegneria.unime.it

Nicola Donato Department of Matter Physics and Electronic Engineering University of Messina Contrada Di Dio 98166 Messina Italy e-mail: ndonato@unime.it Prof. Arnaldo d'Amico Department of Electronic Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Roma Italy e-mail: damico@eln.uniroma2.it

Corrado Di Natale Department of Electronic Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Roma Italy e-mail: dinatale@uniroma2.it

ISSN 1876-1100 ISBN 978-94-007-1323-9 DOI 10.1007/978-94-007-1324-6 Springer Dordrecht Heidelberg London New York e-ISSN 1876-1119 e-ISBN 978-94-007-1324-6

© Springer Science+Business Media B.V. 2011

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: eStudio Calamar, Berlin/Figueres

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

In memory of Giuliano Martinelli. A colleague, a scientist, a friend

Foreword

This book is the collection of most of the papers presented at the 15th Italian Conference on Sensors and Microsystems, promoted by the Italian Association on Sensors and Microsystems (AISEM). The book includes also three tutorial papers, which address basic concepts in the area of sensors and microsystems. This XV Conference edition, organized by the University of Messina, was held in the Faculty of Engineering, University of Messina, from 8 to 10th February 2010, in conjunction with the SIOF (Italian Society of Optics and Photonics) and GS-CSI (Sensor Group of the Italian Chemical Society).

Aim of AISEM 2010 Conference was to give an update overview of the different aspects (Materials, Processes, Devices, Systems and Applications) in the field of sensors and microsystems. At the Conference, organized in 5 topical sessions, attended about 100 participants, with 3 plenary lectures, 48 oral communications and 52 communications presented in the poster session. Plenary lectures were given by important researchers from University and industrial world. Luigi Campanella (University "La Sapienza", Rome) illustrated the multidisciplinary approach to sensors. Salvatore Coffa (STMicroelectronics, Catania) explained the strategy, both at technical and management level, in the sensors market. Anna Menini (SISSA, Trieste) presented the basic concepts of molecular sensing mechanisms in biological olfactory systems. Nicola Pinna (University of Aveiro) described the recent development in the synthesis of nanostructured metal oxides for sensing applications.

At the end of the Conference, three awards, sponsored by the Conference Organization, were assigned for the best posters. The Best Poster Award, was assigned ex-aequo to the papers "Nonlinear MEMS mechanism for energy harvesting from mechanical vibrations" by B. Andò, S. Baglio, C. Trigona, and "Ultrasensitive detection of non amplified genomic DNA" by L. M. Zanoli, R. D'Agata, G. Spoto, R. Corradini, R. Marchelli, C. Ferretti, M. Gatti and "A research study and development of a hydrogen sensor for fuel cells" by A. Bonavita, G. Micali, G. Neri, N. Donato, M. Latino, S. Licoccia.

This book represents then an exhaustive summary of the excellent scientific work presented at the Conference, with a deep discussion of the many subjects

under study. We hope that it may contribute to a further development of the field of sensors and microsystems in Italy and abroad. The appreciation by the readers will be the best awards for the efforts and time expended.

Special thanks are given to Dr. Mariangela Latino for his effort and dedication in the organization of the Conference and to the guys of LESST Lab. (Dr. A. Bramanti, F. Cincotta, S. Trocino, E. Cardillo, Dr. D. Aloisio, E. Fulco) for their support during the three days of the Conference. The Committee also thanks the sponsors BioAge, Libreria Bonanzinga and FINE Permeation Tubes for their support, and the artists Dr. G. Donato and Dr. V. Saija for their creations and the graphical arrangement of the Conference documents.

P.S. One of us, Prof. Giuliano Martinelli, died this year 24 May!

He was a very good friend, a kind person, an excellent researcher and an outstanding teacher. We will never forget the very sound contribution he gave to the AISEM scientific growth. In our mind we will keep alive also his unique polite and genteel behaviour and in our heart an immense pain.

AISEM Committees

Local Organization Chairman

S. Galvagno Università degli Studi di Messina G. Neri Università degli Studi di Messina N. Donato Università degli Studi di Messina

Local Organization Secretary

M. Latino

AISEM Directive Committee

A. D'Amico Università di Roma "Tor Vergata" Presidente AISEM

C. Mari Università di Milano L. Campanella Università di Roma "La Sapienza" P. Siciliano CNR-IMM Lecce

G. Martinelli Università di Ferrara U. Mastromatteo ST Microelect. Castelletto (MI)

A.G. Mignani CNR-IFAC Firenze M. Prudenziati Università di Modena

G. Soncini Università di Trento G. Sberveglieri Università di Brescia

AISEM Scientific Committee

M.C. Carotta Università di Ferrara P. Dario Scuola Superiore S. Anna Pisa F. Davide Telecom Italia Roma

L. Dori

CNR-IMM-LAMEL

Bologna

G. Martinelli

Università di Ferrara

A. Diligenti Università di Pisa C. Di Natale Università di Roma "Tor Vergata"

G. Faglia Università di Brescia C. Malvicino CRFiat Orbassano (To)

M. Mascini Università di Firenze

G. Palleschi Università di Roma "Tor Vergata" N. Minnaja Polo Navacchio SpA Navacchio-Cascina (PI)

> F. Villa ST Microelctr. Castelletto (Mi)

B. Morten Università di Modena

M. Zen ITC-IRST Trento

Contents

Part I Tutorials

1	Odorant Detection and Discrimination in the Olfactory System Simone Pifferi and Anna Menini	3
2	Better Sensors Through Chemistry: Some Selected Examples G. Neri	19
Par	t II Materials and Processes	
3	Alcohol-Infiltrated One-Dimensional Photonic Crystals G. Barillaro, A. Diligenti, L. M. Strambini, S. Surdo and S. Merlo	33
4	Conductance Variation Under UV: A Surface Barrier Modification C. Malagù, M. C. Carotta, A. Giberti, V. Guidi and G. Martinelli	39
5	Poly[3-(4-Alkoxyphenyl)thiophenes] Based Chemical Sensors E. Massera, M. L. Miglietta, T. Polichetti, G. Di Francia, F. Borbone, L. Ricciotti, S. Pappalardo and A. Roviello	43
6	Electrical Noise Characterization of Epoxy/MWCNT Composites C. Barone, D. Imparato, S. Pagano, L. Vertuccio, A. Sorrentino and H. C. Neitzert	49
7	Microwave-Assisted Synthesis of Metal Oxide Nanostructures for Sensing Applications	55

Contents

8	A Novel Organic/MWCNTs Semiconductor Composite for Resistive Gas Sensors F. Fontana, T. Caronna, N. Donato, M. Latino, A. Bonavita, G. Rizzo and G. Neri	61
9	An Exploratory Study on the Potential of Zeolite P-Based Materials for Sensing Applications I. Arrigo, M. Caprì, F. Corigliano, A. Bonavita, G. Rizzo, G. Neri and N. Donato	67
10	Thermoelectric Properties of Carbon Nanotubes Layers M. Penza, R. Rossi, M. Alvisi, D. Valerini, E. Serra, E. Martinelli, C. Di Natale and A. D'amico	73
11	<i>Bis</i> -Pyrazole Based Thin Films for Optical Gas Detection R. Touzani, S. El Kadiri, A. Zerrouki, S. Scorrano, G. Vasapollo, M. G. Manera and R. Rella	81
12	Room Temperature Hydrogen Sensor Based on Pt/TiO ₂ /MWCNT Composites L. De Luca, A. Donato, G. Apa, S. Santangelo, G. Faggio, G. Messina, N. Donato, A. Bonavita and G. Neri	87
13	Gas Influence on Photocurrent Generation in Metal Oxide Nanowires S. Todros, C. Baratto, E. Comini, G. Faglia, M. Ferroni and G. Sberveglieri	93
14	Transition Metal Complexes as Ammonia Responsive Materials for SAW Chemical Sensors S. Lo Schiavo, P. Cardiano, N. Donato, M. Latino and G. Neri	99
15	Gas Microsensors with Metalloporphyrin-Functionalized Carbon Nanotube Networked Layers	105
16	Gas Sensing Properties of Indium Oxide Nanoparticles Prepared by Laser Ablation in Water	113
17	Chemical Sensors for Indoor Atmosphere Monitoring R. Paolesse, L. Tortora, C. Di Natale, F. Dini and A. D'amico	119

18	Electrochemical and Morphological Investigation on Gold Bio-Nano-Electrodes. Preliminary Results Livia Della Seta, Maria Rita Montereali, Chiara Patriarca, Antonella Marone and Walter Vastarella	125	
19	Synthesis, Characterization, and Ammonia Sensing Propertiesof Vanadium Pentoxide NanocrystalsG. Rizzo, A. Bonavita, G. Neri, A. Arena and G. Saitta	131	
20	Synthesis of Silver Nanoparticle Arrays for SERSBased Sensing.C. D'Andrea, F. Neri, P. M. Ossi, N. Santo and S. Trusso	137	
21	Inkjet Printed Chemical Sensors	145	
22	Synthesis, Characterization and Sensing Applications of Nanotubular TiO ₂ -Based Materials	151	
Par	Part III Devices		
23	Detection of a Tumor Marker in Serum by an Electrochemical Assay Coupled to Magnetic Beads	157	
24	Smart Multichannel Flow Sensor with Temperatureand Pressure CompensationP. Bruschi, M. Dei, F. Butti and M. Piotto	163	
25	Field Effect Transistor Sensing Devices EmployingLipid LayersS. Cotrone, M. D. Angione, M. Magliulo, N. Cioffi, R. Pilolli,G. Palazzo, L. Torsi, A. Mallardi, D. Fine and A. Dodabalapur	169	

26	The Measure of Atmospheric Electric Field.	175
	S. Iarossi, M. Poscolieri, C. Rafanelli, D. Franceschinis, A. Rondini,	
	M. Maggi and A. D'amico	

Contents	
----------	--

27	Single Palladium Nanowire: Morphology and its Correlation with Sensing Mechanism	181
	Vera La Ferrara, Brigida Alfano, Tiziana Polichetti, Ettore Massera, Girolamo Di Francia and Giuseppe Fiorentino	
28	Silicon Carbide Schottky Diodes for Alpha Particle Detection M. Piotto, P. Bruschi, A. Diligenti, R. Ciolini, G. Curzio and A. Di Fulvio	187
29	Nano-Devices Based on Spin-Transfer Torque Effects	193
30	Physical and Morphological Characterization of an Innovative System Control for the Accurate Execution of Lung Surgery L. Fuggiano, R. Caione, F. Casino and R. Rella	199
31	Plasmonic and Magneto-Plasmonic Nanostructured Materials for Sensors and Biosensors Application	203
32	Nonlinear MEMS Mechanism for Energy Harvesting from Mechanical Vibrations	209
Par	t IV Systems	
33	Liquid-Flow Measurements in Silicon Dioxide Channels with Micron-Sized Dimension	217
34	Fiber Optic Broadband Ultrasonic Probe for Virtual Biopsy:Technological Solutions.E. Biagi, S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia,G. Masetti and N. Speciale	223
35	Design, Fabrication and Characterization of a New HybridResonator for Biosensing Applications.C. Ciminelli, C. M. Campanella and M. N. Armenise	229

Contents

36	Comparison Between Integrated Transmitter Typologies for Monolithic Wireless Smart Sensors	235
	Letizia Fragomeni, Fabio Zito and Francesco G. Della Corte	
37	Digital Processing of Intracranial Pressure Signal Acquired by Means of a Strain Gauge Sensor	241
38	Fabrication of Planar Sub-Micron Schottky Diodesfor Terahertz Imaging ApplicationsFrancesco Gatta, Roberto Casini, Arnaldo D'amico,Michele Ortolani, Ennio Giovine, Donatella Dominijanniand Vittorio Foglietti	247
39	Power Management Systems for Photovoltaic	
	Energy Harvesters	253
40	A Low Noise 32-Channel CMOS Read-Out Circuit for X-ray Silicon Drift Chamber Detectors L. Picolli, M. Grassi, M. Ferri and P. Malcovati	259
41	Complexity Management in Manufacturing Microsystems: Remarks on Artificial and Natural Systems Comparison U. Mastromatteo	265
42	Enhanced Mass Sensitivity of Carbon Nanotube Multilayer Measured by QCM-Based Gas Sensors	271
43	2D Anemometer Based on Multichannel SingleChip Flow SensorM. Piotto, P. Bruschi, F. Butti and G. Pennelli	279
44	Electro-Optical Modulating Multistack Device Based on the CMOS-Compatible Technology of Amorphous Silicon Sandro Rao, Francesco G. Della Corte and Caterina Summonte	285
45	Improved SQUID Sensors for Biomagnetic Imaging Antonio Vettoliere, C. Granata, S. Rombetto and M. Russo	291

46	A Millimetre Size Wireless Temperature Sensor with Digital	
	Conversion and Embedded 2.5 GHz Transmitter and Antenna	297
	F. Zito, L. Fragomeni and F. G. Della Corte	

Part V Applications

47	High Sensitivity Mach–Zehnder Interferometerfor Sub-Nanoliter Liquid SensingG. Testa, L. Zeni, Yujian Huang, P. M. Sarro and R. Bernini	305
48	One-Dimensional Polyaniline Nanotubes for Enhanced Chemical and Biochemical Sensing Francesca Berti, Giovanna Marrazza, Marco Mascini, Silvia Todros, Camilla Baratto, Matteo Ferroni, Guido Faglia, Dhana Lakshmi, Iva Chianella, Michael J. Whitcombe, Sergey Piletsky and Anthony P. F. Turner	311
49	Odorant Binding Proteins as Sensing Layers for Novel Gas Biosensors: An Impedance Spectroscopy Characterization S. Capone, C. De Pascali, L. Francioso, P. Siciliano, K. C. Persaud and A. M. Pisanelli	317
50	Fluorescence Detection of Hydrocarbons in Harbour Water A. Catini, F. Dini, D. Polese, S. Petrocco, M. De Luca, C. Di Natale, A. D'amico and R. Paolesse	325
51	A Research Study and Development of a Hydrogen Sensor for Fuel Cells	329
52	A New Potentiometric Urea Biosensor Based on Urease Immobilized in Electrosyntesised Poly(O-Phenylenediamine) Daniela Chirizzi and Cosimino Malitesta	335
53	Electrochemical and Spectroscopic Characterization of Glucose Oxidase Immobilized in Polyvinyl Alcohol and Applications in Glucose Detection D. Chirizzi, M. R. Guascito, C. Malitesta and E. Mazzotta	339
54	Innovative Integrated-Optic Resonator for Angular Rate Sensing: Design and Experimental Characterization Caterina Ciminelli, Francesco Dell'Olio, Carlo E. Campanella and Mario N. Armenise	345

55	Electrochemical DNA Sensors for the Detection of Benzo[a]pyrene Toxicity Del Carlo Michele Manuel Sergi Marialisa Giuliani	351
	Dario Compagnone and Attila Kiss	
56	Electrochemical Sensing Approach for the Selective Determination of Hg ²⁺ M. Del Carlo, A. Ricci, C. Lo Sterzo and D. Compagnone	355
57	An Amperometric Sensor for the Selective Determination of Ortho-Diphenols in Olive Oil Michele Del Carlo, Alessia Pepe, Flavio Della Pelle, Marcello Mascini, Dario Compagnone, Aziz Amine, Azedin Kadi, Nora Amraoui Bendriss and Giuseppe Christian Fusella	361
58	Thick-Film Inclinometer Based on Free Convective Motionof an Heating Air MassDamiano Crescini and Marco Romani	367
59	Development of an E-Nose Solution for Landfill and Industrial Areas Emission Monitoring: Selection of an Ad-Hoc Sensor Array Saverio De Vito, Ettore Massera, Girolamo Di Francia, Carmine Ambrosino, Paola Di Palma and Vincenzo Magliulo	373
60	Artificial Immune Systems: A Novel Approach to Electronic Nose Patterns Classification Saverio De Vito, Girolamo Di Francia, E. Martinelli, R. Di Fuccio, C Di Nucleo La Di Actionation	379
61	C. Di Natale and A. D' Amico Innovative Sensor Techniques for Aircraft Maintenance Applications Giulio Liotti, Roberto De Pompeis, Girolamo Di Francia, Saverio De Vito, Palumbo Pasquale, Vincenzo Della Corte and Giuseppe Del Core	383
62	Stand-Alone System for Inflammation Analysis	387
63	Luminescent Porous Silicon Nanoparticles as Drug Carrier Vera La Ferrara, Girolamo Di Francia and Giuseppe Fiorentino	393

64	Range Imaging for Fall Detection and Posture Analysisin Ambient Assisted Living ApplicationsA. Leone, G. Diraco and P. Siciliano	397
65	Multiple Minima Hypersurfaces Procedures for BiomimeticLigands ScreeningM. Mascini, M. Del Carlo, D. Compagnone, G. Perez,L. A. Montero-Cabrera, S. Gonzalez and H. Yamanaka	403
66	Electrochemically Synthesized Molecularly Imprinted Polymers for Sensing Applications Elisabetta Mazzotta and Cosimino Malitesta	409
67	Wireless Energy Consumption Monitor	415
68	Remotely Powered Smart RFID Tag for Food Chain Monitoring Massimo Merenda, Francesco G. Della Corte and Marcello Lolli	421
69	Characterization of Nanoparticles in Seawater for Toxicity Assessment Towards Aquatic Organisms M. L. Miglietta, G. Rametta, G. Di Francia, S. Manzo, A. Rocco, R. Carotenuto, F. De Luca Picione and S. Buono	425
70	Diffuse-Light Absorption Spectroscopy in the VIS and NIR Spectral Ranges for Adulteration Assessment of Extra Virgin Olive Oils Anna G. Mignani, Leonardo Ciaccheri, Heidi Ottevaere, Hugo Thienpont, Lanfranco Conte, Milena Marega, Angelo Cichelli, Cristina Attilio and Antonio Cimato	431
71	Bridge Monitoring by Distributed Strain Measurement Using a Time-Domain Brillouin Sensing System R. Bernini, L. Amato, A. Minardo and L. Zeni	439
72	Assessment of Fuel Cell's Endplate Out of Plane Deformation Using Digital Image Correlation R. Montanini, G. Squadrito and G. Giacoppo	443
73	A Piezoelectric Quartz Crystal Sensor Applied for Thrombin-Binding Aptamers Ilaria Lamberti, Jan Rakitka, Tibor Hianik and Lucia Mosiello	449

74	Application of Epoxy/Carbon Nanotube Compositesas Microwave Absorber at Frequencies up to 25 GHzR. Di Giacomo, H. C. Neitzert, L. Vertuccio, A. Sorrentinoand S. Sabbatino	455
75	An Infrared Thermal Measuring System for Automotive Applications and Reliability Improvement S. Panarello, S. Patane', A. Testa, S. De Caro, R. Letor, S. Russo and D. Patti	461
76	Fast Multi-Channel Driver for High-VoltageMicromirrors SwitchesAndrea Simonetti, Stefano De Luca and Alessandro Trifiletti	467
77	Cross Selectivity Immunoaffinity and Applications for Lactoferrin Immunosensor M. Tomassetti, E. Martini and L. Campanella	473
78	Opees to Investigate the Isothermal Rancidification Process in Olive Oils Mauro Tomassetti, Luigi Campanella and Stefano Vecchio	479
79	Ultrasensitive Detection of Non-amplified Genomic DNA Laura Maria Zanoli, Roberta D'Agata, Giuseppe Spoto, Roberto Corradini, Rosangela Marchelli, Cristina Ferretti and Marcello Gatti	485
80	Cytotoxicity of Multiwalled Carbon Nanotube Buckypaper in Human Lymphocytes	489

Part I Tutorials

Chapter 1 Odorant Detection and Discrimination in the Olfactory System

Simone Pifferi and Anna Menini

Abstract The olfactory system excels in both discrimination and detection of odorants. In mammals, it reliably discriminates more than 3000 structurally diverse odorant molecules and has an amazingly high sensitivity that allows the detection of very low amounts of specific odorant molecules. In addition, the olfactory system has the capability to adapt to ambient odorants, allowing the recognition of a broad range of stimuli. The discrimination among different odorants is achieved by using hundreds of receptors, activated with a combinatorial code. Olfactory transduction uses a canonical second messenger system providing two critical attributes: amplification and high signal-to-noise characteristics, giving the system its remarkable detector capabilities. In this review, we present an introduction to the basic molecular mechanisms of olfactory transduction in olfactory sensory neurons.

1.1 Odorants

The process of chemosensation allows a living organism to detect and discriminate different chemical molecules in the external environment. This task is essential for survival of the individual and of the species, indeed it enables animals to locate nutritious food and suitable mating partners, as well as to smell the presence of predators and to avoid eating toxic substances [56].

The olfactory system is specialized in the detection of odorants, and many mammalian species recognize and discriminate among thousands of odorants with high specificity and sensitivity. For example, the threshold for human detection of

G. Neri et al. (eds.), *Sensors and Microsystems*, Lecture Notes in Electrical Engineering 91, DOI: 10.1007/978-94-007-1324-6_1, © Springer Science+Business Media B.V. 2011

S. Pifferi · A. Menini (🖂)

Scuola Internazionale Superiore di Studi Avanzati, SISSA, and Italian Institute of Technology, SISSA Unit, Via Bonomea 265, 34136 Trieste, Italy e-mail: menini@sissa.it

ethyl mercaptan (ethanethiol), commonly added to natural gas as an odorant, is as low as one part in 2.5 billion parts of air [58].

Odorants are mainly organic volatile compounds that bind to odorant receptors (see Sect. 1.6). A common odorant is usually made by a mixture of different types of volatile molecules and the relative concentrations of each component participate to determine the particular perception response. Odorant components include aliphatic and aromatic molecules with varied carbon backbones and diverse functional groups, such as alkanes, aldehydes, alcohols, carboxylic acids, ketones, esters, halides, formiates, amines, thiols, imines, cyanides, and others, as illustrated in Fig. 1.1 (for review see [38]).

1.2 The Olfactory Epithelium

Volatile molecules enter the nose during inspiration and contact the olfactory epithelium, located in the interior of the nasal cavity. The olfactory epithelium is made by three main types of cells: olfactory sensory neurons, which are devoted to the function of transducing chemical information into electrical signals, supporting cells and several types of basal cells (Fig. 1.2a). Olfactory sensory neurons are continuously regenerated by basal cells throughout the life span. Some olfactory glands, named glands of Bowman, produce most of the mucus that normally covers the epithelium surface. It is of interest to note that some odorant-binding proteins (OBPs) are found at high concentrations in the nasal mucus. Although their affinity for odorants suggests a role in olfactory perception, their physiological role in vertebrates is still unclear.

Olfactory sensory neurons have a bipolar morphology with a flask-like shape. Their apical part, located at the surface of the epithelium, is slightly swelled into

Fig. 1.1 Chemical structures of various functional groups in some odorant molecules

Fig. 1.2 The olfactory epithelium and an isolated olfactory sensory neuron. **a** Schematic diagram showing the various cell types composing the olfactory epithelium (OSN olfactory sensory neuron, SC supporting cell, BC basal cell). **b** Photograph of an isolated frog olfactory sensory neuron under differential interference optic, c cilia; d dendrite; s soma; a axon. Reprinted from Kleene and Gesteland [22], copyright 1981, with permission from Elsevier

an olfactory knob from which several very fine cilia depart (Fig. 1.2b). The cilia are embedded in the mucus covering the epithelium and expose their membrane to odorant molecules arriving from the external environment. Olfactory sensory neurons are primary sensory cells and their axons join in bundles to form the first cranial nerve that reach the olfactory bulbs in the brain.

The diameter of the cell body is about 5–8 μ m, while that of the dendrite is about 1–2 μ m. In mammals, the cilia are 15–50 μ m long, while in some lower vertebrates they can be as long as 200 μ m [35, 52]. The diameter of a mammalian cilium tapers from 0.28 μ m near the base of the cilium to 0.19 μ m in the distal portion [35]. The presence of numerous cilia greatly increases the surface membrane area that can interact with odorant molecules. Some estimations indicated that cilia may increase the cell bare surface some one thousand or more times [15].

The cilia play a fundamental role in olfaction, since they are the site of the sensory transduction apparatus (see Sect. 1.7). Indeed, olfactory sensory neurons deprived of cilia are no longer able to respond to odorants. Furthermore, the damage of the olfactory epithelium can produce a complete loss of the sense of smell, called anosmia.

1.3 Electrical Responses of Olfactory Sensory Neurons to Odorants

Even if olfactory sensory neurons are physiologically devoted to detect odorants, measuring an odorant response in one of these neurons is very challenging. The response to a brief pulse of odorant has been measured with several

Fig. 1.3 Electrical response to odorants of an isolated olfactory sensory neuron. a Experimental method. An isolated olfactory sensory neuron was stimulated with odorants while the electrical response was measured with the patch-clamp technique in the voltage-clamp whole-cell configuration. b Current response evoked by the odorant amylacetate at the holding potential of -50 mV. The *top trace* indicates timing and duration of the odorant stimulus. Adapted by permission from Macmillan Publishers Ltd: (Nature) Kurahashi and Menini [25], copyright, 1997

electrophysiological techniques, including the patch-clamp technique (Fig. 1.3a). The percentages of responses to odorants range from 2 to 30%, depending on the choice of odorant. As shown in Fig. 1.3b, when the odorant stimulus causes the excitation of the neuron, a transient inward current is generated that will depolarize the neuron in situ. The response typically lasts 1 s or more. The latency between the arrival of the stimulus and the onset of the current ranges from 150 to 600 ms and, for a strong stimulus, the amplitude of the peak current can reach several hundred pA [21, 36, 52].

The basic electrical properties of olfactory sensory neurons, as well as the ion gradient across the ciliary membrane, play a fundamental role in shaping the properties of the odorant-induced response. In 1989, Lynch and Barry [33] reported that, in rat olfactory sensory neurons, the opening of a single ion channel was sufficient to induce the generation of action potentials. This is due to the very high input resistance, between 3 and 6 G Ω , typical of olfactory sensory neurons, producing a large depolarization also for very small odorant-induced currents [48]. Resting membrane potentials ranges between -90 and -45 mV, with a mean value of -55 mV [21, 28, 48, 52].

The electrical response to odorants is due to ion fluxes across the cell membrane, and therefore ion homeostasis is very important in signal transduction. Since the olfactory cilia are embedded in mucus covering the olfactory epithelium the relevant physiological ion concentrations are those in the mucus and inside the cilia. Data available about the intra- and extra-ciliary concentrations of major physiological ions are summarized in Table 1.1.

[Ion] _{in} (mM)	[Ion] _{out} (mM)	E _{Nernst} (mV)
53 ± 31	55 ± 12	+1
172 ± 23	69 ± 10	-24
$40 \pm 9 \text{ nM}$	4.8	+156
54 ± 4	55 ± 11	0
	[Ion] _{in} (mM) 53 ± 31 172 ± 23 40 ± 9 nM 54 ± 4	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

 Table 1.1 Intracellular and extracellular ion concentrations at the apical side of olfactory sensory neurons

[Ion]_{in} and [Ion]_{out} are respectively the intracellular and extracellular (in the mucus) ion concentrations. E_{Nernst} is the calculated Nernst potential from the reported ion concentrations. Most of the ion concentrations were measured by energy-dispersive X-ray microanalysis in dendritic knobs of rat olfactory sensory neurons [51]. Intracellular Ca²⁺ was from [30]; extracellular Ca²⁺ was evaluated as the midpoint of the range (2.6–7.1 mM) measured by [11]; intracellular Cl⁻ from [16]

1.4 Dose–Response of Odorant-Induced Currents

Electrophysiological recordings from individual olfactory sensory neurons have shown that they respond to odorants in different ways: some neuron can detect several odorants, and a given odorant can activate neurons with various odorant specificity (Fig. 1.4a).

The relation between odorant dose and peak current is generally well fit by the Hill equation:

$$I = I_{\max} \frac{C^n}{C^n + K_{1/2}^n}$$

where I_{max} is the maximal current, *C* is the concentration of odorant, $K_{1/2}$ is the odorant concentration producing 50% of the maximal current, and *n* is the Hill coefficient. In the neuron illustrated in Fig. 1.4b, c, $K_{1/2}$ was 53 µM. $K_{1/2}$ values for different odorants ranged between 3 and 100 µM. The Hill coefficient, *n*, describes the slope of the rising phase of the dose–response relation and its values ranges between 2.7 and 9.7. With such a non-linear amplification, only a slight change in the concentration of odorant molecules produces a large change in the response. As *n* decreases, the slope also decreases, causing an increase in the range of stimulus strengths over which the neuronal response varies (dynamic range) (for reviews see [21, 36, 52]).

1.5 Adaptation

It is common experience that olfactory sensation gradually decreases during continuous or repeated exposures to odorant stimuli. This phenomenon involves many processes along the entire olfactory pathway, but it begins in the cilia of olfactory sensory neurons. Indeed, during application of a prolonged odorant

Fig. 1.4 Odorant responses of olfactory sensory neurons. **a** Responses of three different neurons to the odorants indicated at the top were measured with the voltage-clamp whole-cell configuration at -55 mV holding potential. Different neurons respond to a specific subset of odorants. Neuron 1 responded to all three odorants, while neuron 2 responded to only one odorant, and neuron 3 to two of the tested odorants. **b** Response of an olfactory sensory neuron to various concentrations of isoamylacetate. **c** Plot of the peak odorant-induced currents from (**b**) versus the odorant concentration. The *solid line* is the best fit of the Hill equation to the data with $K_{1/2} = 53 \mu$ M and n = 4.2. Modified from Firestein et al. [13]

stimulus, the current amplitude decreases with time, despite the continued presence of the stimulus. Figure 1.5a shows that, when two brief odorant pulses are delivered within a short interval, the amplitude of the response to the second pulse is reduced. While the reduction is greater with shorter interstimulus intervals, the current amplitude gradually recovers to the initial value increasing the interval between odorant pulses (Fig. 1.5b).

It is important to note that sensory adaptation is not merely a reduction in response amplitude, but its physiological role involves the adjustment of the response to allow a cell to work over a broad range of stimuli (for review see [57]). Indeed, in odorant adaptation to repetitive stimuli there is a shift of the dynamic range (i.e. the range of stimulus concentrations over which the olfactory sensory neuron is able to respond) toward higher odorant concentrations compared with the control state.

Fig. 1.5 Adaptation to repeated odorant stimuli. In each recording, the *top trace* indicates timing and duration of the odorant stimuli. Two identical pulses of the odorant amylacetate were delivered to an olfactory sensory neuron with different interstimulus intervals. The holding potential was -50 mV. **a** When the interstimulus interval was 1.5 s the response to the second pulse was reduced. **b** With a 4.5 s interval, the response to the second pulse was similar to the initial value. Adapted by permission from Macmillan Publishers Ltd: (Nature) Kurahashi and Menini [25], copyright, 1997

1.6 Odorant Receptors

The identification of the genes encoding for odorant receptors opened a new molecular era in olfactory research. The discovery of odorant receptor genes was first published in 1991 by Buck and Axel [7], who obtained the Nobel Prize in Physiology or Medicine in 2004 "for their discoveries of odorant receptors and the organization of the olfactory system". Odorant receptors belong to the superfamily of G-protein coupled receptors. The mouse repertoire contains about 1,000 potentially functional odorant receptor genes and is by far the largest gene superfamily in a mammalian genome [10, 38, 60]. In humans, about 350 odorant receptor sequences are potentially functional [37].

At the molecular level, odorant receptors share the same general structure of the other G-protein coupled receptors, with seven α -helical membrane-spanning domains connected by intracellular and extracellular loops of variable lengths, and numerous conserved short sequences. The most critical residues involved in odorant binding are hydrophopic and are located in the third, fifth and sixth transmembrane regions, which may form the ligand-binding pocket for odorant molecules [17]. The spatial localization of the binding pocket is similar to that for other members of the family, although the environment is quite different. For example catecholamines have been shown to form multiple electrostatic interactions through ionic bonds with adrenergic receptors. In contrast, in odorant receptors, the interaction of odorants with the binding pocket is based on hydrophobic and van der Waals interactions and therefore is rather weak, producing a low-affinity ligand-binding. Importantly, odorant receptors are still capable of selecting for shape, size and length of the ligand [17].

To understand how olfactory sensory neurons discriminate among odorants it is important to know how many types of odorant receptor genes are expressed in

each olfactory sensory neuron. It has been shown that every olfactory sensory neuron expresses a single odorant receptor gene. Moreover, the choice seems to be a stochastic process, which is likely to remain stable during the entire life of each olfactory sensory neuron, although not all odorant receptors are chosen with the same frequency [37, 38].

Another important information is the knowledge of how many and which odorants bind to each odorant receptor. It has been well established that each odorant receptor can be activated by several types of odorant molecules (Fig. 1.6). On the other hand, one single type of odorant can activate several types of odorant receptors. Thus, the odorant receptor family is used in a combinatorial manner to discriminate odorants and each odorant is recognized by a unique combination of receptors (Fig. 1.6) [34]. This scheme is consistent with previous observations that single olfactory sensory neurons can be stimulated by multiple odorants (Fig. 1.4a). Since each of these neurons expresses only one unknown odorant receptor type, a given neuron responds to a small and unpredictable subset among the many available odorants [13].

The combinatorial receptor coding scheme has the great advantage of allowing the olfactory system to recognize a large number of odorants and also to discriminate between odorants that have very similar but different structures, such as aliphatic odorants with different carbon chain lengths. Unfortunately, the identification of ligands for odorant receptors is still very limited, due to the difficulty to express odorant receptors in heterologous systems suitable for high-throughput screening [37, 38].

1.7 Olfactory Transduction

How is the binding of odorant molecules to odorant receptors converted into an electrical signal? When an odorant molecule binds to an odorant receptor, it

Fig. 1.7 Olfactory transduction in the cilia of olfactory sensory neurons. **a** A scanning electron micrograph of the knob of a human olfactory sensory neuron showing the protrusion of several cilia. Scale bar, 1 μ m. Adapted from Morrison and Costanzo [39], with permission. **b** Schematic representation of the olfactory transduction taking place in the cilia. *OR* odorant receptor; *G*, G-protein, *AC* adenylyl cyclase, *CNG channel* cyclic nucleotide-gated channel, *CaM* calmodulin, *PDE* phosphodiesterase. *TMEM16B* indicates the candidate Ca²⁺-activated Cl⁻ channel. Modified from Pifferi et al. [43], with permission

initiates a cascade of molecular events that transforms the chemical energy of binding into an electrical signal, as illustrated in Fig. 1.7.

The binding of an odorant molecule to an odorant receptor in the cilia induces a conformational change of the receptor causing the activation of an interacting G-protein. In turn, the G-protein stimulates the enzymatic activity of an adenylyl cyclase (ACIII) generating an increase in the concentration of cyclic AMP (cAMP). Cyclic nucleotide-gated (CNG) channels located in the ciliary membrane are directly activated by cAMP, causing a depolarizing influx of Na⁺ and Ca²⁺ ions. The intracellular increase of Ca²⁺ concentration directly gates Ca²⁺-activated Cl⁻ channels. As shown in Table 1.1, olfactory sensory neurons maintain an unusually high internal concentration of Cl⁻, which is in the same range of the Cl⁻ concentration present in the mucus at the external side of the ciliary membrane. Therefore, in physiological conditions, the opening of Ca²⁺-activated Cl⁻ channels causes an efflux of Cl⁻ ions from the cilia, corresponding to an inward current that further contributes to the depolarization of olfactory sensory neurons [16, 41, 42, 50-52]. The depolarization spreads passively to the dendrite and soma of the neuron, triggering action potentials that are conducted along the axon to the olfactory bulb.

Several mechanisms contribute to terminate the odorant response and to restore the initial conditions in olfactory sensory neurons. The cilia contain a phosphodiesterase that, after being activated by the complex Ca^{2+} -Calmodulin (CaM), hydrolyzes cAMP [4]; the G-protein is inactivated by its intrinsic GTPase function; the intracellular Ca^{2+} concentration is reduced by Ca^{2+} -extrusion through a Na⁺/Ca²⁺ exchanger and Ca²⁺-ATPase and, finally, the complex Ca²⁺-CaM decreases the sensitivity of the CNG channel to cAMP, as further discussed in the following section (for reviews see [21, 36, 47, 52]).

1.8 Cyclic Nucleotide-Gated Channels

Cyclic nucleotide-gated (CNG) channels are the mediators of the chemo-electrical energy conversion in olfactory cilia. Indeed, information about odorant molecules is first transmitted as chemical information and then is converted into an electrical signal by ion fluxes through CNG channels activated by the increase in cAMP concentration [24, 31, 40].

The ciliary CNG channels are composed of three types of subunits with a stoichiometry of two CNGA2, one CNGA4, and one CNGB1b (Fig. 1.8a). Transgenic mice lacking CNGA2 are completely anosmic, demonstrating the importance of this channel in olfactory perception [3, 6, 60].

The topology of each CNG subunit consists of six transmembrane spanning domains, a pore region between the fifth and the sixth transmembrane domain, and intracellular N- and C-terminal regions. A cyclic nucleotide-binding site is located near the C-terminal at the cytoplasmic side in each subunit, for a total of four binding sites per each channel. Moreover, Ca^{2+} -calmodulin binding sites are also present at the cytoplasmic side (Fig. 1.8a) (for reviews see [18, 43]).

The relation between concentration of cAMP and CNG current is well fit with a Hill equation. Half-maximal activation ($K_{1/2}$) is in the micromolar range and varies in different species between 2 and 19 μ M. The Hill coefficient ranges from 1.3 to 2.3 suggesting that at least two molecules of cAMP must bind before the channel gating (Fig. 1.8b, c).

The unitary conductance of single CNG channels in the presence of Ca^{2+} and Mg^{2+} is very small, with a value of about 1 pS. A small single channel conductance plays a relevant physiological role since, by using a large number of tiny events, the integrated current has a high signal-to-noise ratio.

It is important to note that, once open, CNG channels allow the flow along their electrochemical gradient, not only of monovalent ions, such as Na⁺ and K⁺, but also of Ca²⁺ [12]. The increase of Ca²⁺ increase in the intraciliary medium plays several important roles in olfactory transduction, mainly in the amplification of the odorant response (see Sect. 1.9) and in the adaptation process [26].

Kurahashi and Menini [25] investigated the localization of the principal molecular mechanism for adaptation in the olfactory transduction process. To determine whether the response reduction in the adapted state (Fig. 1.5a) was attributable to a reduction in the cAMP production or was instead due to other processes occurring after the production of cAMP, CNG channels in intact neurons were directly activated by flash photolysis of caged cAMP. The ciliary cytoplasm was loaded with caged cAMP through diffusion from a patch pipette and application of ultraviolet flashes to the cilia caused the photorelease of various cAMP concentrations. Therefore, cAMP-gated channels could be directly activated, bypassing the early stages of odorant transduction (i.e. receptor activation and G-protein and adenylate cyclase signalling). cAMP and odorant-induced responses were found to have similar adaptation properties, indicating that the entire adaptation process takes place after the production of cAMP. Furthermore, by using a

Fig. 1.8 Cyclic nucleotide-gated (CNG) channels. **a** Topological model and assembly of subunits of the olfactory CNG channel. Each transmembrane domain is indicated by a number, the pore loop is located between domains 5 and 6. The cyclic nucleotide-binding site is located in the C-terminal domain. Ca²⁺-dependent calmodulin binding sites are shown in black. **b** A membrane patch was excised in the inside-out configuration from the knob or ciliary region of an olfactory sensory neuron. CNG channels were activated by the indicated concentrations of cAMP. The holding potential was -50 mV. **c** Normalized currents from experiments as in (**b**). The continuous lines is the best fit of the Hill equation to the data with $K_{1/2} = 2.7 \,\mu\text{M}$, n = 1.5. Modified from Pifferi et al. [43], with permission

hydrolysis resistant caged cAMP analogue, caged 8Br-cAMP, Boccaccio et al. [2] have shown that the hydrolysis of cAMP by PDE is not involved in adaptation. It has also been shown that Ca^{2+} -activated Cl^- channel are unrelated to olfactory adaptation.

All together, the previous experiments indicate that Ca^{2+} is likely to act through a negative feedback on the CNG channel. Indeed, micromolar concentrations of intracellular Ca^{2+} decrease the channel sensitivity to cAMP, probably by activating a Ca^{2+} -responsive endogenous factor already pre-associated with the channel [5, 9]. It has been proposed that the endogenous factor co-assembled with the CNG channel is Ca^{2+} -free calmodulin, called apocalmodulin, although a conclusive demonstration is still lacking [43].