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Preface

The study of partial differential equations (PDEs) goes back to the 18th
century, as a result of analytical investigations of a large set of physical
models (works by Euler, Cauchy, d’Alembert, Hamilton, Jacobi, La-
grange, Laplace, Monge, and many others). Since the mid 19th century
(works by Riemann, Poincarè, Hilbert, and others), PDEs became an
essential tool for studying other branches of mathematics.

The most important results in determining explicit solutions of non-
linear partial differential equations have been obtained by S. Lie [91].
Many analytical methods rely on the Lie symmetries (or symmetry con-
tinuous transformation groups). Nowadays these transformations can
be performed using computer algebra systems (e.g., Maple and Mathe-
matica).

Currently PDE theory plays a central role within the general ad-
vancement of mathematics, since they help us to describe the evolution
of many phenomena in various fields of science, engineering, and numer-
ous other applications.

Since the 20th century, the investigation of nonlinear PDEs has be-
come an independent field expanding in many research directions. One
of these directions is, symbolic and numerical computations of solutions
of nonlinear PDEs, which is considered in this book.

It should be noted that the main ideas on practical computations
of solutions of PDEs were first indicated by H. Poincarè in 1890 [121].
However the solution techniques of such problems required such technol-
ogy that was not available or was limited at that time. In modern day
mathematics there exist computers, supercomputers, and computer al-
gebra systems (such as Maple and Mathematica) that can aid to perform
various mathematical operations for which humans have limited capac-
ity, and where symbolic and numerical computations play a central role
in scientific progress.

It is known that there exist various analytic solution methods for
special nonlinear PDEs, however in the general case there is no central
theory for nonlinear PDEs. There is no unified method that can be
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applied for all types of nonlinear PDEs. Although the “nonlinearity”
makes each equation or each problem unique, we have to discover new
methods for solving at least a class of nonlinear PDEs. Moreover, the
functions and data in nonlinear PDE problems are frequently defined in
discrete points. Therefore we have to study numerical approximation
methods for nonlinear PDEs.

Scientists usually apply different approaches for studying nonlinear
partial differential equations.

In the present book, we follow different approaches to solve nonlinear
partial differential equations and nonlinear systems with the aid of com-
puter algebra systems (CAS), Maple and Mathematica. We distinguish
such approaches, in which it is very useful to apply computer algebra
for solving nonlinear PDEs and their systems (e.g., algebraic, geometric-
qualitative, general analytical, approximate analytical, numerical, and
analytical-numerical approaches).

Within each approach we choose the most important and recently
developed methods which allow us to construct solutions of nonlinear
PDEs or nonlinear systems (e.g., transformations methods, traveling-
wave and self-similarity methods, ansatz methods, method of separation
of variables and its generalizations, group analysis methods, method of
characteristics and its generalization, qualitative methods, Painlevè test
methods, truncated expansion methods, Hirota method and its gener-
alizations, Adomian decomposition method and its generalizations, per-
turbation methods, finite difference methods, method of lines, spectral
collocation methods).

The book addresses a wide set of nonlinear PDEs of various types
(e.g., parabolic, hyperbolic, elliptic, mixed) and orders (from the first-
order up to n-th order). These methods have been recently applied in
numerous research works, and our goal in this work will be the devel-
opment of new computer algebra procedures, the generalization, modi-
fication, and implementation of most important methods in Maple and
Mathematica to handle nonlinear partial differential equations and non-
linear systems.

The emphasis of the book is given in how to construct different types
of solutions (exact, approximate analytical, numerical, graphical) of nu-
merous nonlinear PDEs correctly, easily, and quickly with the aid of
CAS. With this book the reader can learn to understand and solve nu-
merous nonlinear PDEs included into the book and many other differen-
tial equations, simplifying and transforming the equations and solutions,
arbitrary functions and parameters, presented in the book.

This book contains many comparisons and relationships between var-
ious types of solutions, different methods and approaches, the results
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obtained in Maple and Mathematica, which provide a more deep under-
standing of the subject.

Among the large number of CAS available, we choose two systems,
Maple and Mathematica, that are used by students, research mathemati-
cians, scientists, and engineers worldwide. As in the our other books, we
propose the idea to use in parallel both systems, Maple and Mathematica,
since in many research problems frequently it is required to compare in-
dependent results obtained by using different computer algebra systems,
Maple and/or Mathematica, at all stages of the solution process.

One of the main points (related to CAS) is based on the imple-
mentation of a whole solution method, e.g., starting from an analytical
derivation of exact governing equations, constructing discretizations and
analytical formulas of a numerical method, performing numerical pro-
cedure, obtaining various visualizations, and comparing the numerical
solution obtained with other types of solutions (considered in the book,
e.g., with asymptotic solution).

This book is appropriate for graduate students, scientists, engineers,
and other people interested in application of CAS (Maple and/or Mathe-
matica) for solving various nonlinear partial differential equations and
systems that arise in science and engineering. It is assumed that the ar-
eas of mathematics (specifically concerning differential equations) con-
sidered in the book have meaning for the reader and that the reader
has some knowledge of at least one of these popular computer algebra
systems (Maple or Mathematica). We believe that the book can be ac-
cessible to students and researchers with diverse backgrounds.

The core of the present book is a large number of nonlinear PDEs
and their solutions that have been obtained with Maple and Mathe-
matica. The book consists of 7 Chapters, where different approaches
for solving nonlinear PDEs are discussed: introduction and analyti-
cal approach via predefined functions, algebraic approach, geometric-
qualitative approach, general analytical approach and integrability for
nonlinear PDEs and systems (Chapters 1–4), approximate analytical
approach for nonlinear PDEs and systems (Chapter 5), numerical ap-
proach and analytical-numerical approach (Chapters 6, 7). There are
two Appendices. In Appendix A and B, respectively, the computer alge-
bra systems Maple and Mathematica are briefly discussed (basic concepts
and programming language). An updated Bibliography and expanded
Index are included to stimulate and facilitate further investigation and
interest in future study.

In this book, following the most important ideas and methods, we
propose and develop new computer algebra ideas and methods to ob-
tain analytical, numerical, and graphical solutions for studying nonlinear
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partial differential equations and systems. We compute analytical and
numerical solutions via predefined functions (that are an implementa-
tion of known methods for solving PDEs) and develop new procedures
for constructing new solutions using Maple and Mathematica. We show a
very helpful role of computer algebra systems for analytical derivation of
numerical methods, calculation of numerical solutions, and comparison
of numerical and analytical solutions.

This book does not serve as an automatic translation the codes, since
one of the ideas of this book is to give the reader a possibility to develop
problem-solving skills using both systems, to solve various nonlinear
PDEs in both systems. To achieve equal results in both systems, it is
not sufficient simply “to translate” one code to another code. There
are numerous examples, where there exists some predefined function in
one system and does not exist in another. Therefore, to get equal re-
sults in both systems, it is necessary to define new functions knowing
the method or algorithm of calculation. In this book the reader can find
several definitions of new functions. However, if it is sufficiently long and
complicated to define new functions, we do not present the corresponding
solution (in most cases, this is Mathematica solutions). Moreover, defi-
nitions of many predefined functions in both systems are different, but
the reader expects to achieve the same results in both systems. There
are other ”thin” differences in results obtained via predefined functions
(e.g., between predefined functions pdsolve and DSolve), etc.

The programs in this book are sufficiently simple, compact and at the
same time detailed programs, in which we tried to make each one to be
understandable without any need of the author’s comment. Only in some
more or less difficult cases we put some notes about technical details.
The reader can obtain an amount of serious analytical, numerical, and
graphical solutions by means of a sufficient compact computer code (that
it is easy to modify for another problem).

We believe that the best strategy in understanding something, con-
sists in the possibility to modify and simplify the programs by the reader
(having the correct results). Each reader may prefer another style of pro-
gramming and that is fine. Therefore the authors give to the reader a
possibility to modify, simplify, experiment with the programs, apply it
for solving other nonlinear partial differential equations and systems,
and to generalize them. The only thing necessary, is to understand the
given solution. Moreover, in this book the authors try to show different
styles of programming to the reader, so each reader can choose a more
suitable style of programming.

When we wrote this book, the idea was to write a concise practi-
cal book that can be a valuable resource for advanced-undergraduate
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and graduate students, professors, scientists and research engineers in
the fields of mathematics, the life sciences, etc., and in general peo-
ple interested in application of CAS (Maple and/or Mathematica) for
constructing various types of solutions (exact, approximate analytical,
numerical, graphical) of numerous nonlinear PDEs and systems that
arise in science and engineering. Moreover, another idea was not to de-
pend on a specific version of Maple or Mathematica, we tried to write
programs that allow the reader to solve a nonlinear PDE in Maple and
Mathematica for any sufficiently recent version (although the dominant
versions for Maple and Mathematica are 14 and 8).

We would be grateful for any suggestions and comments related to
this book. Please send your e-mail to inna@gauss.mat.uson.mx or
carlos.lizarraga@correo.fisica.uson.mx.

We would like to express our gratitude to the Mexican Department of
Public Education (SEP) and the National Council for Science and Tech-
nology (CONACYT), for supporting this work under grant no. 55463.
Also we would like to express our sincere gratitude to Prof. Andrei
Dmitrievich Polyanin, for his helpful ideas, commentaries, and inspira-
tion that we have got in the process of writing the three chapters for
his “Handbook of Nonlinear Partial Differential Equations” (second edi-
tion). Finally, we wish to express our special thanks to Mr. Stephen
Soehnlen and Mag. Wolfgang Dollhäubl from Springer Vienna for their
invaluable and continuous support.

May 2011 Inna Shingareva
Carlos Lizárraga-Celaya
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Chapter 1
Introduction

This chapter deals with basic concepts and a set of important nonlinear
partial differential equations arising in a wide variety of problems in
applied sciences. Various types of nonlinear PDEs, nonlinear systems,
and their solutions are discussed. Applying various predefined functions
embedded in Maple and Mathematica, we construct and visualize various
types of analytical solutions of nonlinear PDEs and nonlinear systems.
Moreover, applying the Maple predefined function pdsolve, we construct
exact solutions of nonlinear PDEs and their systems subject to initial
and/or boundary conditions.

1.1 Basic Concepts

A partial differential equation for an unknown function u(x1, . . . , xn) or
dependent variable is a relationship between u and its partial derivatives
and can be represented in the general form:

F
(
x1, x2, . . . , u, ux1 , ux2 , . . . , ux1x1, ux1x2, . . . , uxixj , . . .

)
= 0, (1.1)

where F is a given function, u=u(x1, . . . , xn) is an unknown function of
the independent variables (x1, . . . , xn). We denote the partial derivatives
ux1 = ∂u/∂x1, etc. This equation is defined in a domain D, where
x= (x1, . . . , xn)∈D⊂R

n. The partial differential equation (1.1) can be
written in the operator form:

Dxu(x) = G(x), (1.2)

where Dx is a partial differential operator and G(x) is a given function
of independent variables x = (x1, . . . , xn).

Definition 1.1 The operator Dx is called a linear operator if the prop-
erty Dx(au+ bv)=aDxu+ bDxv is valid for any functions, u, v, and any
constants, a, b.

I. Shingareva and C. Lizárraga-Celaya, Solving Nonlinear Partial Differential Equations with  
Maple and Mathematica, DOI 10.1007/978-3-7091-0517-7_1, © Springer-Verlag/Wien 2011 
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2 Introduction

1.1.1 Types of Partial Differential Equations

Definition 1.2 Partial differential equation (1.2) is called linear if Dx is
a linear partial differential operator and nonlinear if Dx is not a linear
partial differential operator.

Definition 1.3 Partial differential equation (1.2) is called inhomoge-
neous (or nonhomogeneous) if G(x) �= 0 and homogeneous if G(x) = 0.

For example, the nonlinear first-order and the second-order partial
differential equations, e.g., in two independent variables x = (x1, x2) =
(x, y), can be represented, respectively, as follows:

F(x, y, u, ux, uy) = 0, F(x, y, u, ux, uy, uxx, uxy, uyy) = 0. (1.3)

These equations are defined in a domain D, where (x, y) ∈ D ⊂ R
2,

F is a given function, u= u(x, y) is an unknown function (or dependent
variable) of the independent variables (x, y). These equations can be
written in terms of standard notation:

F(x, y, u, p, q) = 0, F(x, y, u, ux, uy, p, q, r) = 0, (1.4)

where p = ux, q = uy (for the first-order PDE), and p = uxx, q = uxy,
r = uyy (for the second-order PDE).

Definition 1.4 Partial differential equations (1.3) are called quasilin-
ear if they are linear in first/second-partial derivatives of the unknown
function u(x, y).

Definition 1.5 Partial differential equations (1.3) are called semilinear if
their coefficients in first/second-partial derivatives are independent of u.

Notation. In this book we will use the following conventions in

Maple:
Cn (n=1,2,...), for arbitrary constants; Fn, for arbitrary functions;
c[n], for arbitrary constants while separating the variables;
s, for a parameter in the characteristic system;
&where, for a solution structure, ε, for a Lie group parameter,

and
Mathematica:

C[n] (n=1,2,...), for arbitrary constants or arbitrary functions.*

*In general, arbitrary parameters can be specified, e.g., F1, F2, . . . , by applying the option
GeneratedParameters->(Subscript[F,#]&) of the predefined function DSolve.
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Also we introduce the following notation for the solutions in

Maple and Mathematica:
Eqn and eqn*, for equations (n=1,2,...);
PDEn/ODEn and pden/oden, for PDEs/ODEs;
trn, for transformations; Sysn and sysn, for systems;
IC, BC, IBC and ic, bc, ibc, for initial and/or boundary conditions;
Ln and ln, for lists of expressions; Gn and gn, for graphs of solutions.

Problem 1.1 Linear, semilinear, quasilinear, and nonlinear equations.
Standard notation. We consider the following linear, semilinear, quasi-
linear, and nonlinear PDEs:

uxx+uyy=0, xux+yuy=x2+y2, vt+vvx=0, u2
x+u

2
y=n

2(x, y).

Verify that these equations, written in the standard notation (1.4), have
the form: p+q=0, xp+yq=x2+y2, q+vp=0, and p2+q2=n2(x, y).

Maple:

with(PDEtools): declare(u(x,y),v(x,t));
U,V:=diff_table(u(x,y)),diff_table(v(x,t));
Eq1:=U[x,x]+U[y,y]=0; Eq2:=x*U[x]+y*U[y]=x^2+y^2;
Eq3:=V[t]+v(x,t)*V[x]=0; Eq4:=U[x]^2+U[y]^2=n(x,y)^2;
tr1:=(x,y,U)->{U[x,x]=p,U[y,y]=q}; tr2:=(x,y,U)->{U[x]=p,U[y]=q};
F1:=(p,q)->subs(tr1(x,y,U),Eq1); F2:=(p,q)->subs(tr2(x,y,U),Eq2);
F3:=(p,q)->subs(tr2(x,t,V),Eq3); F4:=(p,q)->subs(tr2(x,y,U),Eq4);
F1(p,q); F2(p,q); F3(p,q); F4(p,q);

Mathematica:

{eq1=D[u[x,y],{x,2}]+D[u[x,y],{y,2}]==0, eq2=x*D[u[x,y],x]
+y*D[u[x,y],y]==x^2+y^2, eq3=D[v[x,t],t]+v[x,t]*D[v[x,t],x]==0,
eq4=D[u[x,y],x]^2+D[u[x,y],y]^2==n[x,y]^2}
tr1[x_,y_,u_]:={D[u[x,y],{x,2}]->p,D[u[x,y],{y,2}]->q};
tr2[x_,y_,u_]:={D[u[x,y],x]->p,D[u[x,y],y]->q};
f1[p_,q_]:=eq1/.tr1[x,y,u]; f2[p_,q_]:=eq2/.tr2[x,y,u];
f3[p_,q_]:=eq3/.tr2[x,t,v]; f4[p_,q_]:=eq4/.tr2[x,y,u];
{f1[p,q], f2[p,q], f3[p,q], f4[p,q]} �

*Since all Mathematica functions begin with a capital letter, it is best to begin with a
lower-case letter for all user-defined symbols.
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Now let us consider the most important classes of the second-order
PDEs, i.e., semilinear, quasilinear, and nonlinear equations.

For the semilinear second-order PDEs, we consider the classification
of equations (that does not depend on their solutions and it is determined
by the coefficients of the highest derivatives) and the reduction of a given
equation to appropriate canonical and normal forms.

Let us introduce the new variables a=Fp, b=1
2Fq, c=Fr, and calculate

the discriminant δ=b2−ac at some point. Depending on the sign of the
discriminant δ, the type of equation at a specific point can be parabolic
(if δ=0), hyperbolic (if δ > 0), and elliptic (if δ < 0). Let us call the
following equations

uy1y2=f1(y1, y2, u, uy1 , uy2), uz1z1 − uz2z2=f2(z1, z2, u, uz1 , uz2),

respectively, the first canonical form (or normal form) and the second
canonical form for hyperbolic PDEs.

Problem 1.2 Semilinear second-order equation. Classification, normal
and canonical forms. Let us consider the semilinear second-order PDE

−2y2uxx+1
2x

2uyy=0.

Verify that this equation is hyperbolic everywhere except at the point
x=0, y=0, find a change of variables that transforms the PDE to the
normal form, and determine the canonical form.

1. Classification. In the standard notation (1.4), this semilinear equa-
tion takes the form F1=−2y2p + 1

2x
2r=0, the new variables a= − 2y2,

b=0, c=1
2x

2 (tr2(F1)), and the discriminant δ=b2−ac=x2y2 (delta1) is
positive except the point x=0, y=0.

Maple:

with(PDEtools): declare(u(x,y),F1(p,r,q)); U:=diff_table(u(x,y));
PDE1:=-2*y^2*U[x,x]+x^2*U[y,y]/2=0; show;
tr1:=(x,y,U)->{U[x,x]=p,U[y,y]=r,U[x,y]=q};
tr2:=F->{a=diff(lhs(F(p,q,r)),p),b=1/2*diff(lhs(F(p,q,r)),q),

c=diff(lhs(F(p,q,r)),r)}; delta:=b^2-a*c;
F1:=(p,r,q)->subs(tr1(x,y,U),PDE1); F1(p,r,q); tr2(F1);
delta1:=subs(tr2(F1),delta)-rhs(F1(p,r,q));
is(delta1,'positive'); coulditbe(delta1,'positive');
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Mathematica:

pde1=-2*y^2*D[u[x,y],{x,2}]+x^2*D[u[x,y],{y,2}]/2==0
tr1[x_,y_,u_]:={D[u[x,y],{x,2}]->p,D[u[x,y],{y,2}]->r,
D[u[x,y],{x,y}]->q}; tr2[f_]:={a->D[f[p,q,r][[1]],p],
b->1/2*D[f[p,q,r][[1]],q],c->D[f[p,q,r][[1]],r]};
f1[p_,r_,q_]:=pde1/.tr1[x,y,u]; delta=b^2-a*c
{f1[p,r,q], tr2[f1], delta1=delta/.tr2[f1]-f1[p,r,q][[2]]}
{Reduce[delta1>0], FindInstance[delta1>0,{x,y}]}

The same result can be obtained, in both systems with the principal
part coefficient matrix as follows:

Maple:

interface(showassumed=0): assume(x<0 or x>0, y<0 or y>0);
with(LinearAlgebra): A1:=Matrix([[-2*y^2,0],[0,x^2/2]]);
D1:=Determinant(A1); is(D1,'negative'); coulditbe(D1,'negative');

Mathematica:

{a1={{-2*y^2,0},{0,x^2/2}},d1=Det[a1],Reduce[d1<0],
FindInstance[d1<0,{x,y}]}

Here we calculate the determinant D1 of the matrix A1. The PDEs can be
classified according to the eigenvalues of the matrix A1, i.e., depending
on the sign of D1: if D1=0, parabolic, if D1<0, hyperbolic, and D1>0, elliptic
equations.

2. Normal and canonical forms. Let us find a change of variables

that transforms the PDE to the normal form vηξ +
vξη − vηξ

2(η2 − ξ2)
=0, and

determine the canonical form vλλ − vμμ +
1
2

(vλ
λ

− vμ
μ

)
= 0:

Maple:

with(LinearAlgebra): with(VectorCalculus): with(PDEtools):
declare(v(xi,eta)); interface(showassumed=0):
vars:=x,y; varsN:=xi,eta; assume(x<0 or x>0,y<0 or y>0);
Op1:=Expr->subs(y=y(x),Expr); Op2:=Expr->subs(y(x)=y,Expr);
A1:=Matrix([[-2*y^2,0],[0,x^2/2]]); D1:=Determinant(A1);
is(D1,'negative'); coulditbe(D1,'negative');
m1:=simplify((-A1[1,2]+sqrt(-D1))/A1[1,1],radical,symbolic);
m2:=simplify((-A1[1,2]-sqrt(-D1))/A1[1,1],radical,symbolic);
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Eq1:=dsolve(diff(y(x),x)=-Op1(m1),y(x));
Eq11:=lhs(Eq1[1])^2=rhs(Eq1[1])^2; Eq12:=solve(Eq11,_C1);
g1:=Op2(Eq12); Eq2:=dsolve(diff(y(x),x)=-Op1(m2),y(x));
Eq21:=lhs(Eq2[1])^2=rhs(Eq2[1])^2; Eq22:=solve(Eq21,_C1);
g2:=Op2(Eq22); Jg:=Jacobian(Vector(2,[g1,g2]),[vars]);
dv:=Gradient(v(varsN),[varsN]); ddv:=Hessian(v(varsN),[varsN]);
ddu:=Jg^%T.ddv.Jg+add(dv[i]*Hessian(g||i,[vars]),i=1..2);
Eq3:=simplify(Trace(A1.ddu))=0;
tr1:={isolate(subs(isolate(g1=xi,x^2),g2=eta),y^2),

isolate(subs(isolate(g1=xi,y^2),g2=eta),x^2)};
NormalForm:=collect(expand(subs(tr1,Eq3)),diff(v(varsN),varsN));
c1:=coeff(lhs(NormalForm),diff(v(varsN),varsN));
NormalFormF:=collect(NormalForm/c1,diff(v(varsN),varsN));
CanonicalForm:=expand(expand(dchange(
{xi=lambda+mu,eta=mu-lambda},NormalFormF))*(-4));

Mathematica:

jacobianM[f_List?VectorQ,x_List]:=Outer[D,f,x]/;Equal@@(
Dimensions/@{f,x}); hessianH[f_,x_List?VectorQ]:=D[f,{x,2}];
gradF[f_,x_List?VectorQ]:=D[f,{x}]; op1[expr_]:=expr/.y->y[x];
op2[expr_]:=expr/.y[x]->y; {vars=Sequence[x,y],
varsN=Sequence[xi,eta], a1={{-2*y^2,0},{0,x^2/2}}, d1=Det[a1],
Reduce[d1<0],FindInstance[d1<0,{x,y}], m1=Assuming[{x>0,y>0},
Simplify[(-a1[[1,2]]+Sqrt[-d1])/a1[[1,1]]]], m2=Assuming[
{x>0,y>0},Simplify[(-a1[[1,2]]-Sqrt[-d1])/a1[[1,1]]]]}
{eq1=DSolve[D[y[x],x]==-op1[m1],y[x],x], eq11=eq1[[1,1,1]]^2==
eq1[[1,1,2]]^2,eq12=Solve[eq11,C[1]][[1,1,2]], g[1]=Expand[
op2[eq12]*2], eq2=DSolve[D[y[x],x]==-op1[m2],y[x],x], eq21=
eq2[[1,1,1]]^2==eq2[[1,1,2]]^2,eq22=Solve[eq21,C[1]][[1,1,2]],
g[2]=Expand[op2[eq22]*2]}
{jg=jacobianM[{g[1],g[2]},{vars}], dv=gradF[v[varsN],{varsN}],
ddv=hessianH[v[varsN],{varsN}]}
{ddu=Transpose[jg].ddv.jg+Sum[dv[[i]]*hessianH[g[i],{vars}],
{i,1,2}], eq3=Simplify[Tr[a1.ddu]]==0, tr0={y^2->Y,x^2->X},
tr01={Y->y^2,X->x^2}, tr1=Flatten[{Expand[Solve[First[g[2]==
eta/.{Solve[g[1]==xi/.tr0,X]/.tr01}/.tr0],Y]/.tr01],Expand[
Solve[First[g[1]==xi/.{Solve[g[2]==eta/.tr0,Y]/.tr01}/.tr0],
X]/.tr01]}], nForm=Collect[Expand[eq3/.tr1],D[v[varsN],varsN]]}
c1=Coefficient[nForm[[1]],D[v[varsN],varsN]]
normalFormF=Collect[Thread[nForm/c1,Equal],D[v[varsN],varsN]]
nF[x_,t_]:=D[D[u[x,t],x],t]+(2*t*D[u[x,t],x]

-2*x*D[u[x,t],t])/(4*t^2-4*x^2)==0; nF[xi,eta]
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tr2={xi->lambda+mu,eta->mu-lambda}; nFT[v_]:=((Simplify[
nF[xi,eta]/.u->Function[{xi,eta},u[(xi-eta)/2,(xi+eta)/2]]])
/.tr2//ExpandAll)/.{u->v}; canonicalForm=nFT[v] �

Problem 1.3 Semilinear second-order equation. Classification, normal
and canonical forms. Let us consider the semilinear second-order PDE

x2uxx+2xyuxy+y2uyy=0.

Verify that the PDE is parabolic everywhere and that the normal and
canonical forms of the PDE, respectively, are x2vξξ=0, vξξ=0.

Maple:

with(LinearAlgebra): with(VectorCalculus): with(PDEtools):
declare(v(xi,eta)); Op1:=Expr->subs(y=y(x),Expr);
Op2:=Expr->subs(y(x)=y,Expr); vars:=x,y; varsN:=xi,eta;
A1:=Matrix([[x^2,x*y],[x*y,y^2]]); D1:=Determinant(A1);
m1:=simplify((-A1[1,2]+sqrt(-D1))/A1[1,1],radical,symbolic);
Eq1:=dsolve(diff(y(x),x)=-Op1(m1),y(x)); Eq11:=solve(Eq1,_C1);
g1:=Op2(Eq11); g2:=x; Jg:=Jacobian(Vector(2,[g1,g2]),[vars]);
dv:=Gradient(v(varsN),[varsN]); ddv:=Hessian(v(varsN),[varsN]);
ddu:=Jg^%T.ddv.Jg+add(dv[i]*Hessian(g||i,[vars]),i=1..2);
NorF:=simplify(Trace(A1.ddu))=0; CanF:=expand(NorF/x^2);

Mathematica:

jacobianM[f_List?VectorQ, x_List]:=Outer[D,f,x]/;Equal@@(
Dimensions/@{f,x}); hessianH[f_,x_List?VectorQ]:=D[f,{x,2}];
gradF[f_,x_List?VectorQ]:=D[f,{x}]; op1[expr_]:=expr/.y->y[x];
op2[expr_]:=expr/.y[x]->y; {vars=Sequence[x,y],varsN=Sequence[
xi,eta], a1={{x^2,x*y},{x*y,y^2}}, d1=Det[a1]}
m1=Assuming[{x>0,y>0},Simplify[(-a1[[1,2]]+Sqrt[-d1])/a1[[1,1]]]]
eq1=DSolve[D[y[x],x]==-op1[m1],y[x],x]/.Rule->Equal//First
{eq11=Solve[eq1,C[1]][[1,1,2]], g[1]=op2[Eq11], g[2]=x}
{jg=jacobianM[{g[1],g[2]},{vars}], dv=gradF[v[varsN],{varsN}],
ddv=hessianH[v[varsN],{varsN}], ddu=Transpose[jg].ddv.jg
+Sum[dv[[i]]*hessianH[g[i],{vars}],{i,1,2}]}
{norF=Simplify[Tr[a1.ddu]]==0,
canF=Thread[norF/x^2,Equal]//Expand} �
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Nonlinear second-order partial differential equations can be classified
as one of the three types, hyperbolic, parabolic, and elliptic and reduced
to appropriate canonical and normal forms. For the nonlinear second-
order PDEs, we consider the classification of equations (that, in general,
can depend on the selection of the point and the specific solution).

Problem 1.4 Nonlinear second-order equations. Classification. Let us
consider the nonhomogeneous Monge–Ampère equation [124] and the
nonlinear wave equation:

(uxy)2−uxxuyy=F (x, y), vtt−(G(v)vx)x=0.

Verify that the type of the nonhomogeneous Monge–Ampère equation
at a point (x, y) depends on the sign of the given function F (x, y) and
is independent of the selection of a specific solution, while the type of
the nonlinear wave equation depends on a specific point (x, t) and on
the sign of a specific solution v(x, t).

1. In the standard notation (1.4), these nonlinear equations, respec-
tively, take the form: F1=q2−pr=F (x, y) and F2=r−G(v)p−Gvv2

x=0.
In these two cases, we select a special solution u=u(x, y), v=v(x, t), and
calculate the discriminant δ=b2−ac at some point (x, y), (x, t), where
a=Fp, b=1

2Fq, c=Fr.*

2. Let us verify that the type of the nonhomogeneous Monge–Ampère
equation at a point (x, y) depends on the sign of the given function
F (x, y) and is independent of the selection of a specific solution. There-
fore, at the points where F (x, y)=0, the equation is of parabolic type, at
the points where F (x, y)>0, the equation is of hyperbolic type, and at
the points where F (x, y)<0, the equation is of elliptic type. We verify
that the type of the nonlinear wave equation at a point (x, t) depends on
a specific point (x, t) and on the sign of a specific solution v(x, t), i.e., it
is impossible to determine the sign of δ for the unknown solution v(x, t).

Maple:

with(PDEtools): declare((u,v)(x,y),(F1,F2)(p,r,q),G(u(x,t)));
U,V,GV:=diff_table(u(x,y)),diff_table(v(x,t)),
diff_table(G(v(x,t))); PDE1:=U[x,y]^2-U[x,x]*U[y,y]=F(x,y);

tr1:=(x,y,U)->{U[x,x]=p,U[y,y]=r,U[x,y]=q};
tr2:=H->{a=diff(lhs(H(p,q,r)),p),b=1/2*diff(lhs(H(p,q,r)),q),

c=diff(lhs(H(p,q,r)),r)}; delta:=b^2-a*c;

*In general, the coefficients a, b, and c can depend not only on the selection of a specific
point, but also on the selection of a specific solution.
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F1:=(p,r,q)->subs(tr1(x,y,U),PDE1); F1(p,r,q); tr2(F1);
delta1:=subs(tr2(F1),delta)=rhs(F1(p,r,q));
PDE2:=V[t,t]-G(v)*V[x,x]-GV[x]*V[x]=0;
F2:=(p,r,q)->subs(tr1(x,t,V),PDE2); F2(p,r,q); tr2(F2);
delta2:=subs(tr2(F2),delta)=rhs(F2(p,r,q));

Mathematica:

pde1=D[u[x,y],{x,y}]^2-D[u[x,y],{x,2}]*D[u[x,y],{y,2}]==f[x,y]
tr1[x_,y_,u_]:={D[u[x,y],{x,2}]->p, D[u[x,y],{y,2}]->r,

D[u[x,y],{x,y}]->q};
f1[p_,r_,q_]:=pde1/.tr1[x,y,u]; f1[p,r,q]
tr2[f_]:={a->D[f[p,q,r][[1]],p], b->1/2*D[f[p,q,r][[1]],q],

c->D[f[p,q,r][[1]],r]}; delta=b^2-a*c; tr2[f1]
delta1=(delta/.tr2[f1])==f1[p,r,q][[2]]
dgDv=D[g[v[x,t]],x]*D[v[x,t],x];
pde2=D[v[x,t],{t,2}]-g[v[x,t]]*D[v[x,t],{x,2}]-dgDv==0
f2[p_,r_,q_]:=pde2/.tr1[x,t,v]; {f2[p,r,q], tr2[f2]}
delta2=(delta/.tr2[f2])==f2[p,r,q][[2]] �

Let us consider hyperbolic systems of nonlinear first-order PDEs:

ut+
n∑
i=1

Bi(x, t,u)uxi=f , (1.5)

subject to the initial condition u=g on R
n×{t= 0}. Here the unknown

function is u=(u1, . . . , um), the functions Bi(x, t,u), f , g are given, and
x=(x1, . . . , xn) ∈ R

n, t≥ 0.

Definition 1.6 The nonlinear system of PDEs (1.5) is called hyperbolic

if the m×m matrix B(x, t,u, β)=
n∑
i=1

βiBi(x, t,u) (where β ∈ R
n, x ∈ R

n,

t≥0) is diagonalizable for each x∈R
n, t≥0, i.e., the matrix B(x, t,u, β)

has m real eigenvalues and corresponding eigenvectors that form a basis
in R

m.

There are two important special cases:
(1) The nonlinear system (1.5) is a symmetric hyperbolic system if

Bi(x, t,u) is a symmetric m×m matrix for each x ∈ R
n, t ≥ 0 (i =

1, . . . ,m).
(2) The nonlinear system (1.5) is strictly hyperbolic system if for each
x ∈ R

n, t≥ 0, the matrix B(x, t,u, β) has m distinct real eigenvalues.
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Problem 1.5 Nonlinear hyperbolic systems. Classification. Let us con-
sider the nonlinear system [38]:

ut+
(
uF1(u, v)

)
x
+
(
uF2(u, v)

)
y
=0, vt+

(
vF1(u, v)

)
x
+
(
vF2(u, v)

)
y
=0,

where (u, v)
∣∣
t=0

=
(
u0(x, y), v0(x, y)

)
. Verify that this system is a non-

strictly hyperbolic system (also considered in Problem 2.5) and this sys-
tem is symmetric if u(Fi(u, v))v=v(Fi(u, v))u, i=1, 2.

We rewrite the above system in the matrix form ut+B1ux+B2uy=0,
where

u=
( u
v

)
, B1=

( F1+u (F1)u u (F1)v

v (F1)u F1+v (F1)v

)
, B2=

( F2+u (F2)u u (F2)v

v (F2)u F2+v (F2)v

)
.

The eigenvalues of the this system are (L1, L2): λ1=β1F1+β2F2 and
λ2=β1F1+β2F2+β1v(F1)v+β1u(F1)u+β2v(F2)v+β2u(F2)u. The eigen-
values are equal, λ1=λ2, if [β1(F1)u+β2(F2)u]u+[β1(F1)v+β2(F2)v ]v=0
(L12). Therefore, the system is nonstrictly hyperbolic.

Maple:

with(PDETools): with(LinearAlgebra): declare((F1,F2)(u,v));
B1:=<<F1(u,v)+u*diff(F1(u,v),u),v*diff(F1(u,v),u)>|

<u*diff(F1(u,v),v),F1(u,v)+v*diff(F1(u,v),v)>>;
B2:=<<F2(u,v)+u*diff(F2(u,v),u),v*diff(F2(u,v),u)>|

<u*diff(F2(u,v),v),F2(u,v)+v*diff(F2(u,v),v)>>;
Eq1:=beta1*B1+beta2*B2-lambda*Matrix(2,2,shape=identity)=0;
Eq2:=Determinant(lhs(Eq1))=0; Eq3:=factor(Eq2);
L1:=solve(op(1,lhs(Eq3)),lambda);
L2:=solve(op(2,lhs(Eq3)),lambda); L12:=L2-L1;
A1:=subs(u*diff(F1(u,v),v)=v*diff(F1(u,v),u),B1);
A2:=subs(u*diff(F2(u,v),v)=v*diff(F2(u,v),u),B2);

Mathematica:

b1={{f1[u,v]+u*D[f1[u,v],u],u*D[f1[u,v],v]},{v*D[f1[u,v],u],
f1[u,v]+v*D[f1[u,v],v]}}; b2={{f2[u,v]+u*D[f2[u,v],u],
u*D[f2[u,v],v]},{v*D[f2[u,v],u],f2[u,v]+v*D[f2[u,v],v]}};
Map[MatrixForm,{b1,b2}]
{eq1=beta1*b1+beta2*b2-lambda*IdentityMatrix[2]==0,
eq2=Det[eq1[[1]]]==0, eq3=Factor[eq2]}
{l1=Solve[eq3[[1,1]]==0,lambda][[1,1,2]],
l2=Solve[eq3[[1,2]]==0,lambda][[1,1,2]], l12=l2-l1}
a1=b1/.u*D[f1[u,v],v]->v*D[f1[u,v],u]
a2=b2/.u*D[f2[u,v],v]->v*D[f2[u,v],u] �
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1.1.2 Nonlinear PDEs and Systems Arising in Applied Sciences

Nonlinear partial differential equations arise in a variety of physical prob-
lems (e.g., in problems of solid mechanics, fluid dynamics, acoustics,
nonlinear optics, plasma physics, quantum field theory, etc.), chemical
and biological problems, in formulating fundamental laws of nature, and
numerous applications.

There exists an important class of nonlinear PDEs, called the soli-
ton equations, which admit many physically interesting solutions, called
solitons. These nonlinear equations have introduced remarkable achieve-
ments in the field of applied sciences. A collection of the most important
nonlinear equations (considered in the book) is represented in Tab. 1.1.

The eikonal equation* arises in nonlinear optics and describes the
propagation of wave fronts and discontinuities for acoustic wave equa-
tions, Maxwell’s equations, and equations of elastic wave propagation.
The eikonal equation can be derived from Maxwell’s equations, and it
is a special case of the Hamilton–Jacobi equation (see Sect. 3.2.1). This
equation also is of general interest in such fields as geometric optics,
seismology, electromagnetics, computational geometry, multiphase flow.

The nonlinear heat (or diffusion) equation describes the flow of heat
or a concentration of particles, the diffusion of thermal energy in a ho-
mogeneous medium, the unsteady boundary-layer flow in the Stokes and
Rayleigh problems.

The Burgers equation has been introduced by J. M. Burgers in 1948
for studying the turbulence phenomenon described by the interaction of
the two physical transport phenomena convection and diffusion. It is the
important nonlinear model equation representing phenomena described
by a balance between time evolution, nonlinearity, and diffusion. It is
one of the fundamental model equations in fluid mechanics. The Burg-
ers equation arises in many physical problems (e.g., one-dimensional
turbulence, traffic flow, sound and shock waves in a viscous medium,
magnetohydrodynamic waves). The Burgers equation is completely in-
tegrable (see Chap. 4). The wave solutions of the Burgers equation are
single-front and multiple-front solutions.

The kinematic wave equation (or the nonlinear first-order wave equa-
tion is a special case of the Burgers equation (if the viscosity ν = 0)
and describes the propagation of nonlinear waves (e.g., waves in traffic
flow on highways, shock waves, flood waves, waves in plasmas, sedi-
ment transport in rivers, chemical exchange processes in chromatogra-
phy, etc.).

*Eikonal is a German word, which is from eikon, a Greek word for image or figure.
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Table 1.1. Selected nonlinear equations considered in the book

Nonlinear PDE Equation name Problem

(ux)2+(uy)2=n2 Eikonal eq. 1.18, 3.12, 3.13

ut−
(
F (u)ux

)
x
=0 Nonlinear heat eq. 2.3, 2.17, 2.27

2.39, 2.45, 2.49

ut+uux=νuxx Burgers eq. 1.16, 2.10, 4.1

5.5, 6.1, 7.1

ut+c(u)ux=0 Kinematic wave eq. 3.6, 3.7

ut+uux=0 Inviscid Burgers eq. 3.3, 5.2, 6.4

ut+G(u)ux=H(u) Generalized inviscid Burgers eq. 3.8, 3.9

ut−uxx=au(1−u) Fisher eq. 3.20, 5.7

ut+auux−νuxx=bu(1−u)(u−c) Burgers−Huxley eq. 1.10

ut+auux+buxxx=0 Korteweg–deVries eq. 1.12, 2.18, 4.5
4.10, 5.9, 6.13

ut+(2au−3bu2)ux+uxxx=0 Gardner eq. 1.12, 2.13, 4.6

ut+6u2ux+uxxx=0 Modified KdV eq. 2.41, 4.13

utt−
(
F (u)ux

)
x
=0 Nonlinear wave eq. 1.4, 1.11, 2.25

2.28, 2.46, 6.2

utt+(uux)x+uxxxx=0 Boussinesq eq. 1.6

(ut+auux+uxxx)x+buyy=0 Kadomtsev−Petviashvili eq. 1.15

ut+aux+buux−cuxxt=0 Benjamin−Bona−Mahony eq. 1.14

ut+ux+u2ux+auxxx+buxxxxx=0 Generalized Kawahara eq. 4.2, 4.4

iut+uxx+γ|u|2u=0 Nonlinear Schrödinger eq. 1.7, 2.42, 4.12

ut−auxx−bu+c|u|2u=0 Ginzburg−Landau eq. 1.13

utt−uxx=F (u) Klein−Gordon eq. 2.21, 4.14, 5.4

utt−uxx= sinu sine–Gordon eq. 2.11, 2.20, 2.32
3.21, 4.8, 6.14

uxx+uyy=F (u) Nonlinear Poisson eq. 2.43, 2.44, 6.15

(uxy)2−uxxuyy=F (x, y) Monge–Ampère eq. 1.4, 2.19



1.1 Basic Concepts 13

The inviscid Burgers equation (or the Hopf equation) is a special
case of the kinematic wave equation (c(u) = u). The Burgers equation
is parabolic, whereas the inviscid Burgers equation is hyperbolic. The
properties of the solution of the parabolic equation are significantly dif-
ferent than those of the hyperbolic equation.

The generalized inviscid Burgers equation appears in several physical
problems, in particular it describes a population model [98].

The Fisher equation has been introduced by R. A. Fisher in 1936
for studying wave propagation phenomena of a gene in a population
and logistic growth-diffusion phenomena. This equation describes wave
propagation phenomena in various biological and chemical systems, in
the theory of combustion, diffusion and mass transfer, nonlinear dif-
fusion, chemical kinetics, ecology, chemical wave propagation, neutron
population in a nuclear reactor, etc.

The Burgers–Huxley equation describes nonlinear wave processes in
physics, mathematical biology, economics, ecology [107].

The Korteweg−de Vries equation has been introduced by D. Ko-
rteweg and G. de Vries in 1895 for a mathematical explanation of the
solitary wave phenomenon discovered by S. Russell in 1844. This equa-
tion describes long time evolution of dispersive waves and in particular,
the propagation of long waves of small or moderate amplitude, traveling
in nearly one direction without dissipation in water of uniform shallow
depth (this case is relevant to tsunami waves). The KdV equation ad-
mits a special form of the exact solution, the soliton, which arises in
many physical processes, e.g., water waves, internal gravity waves in a
stratified fluid, ion-acoustic waves in a plasma, etc.

The Gardner equation, introduced by R. M. Miura, C. S. Gardner,
and M. D. Kruskal in 1968 [103] as a generalization of the KdV equation,
appears in various branches of physics (e.g., fluid mechanics, plasma
physics, quantum field theory). The Gardner equation can be used to
model several nonlinear phenomena, e.g., internal waves in the ocean.

The modified KdV equation (mKdV), the KdV-type equation, and the
modified KdV-type equation are the nonlinear evolution equations that
describe approximately the evolution of long waves of small or moderate
amplitude in shallow water of uniform depth, nonlinear acoustic waves
in an inharmonic lattice, Alfvén waves in a collisionless plasma, and
many other important physical phenomena.

The nonlinear wave equation describes the propagation of waves,
which arises in a wide variety of physical problems.

The mathematical theory of water waves goes back to G. G. Stokes
in 1847, who was first to derive the equations of motion of an incom-
pressible, inviscid heavy fluid bounded below by a rigid bottom and
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above by a free surface. These equations are still hard to solve in a
general case because of the moving boundary whose location can be de-
termined by solving two nonlinear PDEs. Therefore, most advances in
the theory of water waves can be obtained through approximations (e.g.,
see Problem 5.10, where we construct approximate analytical solutions
describing nonlinear standing waves on the free surface of a fluid).

However, Korteweg and de Vries in 1895, instead of solving the equa-
tions of motion approximately, considered a limit case, which is relevant
to tsunami waves. This limit case describes long waves of small or mod-
erate amplitude, traveling in nearly one direction without dissipation
in water of uniform shallow depth. There are alternative equations to
the KdV equation that belong to the family of the KdV-type equa-
tions, e.g., the Boussinesq equations (1872), the Kadomtsev–Petviashvili
equation (KP, 1970), the Benjamin–Bona–Mahony equation (1972), the
Camassa–Holm equation (1993), the Kawahara equation (1972).

The Boussinesq equation, introduced by J. V. Boussinesq in 1872 [21],
appears in many scientific applications and physical phenomena (e.g.,
the propagation of long waves in shallow water, nonlinear lattice waves,
iron sound waves in a plasma, vibrations in a nonlinear string). The
main properties are: the Boussinesq equation is completely integrable
(see Sect. 4.2), admits an infinite number of conservation laws, N -soliton
solutions, and inverse scattering formalism.

The Kadomtsev–Petviashvili equation is a generalization of the KdV
equation, it is a completely integrable equation by the inverse scattering
transform method. In 1970, B. B. Kadomtsev and V. I. Petviashvili [77]
generalized the KdV equation from (1+1) to (2+1) dimensions. The KP
equation describes shallow-water waves (with weakly non-linear restor-
ing forces), waves in ferromagnetic media, shallow long waves in the
x-direction with some mild dispersion in the y-direction.

The Benjamin–Bona–Mahony equation has been introduced by T. B.
Benjamin, J. L. Bona, and J. J. Mahony in 1972 [16] for studying prop-
agation of long waves (where nonlinear dispersion is incorporated). The
BBM equation belongs to the family of KdV-type equations. As we
stated above, the KdV equation is a model for propagation of one-
dimensional small amplitude, weakly dispersive waves. Both BBM and
KdV equations are applicable for studying shallow water waves, sur-
face waves of long wavelength in liquids, acoustic-gravity waves in com-
pressible fluids, hydromagnetic waves in cold plasma, acoustic waves in
anharmonic crystals, etc.

The Kawahara equation, introduced by T. Kawahara in 1972, is a
generalization of the KdV equation (it belongs to the family of KdV-type
equations). The Kawahara equation arises in a wide range of physical
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problems (e.g., capillary-gravity water waves, shallow water waves with
surface tension, plasma waves, magneto-acoustic waves in a cold collision
free plasma, etc).

The nonlinear Schrödinger equation (NLS), introduced by the physi-
cist E. Schrödinger in 1926, describes the evolution of water waves and
other nonlinear waves arising in different physical systems, e.g., non-
linear optical waves, hydromagnetic and plasma waves, nonlinear waves
in fluid-filled viscoelastic tubes, solitary waves in piezoelectric semicon-
ductors, and also many important physical phenomena, e.g., nonlinear
instability, heat pulse in a solid, etc. V. E. Zakharov and A. B. Shabat
in 1972 have developed the inverse scattering method to prove that the
NLS equation is completely integrable.

The Ginzburg–Landau theory, developed by V. L. Ginzburg and L.
Landau in 1950, is a mathematical theory for studying superconductiv-
ity. The Ginzburg–Landau equations are based on several key concepts
developed in the framework of this theory. Real Ginzburg–Landau equa-
tions were first derived as long-wave amplitude equations by A. C. Newell
and J. A. Whitehead and by L. A. Segel in 1969; complex Ginzburg–
Landau equations were first derived by K. Stewartson and J. T. Stuart
in 1971 and by G. B. Ermentrout in 1981. The nonlinear equations
describe the evolution of amplitudes of unstable modes for any process
exhibiting a Hopf bifurcation. The Ginzburg–Landau equations arise in
many applications (e.g., nonlinear waves, hydrodynamical stability prob-
lems, nonlinear optics, reaction-diffusion systems, second-order phase
transitions, Rayleigh–Bénard convection, superconductivity, chemical
turbulence, etc).

The Klein–Gordon equation (or Klein–Gordon–Fock equation), in-
troduced by the physicists O. Klein and W. Gordon in 1927, describes
relativistic electrons. The Klein–Gordon equation was first considered as
a quantum wave equation by Schrödinger. In 1926 (after the Schrödinger
equation was introduced), V. Fock wrote an article about its generaliza-
tion for the case of magnetic fields and independently derived this equa-
tion. The Klein–Gordon equations play a significant role in many sci-
entific applications (e.g., nonlinear dispersion, solid state physical prob-
lems, nonlinear optics, quantum field theory, nonlinear meson theory).

The sine–Gordon equation* has a long history that begins in the
19th century in the course of study of surfaces of constant negative
curvature. This equation attracted a lot of attention since 1962 [120] due
to discovering of soliton solutions and now is one of the basic nonlinear
evolution equations that describes various important nonlinear physical

*The name “sine–Gordon equation” is a wordplay on the Klein–Gordon equation.


