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Preface to the Second Edition

After the publication of the first edition of this book, stochastic stability of differen-
tial equations has become a very popular theme of recent research in mathematics
and its applications. It is enough to mention the Lecture Notes in Mathematics, Nos
294, 1186 and 1486, devoted to the stability of stochastic dynamical systems and
Lyapunov Exponents, the books of L. Arnold [3], A. Borovkov [35], S. Meyn and
R. Tweedie [196], among many others.

Nevertheless I think that this book is still useful for those researchers who would
like to learn this subject, to start their research in this area or to study properties of
concrete mechanical systems subjected to random perturbations. In particular, the
method of Lyapunov functions for the analysis of qualitative behavior of stochas-
tic differential equations (SDEs), the exact formulas for the Lyapunov exponent for
linear SDEs, which are presented in this book, provide some very powerful instru-
ments in the study of stability properties for concrete stochastic dynamical systems,
conditions of existence the stationary solutions of SDEs and related problems.

The study of exponential stability of the moments (see Sects. 5.7, 6.3, 6.4 here)
makes natural the consideration of certain properties of the moment Lyapunov expo-
nents. This very important concept was first proposed by S. Molchanov [204], and
was later studied in detail by L. Arnold, E. Oeljeklaus, E. Pardoux [8], P. Baxendale
[19] and many other researchers (see, e.g., [136]).

Another important characteristic for stability (or instability) of the stochastic sys-
tems is the stability index, studied by Arnold, Baxendale and the author. For the
reader’s convenience I decided to include the main results on the moment Lyapunov
exponents and the stability index in the Appendix B to this edition. The Appendix B
was mainly written by G. Milstein, who is an accomplished researcher in this area.
I thank him whole-heartily for his generous help and support.

I have many thanks to the Institute for the Problems Information Transmission,
Russian Academy of Sciences, and to the Wayne State University, Detroit, for their
support during my work on this edition. I also have many thanks to B.A. Amosov
for his essential help in the preparation of this edition.

In conclusion I will enumerate some other changes in this edition.
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vi Preface to the Second Edition

1. Derivation of the often used in the book Feynman–Kac formula is added to
Sect. 3.6.

2. A much improved version of Theorem 4.6 is proven in Chap. 4.
3. The Arcsine Law and its generalization are added in 4.12.
4. Sect. A.4 in the Appendix B to the first edition is shortened.
5. New books and papers, related to the content of this book, added to the bibliog-

raphy.
6. Some footnotes are added and misprints are corrected.

Rafail KhasminskiiMoscow
March 2011



Preface to the First English Edition

I am very pleased to witness the printing of an English edition of this book by
Noordhoff International Publishing. Since the date of the first Russian edition in
1969 there have appeared no less than two specialist texts devoted at least partly
to the problems dealt with in the present book [38, 211]. There have also appeared
a large number of research papers on our subject. Also worth mentioning is the
monograph of Sagirov [243] containing applications of some of the results of this
book to cosmology.

In the hope of bringing the book somewhat more up to date we have written,
jointly with M.B. Nevelson, an Appendix A containing an exposition of recent re-
sults. Also, we have in some places improved the original text of the book and
have made some corrections. Among these changes, the following two are espe-
cially worth mentioning: A new version of Sect. 8.4, generalizing and simplifying
the previous exposition, and a new presentation of Theorem 7.8.

Finally, there have been added about thirty new titles to the list of references. In
connection with this we would like to mention the following. In the first Russian
edition we tried to give as complete as possible a list of references to works con-
cerning the subject. This list was up to date in 1967. Since then the annual output
of publications on stability of stochastic systems has increased so considerably that
the task of supplying this book with a totally up to date and complete bibliography
became very difficult indeed. Therefore we have chosen to limit ourselves to listing
only those titles which pertain directly to the contents of this book. We have also
mentioned some more recent papers which were published in Russian, assuming
that those will be less known to the western reader.

I would like to conclude this preface by expressing my gratitude to M.B. Nevel-
son for his help in the preparation of this new edition of the book.

Rafail KhasminskiiMoscow
September 1979
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Preface to the Russian Edition

This monograph is devoted to the study of the qualitative theory of differential
equations with random right-hand side. More specifically, we shall consider here
problems concerning the behavior of solutions of systems of ordinary differential
equations whose right-hand sides involve stochastic processes. Among these the
following questions will receive most of our attention.

1. When is each solution of the system defined with probability 1 for all t > 0 (i.e.,
the solution does not “escape to infinity” in a finite time)?

2. If the function X(t) ≡ 0 is a solution of the system, under which conditions is
this solution stable in some stochastic sense?

3. Which systems admit only bounded for all t > 0 (again in some stochastic sense)
solutions?

4. If the right-hand side of the system is a stationary (or periodic) stochastic process,
under which additional assumptions does the system have a stationary (periodic)
solution?

5. If the system has a stationary (or periodic) solution, under which circumstances
will every other solution converge to it?

The above problems are also meaningful (and motivated by practical interest) for
deterministic systems of differential equations. In that case, they received detailed
attention in [154, 155, 178, 188, 191, 228], and others.

Problems 3–5 have been thoroughly investigated for linear systems of the type
ẋ =Ax+ ξ(t), where A is a constant or time dependent matrix and ξ(t) a stochastic
process. For that case one can obtain not only qualitative but also quantitative results
(i.e., the moment, correlation and spectral characteristics of the output process x(t))
in terms of the corresponding characteristics of the input process ξ(t). Methods
leading to this end are presented e.g., in [177, 233], etc. In view of this, we shall
concentrate our attention in the present volume primarily on non-linear systems, and
on linear systems whose parameters (the elements of the matrix A) are subjected to
random perturbations.

In his celebrated memoir Lyapunov [188] applied his method of auxiliary func-
tions (Lyapunov functions) to the study of stability. His method proved later to be

ix



x Preface to the Russian Edition

applicable also to many other problems in the qualitative theory of differential equa-
tions. Also in this book we shall utilize an appropriate modification of the method
of Lyapunov functions when discussing the solutions to the above mentioned prob-
lems.

In Chaps. 1 and 2 we shall study problems 1–5 without making any specific
assumptions on the form of the stochastic process on the right side of the spe-
cial equation. We shall be predominantly concerned with systems of the type
ẋ = F(x, t) + σ(x, t)ξ(t) in Euclidean l-space. We shall discuss their solutions,
using the Lyapunov functions of the truncated system ẋ = F(x, t). In this we shall
try to impose as few restrictions as possible on the stochastic process ξ(t); e.g., we
may require only that the expectation of |ξ(t)| be bounded. It seems convenient to
take this approach, first, because sophisticated methods are available for construct-
ing Lyapunov functions for deterministic systems, and second, because the results
so obtained will be applicable also when the properties of the process ξ(t) are not
completely known, as is often the case.

Evidently, to obtain more detailed results, we shall have to restrict the class of
stochastic processes ξ(t) that may appear on the right side of the equation. Thus
in Chaps. 3 through 7 we shall study the solutions of the equation ẋ = F(x, t) +
σ(x, t)ξ(t) where ξ(t) is a white noise, i.e. a Gaussian process such that Eξ(t)= 0,
E[ξ(s)ξ(t)] = δ(t − s). We have chosen this process, because:

1. In many real situations physical noise can be well approximated by white noise.
2. Even under conditions different from white noise, but when the noise acting upon

the system has a finite memory interval τ (i.e., the values of the noise at times t1
and t2 such that |t2 − t1|> τ are virtually independent), it is often possible after
changing the time scale to find an approximating system, perturbed by the white
noise.

3. When solutions of an equation are sought in the form of a process, continuous
in time and without after-effects, the assumption that the noise in the system is
“white” is essential. The investigation is facilitated by the existence of a well
developed theory of processes without after-effects (Markov processes).

Shortly after the publication of Kolmogorov’s paper [144], which laid the founda-
tions for the modern analytical theory of Markov processes, Andronov, Pontryagin
and Vitt [229] pointed out that actual noise in dynamic systems can be replaced by
white noise, thus showing that the theory of Markov processes is a convenient tool
for the study of such systems.

Certain difficulties in the investigation of the equation ẋ = F(x, t)+σ(x, t)ξ(t),
where ξ(t) is white noise are caused by the fact that, strictly speaking, “white”
noise processes do not exist; other difficulties arise because of the many ways of
interpreting the equation itself. These difficulties have been largely overcome by
the efforts of Bernshtein, Gikhman and Itô. In Chap. 3 we shall state without proof
a theorem on the existence and uniqueness of the Markov process determined by
an equation with the white noise. We shall assume a certain interpretation of this
equation. For a detailed proof we refer the reader to [56, 64, 92].

However, we shall consider in Chap. 3 various other issues in great detail, such
as sufficient conditions for a sample path of the process not to “escape to infinity”



Preface to the Russian Edition xi

in a finite time, or to reach a given bounded region with probability 1. It turns out
that such conditions are often conveniently formulated in terms of certain auxiliary
functions analogous to Lyapunov functions. Instead of the Lyapunov operator (the
derivative along the path) one uses the infinitesimal generator of the corresponding
Markov process.

In Chap. 4 we examine conditions under which a solution of a differential equa-
tion where ξ(t) is white noise, converges to a stationary process. We show how
this is related to the ergodic theory of dynamic systems and to the problem of sta-
bilization of the solution of a Cauchy problem for partial differential equations of
parabolic type.

Chapters 5–8 I contain the elements of stability theory of stochastic systems with-
out after-effects. This theory has been created in the last few years for the purpose
of studying the stabilization of controlled motion in systems perturbed by random
noise. Its origins date from the 1960 paper by Kac and Krasovskii [111] which has
stimulated considerable further research. More specifically, in Chap. 5 we general-
ize the theorems of Lyapunov’s second method; Chapter 6 is devoted to a detailed
investigation of linear systems, and in Chap. 7 we prove theorems on stability and
instability in the first approximation. We do this, keeping in view applications to
stochastic approximation and certain other problems.

Chapter 8 is devoted to application of the results of Chaps. 5 to 7 to optimal
stabilization of controlled systems. It was written by the author in collaboration with
M.B. Nevelson. In preparing this chapter we have been influenced by Krasovskii’s
excellent Appendix IV in [191].

As far as we know, there exists only one other monograph on stochastic stability.
It was published in the U.S.A. in 1967 by Kushner [168], and its translation into
Russian is now ready for print. Kushner’s book contains many interesting theorems
and examples. They overlap partly with the results of Sect. 3.7 and Sects. 5.1–5.5 of
this book.

Though our presentation of the material is abstract, the reader who is primarily
interested in applications should bear in mind that many of the results admit a di-
rectly “technical” interpretation. For example, problem 4, stated above, concerning
the question of the existence of a stationary solution, is equivalent to the problem of
determining when stationary operating conditions can prevail within a given, gen-
erally non-linear, automatic control system, whose parameters experience random
perturbations and whose input process is also stochastic. Similarly, the convergence
of each solution to a stationary solution (see Chap. 4) means that each output process
of the system will ultimately “settle down” to stationary conditions.

In order not to deviate from the main purpose of the book, we shall present with-
out proof many facts from analysis and from the general theory of stochastic pro-
cess. However, in all such cases we shall mention either in the text or in a footnote
where the proof can be found. For the reader’s convenience, such references will
usually be not to the original papers but rather to more accessible textbooks and
monographs. On the other hand, in the rather narrow range of the actual subject
matter we have tried to give precise references to the original research. Most of the
references appear in footnotes.
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Part of the book is devoted to the theory of stability of solutions of stochas-
tic equations (Sects. 1.5–1.8, Chaps. 5–8). This appears to be an important subject
which has recently been receiving growing attention. The volume of the relevant
literature is increasing steadily. Unfortunately, in this area various authors have pub-
lished results overlapping significantly with those of others. This is apparently due to
the fact that the field is being studied by mathematicians, physicists, and engineers,
and each of these groups publishes in journals not read by the others. Therefore the
bibliography given at the end of this book lists, besides the books and papers cited
in the text, various other publications on the stability of stochastic systems known
to the author, which appeared prior to 1967. For the reason given above, this list is
far from complete, and the author wishes to apologize to authors whose research he
might have overlooked.

The book is intended for mathematicians and physicists. It may be of particular
interest to those who specialize in mechanics, in particular in the applications of the
theory of stochastic processes to problems in oscillation theory, automatic control
and related fields. Certain sections may appeal to specialists in the theory of stochas-
tic processes and differential equations. The author hopes that the book will also be
of use to specialized engineers interested in the theoretical aspects of the effect of
random noise on the operation of mechanical and radio-engineering systems and in
problems relating to the control of systems perturbed by random noise.

To study the first two chapters it is sufficient to have an acquaintance with the
elements of the theory of differential equations and probability theory, to the extent
generally given in higher technical schools (the requisite material from the theory
of stochastic processes is given in the text without proofs).

The heaviest mathematical demands on the reader are made in Chaps. 3 and 4. To
read them, he will need an acquaintance with the elements of the theory of Markov
processes to the extent given, e.g., in Chap. VIII of [92].

The reader interested only in the stability of stochastic systems might proceed di-
rectly from Chap. 2 to Chaps. 5–7, familiarizing himself with the results of Chaps. 3
and 4 as the need arises.

The origin of this monograph dates back to some fruitful conversations which
the author had with N.N. Krasovskii. In the subsequent research, here described, the
author has used the remarks and advice offered by his teachers A.N. Kolmogorov
and E.B. Dynkin, to whom he is deeply indebted.

This book also owes much to the efforts of its editor, M.B. Nevelson, who
not only took part in writing Chap. 8 and indicated several possible improve-
ments, but also placed some of his yet unpublished examples at the author’s dis-
posal. I am grateful to him for this assistance. I also would like to thank V.N. Tu-
tubalin, V.B. Kolmanovskii and A.S. Holevo for many critical remarks, and to
R.N. Stepanova for her work on the preparation of the manuscript.

Rafail KhasminskiiMoscow
September, 1967
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Basic Notation

IT = {t : 0 ≤ t < T }, set of points t such that 0 ≤ t < T , p. 1
I = I∞, p. 1
UR = {x : |x|<R}, p. 4
R
l Euclidean l-space, p. 2

E = R
l × I , p. 4

L class of functions f (t) absolutely integrable on every finite interval, p. 4
C2 class of functions V (t, x) twice continuously differentiable with respect to

x and once continuously differentiable with respect to t , p. 72
C0

2(U) class of functions V (t, x) twice continuously differentiable with respect to
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Chapter 1
Boundedness in Probability and Stability
of Stochastic Processes Defined by Differential
Equations

1.1 Brief Review of Prerequisites from Probability Theory

Let Ω = {ω} be a space with a family of subsets A such that, for any finite or count-
able sequence of sets Ai ∈ A, the intersection

⋂

i Ai , union
⋃

i Ai and comple-
ment Ac

i (with respect to Ω) are also in A. Suppose moreover that Ω ∈ A. A family
of subsets possessing these properties is known as a σ -algebra. If a probability mea-
sure P is defined on the σ -algebra A (i.e. P is a non-negative countably additive set
function on A such that P(Ω)= 1), then the triple (Ω,A,P) is called a probability
space and the sets in A are called random events. (For more details, see [56, 64,
185].)

The following standard properties of measures will be used without any further
reference:

1. If A ∈ A, B ∈ A, A⊂ B , then P(A)≤ P(B).
2. For any finite or countable sequence An in A,

P
(

⋃

n

An

)

≤
∑

n

P(An).

3. If An ∈ A and A1 ⊂A2 ⊂ · · · ⊂An ⊂An+1 ⊂ · · · , then

P
(

⋃

n

An

)

= lim
n→∞ P(An).

4. If An ∈ A and A1 ⊃A2 ⊃A3 ⊃ · · · ⊃An ⊃ · · · , then

P
(

⋂

n

An

)

= lim
n→∞ P(An).

Proofs of these properties may be found in any textbook on probability theory, such
as [95, §8]; or [92, Sect. 1.1].
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2 1 Boundedness in Probability and Stability

A random variable is a function ξ(ω) on Ω which is A measurable and almost
everywhere finite.1 In this book we shall consider only random variables which
take on values in Euclidean l-space R

l i.e., such that ξ(ω)= (ξ1(ω), . . . , ξl(ω)) is a
vector in R

l (l = 1,2, . . . ). A vector-valued random variable ξ(ω) may be defined
by its joint distribution function F(x1, . . . , xl), that is, by specifying the probability
of the event {ξ1(ω) < x1; . . . ; ξl(ω) < xl}. Given any vector x ∈ R

l or a k× l matrix
σ = ((σij )) (i = 1, . . . , k; j = 1, . . . , l) we shall denote, as usual,

|x| = (x2
1 + · · · + x2

l )
1/2, ‖σ‖ =

(

k
∑

i=1

l
∑

j=1

σ 2
ij

)1/2

.

Then we have the well-known inequalities |σx| ≤ ‖σ‖|x|, ‖σ1σ2‖ ≤ ‖σ1‖‖σ2‖.
The expectation of a random variable ξ(ω) is defined to be the integral

Eξ =
∫

Ω

ξ(ω)P (dω),

provided the function |ξ(ω)| is integrable.
Let B be a σ -algebra of Borel subsets of a closed interval [s0, s1], B ×A the mini-

mal σ -algebra of subsets of I ×Ω containing all subsets of the type {t ∈Δ, ω ∈A},
where Δ ∈ B, A ∈ A. A function ξ(t,ω) ∈ R

l is called a measurable stochastic pro-
cess (random function) defined on [s0, s1] with values in R

l if it is B ×A-measurable
and ξ(t,ω) is a random variable for each t ∈ [s0, s1]. For fixed ω, we shall call the
function ξ(t,ω) a trajectory or sample function of the stochastic process. In the
sequel we shall consider only separable stochastic processes, i.e., processes whose
behavior for all t ∈ [s0, s1] is determined up to an event of probability zero by its be-
havior on some dense subset Λ ∈ [s0, s1]. To be precise, a process ξ(t,ω) is said to
be separable if, for some countable dense subset Λ ∈ [s0, s1], there exists an event
A of probability 0 such that for each closed subset C ⊂ R

l and each open subset
Δ⊂ [s0, s1] the event

{ξ(tj ,ω) ∈ C; tj ∈Λ∩Δ}
implies the event

A∪ {ξ(t,ω) ∈ C; t ∈Δ}.
A process ξ(t,ω) is stochastically continuous at a point s ∈ [s0, s1] if for each ε > 0

lim
t→s

P{|ξ(t,ω)− ξ(s,ω)|> ε} = 0.

The definitions of right and left stochastic continuity are analogous.
It can be proved (see [56, Chap. II, Theorem 2.6]) that for each process ξ(t,ω)

which is stochastically continuous throughout [s0, s1], except for a countable subset

1Sometimes (see Chap. 3), but only when this is explicitly mentioned, we shall find it convenient
to consider random variables which can take on the values ±∞ with positive probability.
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of [s0, s1], there exists a separable measurable process ξ̃ (t,ω) such that for every
t ∈ [s0, s1]

P{ξ(t,ω)= ξ̃ (t,ω)} = 1 (ξ(t,ω)= ξ̃ (t,ω) almost surely).

If ξ(t,ω) is a measurable stochastic process, then for fixed ω the function ξ(t,ω),
as a function of t , is almost surely Lebesgue-measurable. If, moreover, Eξ(t,ω)=
m(t) exists, then m(t) is Lebesgue-measurable, and the inequality

∫

A

E|ξ(t,ω)|dt <∞

implies that the process ξ(t,ω) is almost surely integrable over A [56, Chap. II,
Theorem 2.7].

On the σ -algebra B ×A there is defined the direct product μ×P of the Lebesgue
measure μ and the probability measure P. If some relation holds for (t,ω) ∈A and
μ× P(Ac)= 0, the relation will be said to hold for almost all t , ω. Let A1, . . . ,An
be Borel sets in R

l , and t1, . . . , tn ∈ [s0, s1]; the probabilities

P(t1, . . . , tn,A1, . . . ,An)= P{ξ(t1,ω) ∈A1, . . . , ξ(tn,ω) ∈An}
are the values of the n-dimensional distributions of the process ξ(t,ω). Kolmogorov
has shown that any compatible family of distributions P(t1, . . . , tn,A1, . . . ,An) is
the family of the finite-dimensional distributions of some stochastic process.

The following theorem of Kolmogorov will play an important role in the sequel.

Theorem 1.1 If α, β , k are positive numbers such that whenever t1, t2 ∈ [s0, s1],
E|ξ(t2,ω)− ξ(t1,ω)|α < k|t1 − t2|1+β

and ξ(t,ω) is separable, then the process ξ(t,ω) has continuous sample functions
almost surely (a.s.).

Let ξ(t,ω) be a stochastic process defined for t ≥ t0. The process is said to satisfy
the law of large numbers if for each ε > 0, δ > 0 there exists a T > 0 such that for
all t > T

P
{∣

∣

∣

∣

1

t

∫ t0+t

t0

ξ(s,ω)ds − 1

t

∫ t0+t

t0

Eξ(s,ω)ds

∣

∣

∣

∣

> δ

}

< ε. (1.1)

A stochastic process ξ(t,ω) satisfies the strong law of large numbers if

P
{

1

t

∫ t0+t

t0

ξ(s,ω)ds − 1

t

∫ t0+t

t0

Eξ(s,ω)ds −→
t→∞ 0

}

= 1. (1.2)

The most important characteristics of a stochastic process are its expectationm(t)=
Eξ(t,ω) and covariance matrix

K(s, t)= cov(ξ(s), ξ(t))= ((E[(ξi(s)−mi(s))(ξj (t)−mj(t))])).
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In particular, all the finite-dimensional distributions of a Gaussian process can be
reconstructed from the function m(t) and K(s, t). A Gaussian process is stationary
if

m(t)= const, K(s, t)=K(t − s). (1.3)

A stochastic process ξ(t,ω) satisfying condition (1.3) is said to be stationary
in the wide sense. The Fourier transform of the matrix K(τ) is called the spectral
density of the process ξ(t,ω). It is clear that the spectral density f (λ) exists and is
bounded if the function ‖K(τ)‖ is absolutely integrable.

1.2 Dissipative Systems of Differential Equations

In this section we prove some theorems from the theory of differential equations
that we shall need later. We begin with a few definitions.

Let IT denote the set 0< t < T , I = I∞, E = R
l × I ; UR the ball |x|< R and

U c
R its complement in R

l . If f (t) is a function defined on I , we write f ∈ L if
f (t) is absolutely integrable over every finite interval. The same notation f ∈ L
will be retained for a stochastic function f (t,ω) which is almost surely absolutely
integrable over every finite interval.

Let F(x, t)= (F1(x, t), . . . ,Fl(x, t)) be a Borel-measurable function defined for
(x, t) ∈ E. Let us assume that for each R > 0 there exist functions MR(t) ∈ L and
BR(t) ∈ L such that

|F(x, t)| ≤MR(t), (1.4)

|F(x2, t)− F(x1, t)| ≤ BR(t)|x2 − x1| (1.5)

for x, xi ∈UR .
We shall say that a function x(t) is a solution of the equation

dx

dt
= F(x, t), (1.6)

satisfying the initial condition

x(t0)= x0 (t0 ≥ 0) (1.7)

on the interval [t0, t1], if for all t ∈ [t0, t1]

x(t)= x0 +
∫ t

t0

F(x(s), s) ds. (1.8)

In cases where solutions are being considered under varying initial conditions,
we shall denote this solution by x(t, x0, t0).

The function x(t) is evidently absolutely continuous, and at all points of conti-
nuity of F(x, t) it also satisfies (1.6).
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Theorem 1.2 If conditions (1.4) and (1.5) are satisfied, then the solution x(t) of
problem (1.6), (1.7) exists and is unique in some neighborhood of t0. Suppose more-
over that for every solution x(t) (if a solution exists) and some function τR which
tends to infinity as R→ ∞, we have the following “a priori estimate”:

inf{t : t ≥ t0; |x(t)|>R} ≥ τR. (1.9)

Then the solution of the problem (1.6), (1.7) exists and is unique for all t ≥ t0 (i.e.,
the solution can be unlimitedly continued for t ≥ t0).

Proof We may assume without loss of generality that the function MR(t) in (1.4)
satisfies the inequality

|MR(t)|> 1. (1.10)

Therefore we can find numbers R and t1 > t0 such that |x0| ≤R/2 and

Φ(t0, t1)=
∫ t1

t0

MR(s) ds exp

{∫ t1

t0

BR(s) ds

}

= R

2
. (1.11)

Applying the method of successive approximations to (1.8) on the interval [t0, t1],

x(n+1)(t)= x0 +
∫ t

t0

F(x(n)(s), s) ds, x0(t)≡ x0,

and using (1.4), (1.5) and (1.11), we get the estimates

|x(1)(t)− x0| ≤
∫ t

t0

MR(s) ds ≤ R

2
,

|x(n+1)(t)− x(n)(t)| ≤
∫ t

t0

BR(s)|x(n)(s)− x(n−1)(s)|ds.

Together with (1.11), these imply the inequality

|x(n+1)(t)− x(n)(t)| ≤
∫ t

t0

MR(s) ds
[∫ t
t0
BR(s) ds]n
n! . (1.12)

It follows from (1.12) that limn→∞ x(n)(t) exists and that it satisfies (1.8). The
proof of uniqueness is similar.

Now consider an arbitrary T > t0 and choose R so that, besides the relations
|x0|<R/2 and (1.11), we also have τR/2 > T . Then by (1.9), it follows that x(t1)≤
R/2 and thus the solutions can be continued to a point t2 such that Φ(t1, t2)=R/2.
Repeating this procedure, we get tn ≥ T for some n, since the functions MR(t) and
LR(t) are integrable over every finite interval. This completes the proof. �

If the function MR(t) is independent of t and its rate of increase in R is at most
linear, i.e.,

|F(x, t)| ≤ c1|x| + c2, (1.13)
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we get the following estimate for the solution of problem (1.6), (1.7), valid for t ≥ t0
and some c3 > 0:

|x(t)| ≤ |x0|c3e
c1(t−t0).

We omit the proof now, since we shall later prove a more general theorem. But if
condition (1.13) fails to hold, the solution will generally “escape to infinity” in a
finite time. (As for example, the solution x = (1 − t)−1 of the problem dx/dt = x2,
x(0)= 1.) Since condition (1.13) fails to cover many cases of practical importance,
we shall need a more general condition implying that the solution can be unlimitedly
continued. We present first some definitions.

The Lyapunov operator associated with (1.6) is the operator d0/dt defined by

d0V (x, t)

dt
= lim
h→+0

1

h
[V (x(t + h,x, t), t + h)− V (x, t)]. (1.14)

It is obvious that if V (x, t) is continuously differentiable with respect to x and t ,
then for almost all t the action of the Lyapunov operator

d0V

dt
= ∂V

∂t
+

l
∑

i=1

∂V

∂xi
Fi(x, t)= ∂V

∂t
+
(

∂

∂x
V,F

)

(1.15)

is simply a differentiation of the function V along the trajectory of the system (1.6).
In his classical work [188], Lyapunov discussed the stability of systems of differ-

ential equations by considering non-negative functions for which d0V/dt satisfies
certain inequalities.

These functions will be called Lyapunov functions here.
In Sects. 1.5, 1.6, 1.8, and also in Chaps. 5 to 7 we shall apply Lyapunov’s ideas

to stability problems for random perturbations.
In this and the next sections we shall use method of Lyapunov functions to find

conditions under which the solution can be continued for all t > 0 and to conditions
of boundedness solution. All Lyapunov functions figuring in the discussion will be
henceforth assumed to be absolutely continuous in t , uniformly in x in the neighbor-
hood of every point. Moreover we shall assume a Lipschitz condition with respect
to x:

|V (x2, t)− V (x1, t)|<B|x2 − x1| (1.16)

in the domain UR × IT , with a Lipschitz constant which generally depends on R
and T . We shall write V ∈ C in this case. If the function V satisfies condition (1.16)
with a constant B not depending on R and T , we shall write V ∈ C0.

If V ∈ C and the function y(t) is absolutely continuous, then it is easily verified
that the function V (y(t), t) is also absolutely continuous. Hence, for almost all t ,

d0V (x, t)

dt
= d

dt
V (x(t), t)

∣

∣

∣

∣

x(t)=x
,

where x(t) is the solution of (1.6). We shall use this fact frequently without further
reference.
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Theorem 1.3 2 Assume that there exists a Lyapunov function V ∈ C defined on the
domain R

l × {t > t0} such that for some c1 > 0

VR = inf
(x,t)∈U c

R×{t>t0}
V (x, t)→ ∞ as R→ ∞, (1.17)

d0V

dt
≤ c1V, (1.18)

and let the function F satisfy conditions (1.4), (1.5).
Then the solution of problem (1.6), (1.7) can be extended for all t ≥ t0.

The proof of this theorem employs the following well-known lemma, which will
be used repeatedly.

Lemma 1.1 Let the function y(t) be absolutely continuous for t ≥ t0 and let the
derivative dy/dt satisfy the inequality

dy

dt
< A(t)y +B(t) (1.19)

for almost all t ≥ t0, where A(t) and B(t) are almost everywhere continuous func-
tions integrable over every finite interval. Then for t > t0

y(t) < y(t0) exp

{∫ t

t0

A(s) ds

}

+
∫ t

t0

exp

{∫ t

s

A(u)du

}

B(s) ds. (1.20)

Proof It follows from (1.19) that for almost all t ≥ t0
d

dt

(

y(t) exp

{

−
∫ t

t0

A(s) ds

})

<B(t) exp

{

−
∫ t

t0

A(s) ds

}

.

Integration of this inequality yields (1.20). �

Proof of Theorem 1.3 It follows from (1.18) that for almost all t we have
dV (x(t), t)/dt ≤ c1V (x(t), t). Hence, by Lemma 1.1, it follows that for t > t0

V (x(t), t)≤ V (x0, t0) exp{c1(t − t0)}.
If τR denotes a solution of the equation

V (x0, t0) exp{c1(τR − t0)} = VR,

then condition (1.9) is obviously satisfied. Thus all assumptions of Theorem 1.2 are
now satisfied. This completes the proof. �

2General conditions for every solution to be unboundedly continuable have been obtained by Oka-
mura and are described in [178]. These results imply Theorem 1.3.
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Let us now consider conditions under which the solutions of (1.6) are bounded
for t > 0. There exist in the literature various definitions of boundedness. We shall
adopt here only one which is most suitable for our purposes, referring the reader for
more details to [285], [178], and [51, 52].

The system (1.6) is said to be dissipative for t > 0 if there exists a positive num-
ber R > 0 such that for each r > 0, beginning from some time T (r, t0) ≥ t0, the
solution x(t, x0, t0) of problem (1.6), (1.7), x0 ∈ Ur , t0 > 0, lies in the domain UR .
(Yoshizawa [285] calls the solutions of such a system equi-ultimately bounded.)

Theorem 1.4 3 A sufficient condition for the system (1.6) to be dissipative is that
there exist a nonnegative Lyapunov function V (x, t) ∈ C on E with the properties

VR = inf
(x,t)∈U c

R×I
V (x, t)→ ∞ as R→ ∞, (1.21)

d0V

dt
<−cV (c= const> 0). (1.22)

Proof It follows from Lemma 1.1 and from (1.22) that for t > t0, x0 ∈Ur ,
V (x(t), t)≤ V (x0, t0)e

−c(t−t0) ≤ e−c(t−t0) sup
|x0|<r

V (x0, t0).

Therefore V (x(t), t) < 1 for t > T (t0, r). This inequality and (1.21) imply the state-
ment of the theorem. �

Remark 1.1 The converse theorem is also valid: Yoshizawa [285] proves that for
each system which is dissipative in the above sense there exists a nonnegative func-
tion V with properties (1.21), (1.22), provided F(x, t) satisfies a Lipschitz condition
in every bounded subset of E.

Remark 1.2 It is easy to show that the conclusion of Theorem 1.4 remains valid
if it is merely assumed that (1.22) holds in a domain U c

R for some R > 0, and in
the domain UR the functions V and d0V/dt are bounded above. To prove this, it is
enough to apply Lemma 1.1 to the inequality

d0V

dt
<−cV + c1,

which is valid under the above assumptions for some positive constant c1 and for
(x, t) ∈E.

In the sequel we shall need a certain frequently used estimate; its proof, analo-
gous to the proof of Lemma 1.1, may be found, e.g., in [23].

3See [285].
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Lemma 1.2 (Gronwall–Bellman Lemma) Let u(t) and v(t) be nonnegative func-
tions and let k be a positive constant such that for t ≥ s

u(t)≤ k +
∫ t

s

u(t1)v(t1) dt1.

Then for t ≥ s

u(t)≤ k exp

{∫ t

s

v(t1) dt1

}

.

1.3 Stochastic Processes as Solutions of Differential Equations

Let ξ(t,ω) (t ≥ 0) be a separable measurable stochastic process with values in R
k ,

and let G(x, t, z) (x ∈ R
l , t ≥ 0, z ∈ R

k) be a Borel-measurable function of (x, t, z)
satisfying the following conditions:

1. There exists a stochastic process B(t,ω) ∈ L such that for all xi ∈ R
l

|G(x2, t, ξ(t,ω))−G(x1, t, ξ(t,ω))| ≤ B(t,ω)|x1 − x2|. (1.23)

2. The process G(0, t, ξ(t,ω)) is in L, i.e., for every T > 0,

P
{∫ T

0
|G(0, t, ξ(t,ω))|dt <∞

}

= 1. (1.24)

We shall show presently that under these assumptions the equation

dx

dt
=G(x, t, ξ(t,ω)) (1.25)

with initial condition

x(t0)= x0(ω) (1.26)

determines a new stochastic process in R
l for t ≥ t0.

Theorem 1.5 If conditions (1.23) and (1.24) are satisfied, then problem (1.25),
(1.26) has a unique solution x(t,ω), determining a stochastic process which is al-
most surely absolutely continuous for all t ≥ t0. For each t ≥ t0, this solution admits
the estimate

|x(t,ω)− x0(ω)| ≤
∫ t

t0

|G(x0(ω), s, ξ(s,ω))|ds exp

{∫ t

t0

B(s,ω)ds

}

. (1.27)

The proof is analogous to that of Theorem 1.2.
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Example 1.1 Consider the linear system

dx

dt
=A(t,ω)x + b(t,ω), x(0)= x0(ω).

If ‖A(t,ω)‖, |b(t,ω)| ∈ L, then it follows from Theorem 1.5 that this system has a
solution which is a continuous stochastic process for all t > 0.

The global Lipschitz condition (1.23) fails to hold in many important appli-
cations. Most frequently the following local Lipschitz condition holds: For each
R > 0, there exists a stochastic process BR(t,ω) ∈ L such that if xi ∈UR , then

|G(x2, t, ξ(t,ω))−G(x1, t, ξ(t,ω))| ≤ BR(t,ω)|x2 − x1|. (1.28)

As we have already noted in Sect. 1.2, condition (1.28) does not prevent the sample
function escaping to infinity in a finite time, even in the deterministic case. However,
we have the following theorem which is a direct corollary of Theorem 1.2.

Theorem 1.6 Let τ(R,ω) be a family of random variables such that τ(R,ω) ↑ ∞
almost surely as R→ ∞. Suppose that these random variables satisfy almost surely
for each solution x(t,ω) of problem (1.25), (1.26) (if a solution exists) the following
inequality:

inf{t : |x(t,ω)| ≥R} ≥ τ(R,ω). (1.29)

Assume moreover that conditions (1.24) and (1.28) are satisfied. Then the solution
of problem (1.25), (1.26) is almost surely unique and it determines an absolutely
continuous stochastic process for all t ≥ t0 (unboundedly continuable for t ≥ t0).

Assume that the function G in (1.25) depends linearly on the third variable, i.e.,

dx

dt
= F(x, t)+ σ(x, t)ξ(t,ω). (1.30)

(Here σ is a k× l matrix, ξ a vector in R
k and k a positive integer.) Then the solution

of (1.30) can be unboundedly continued if there exists a Lyapunov function of the
truncated system

dx

dt
= F(x, t). (1.31)

Let us use d(1)/dt to denote the Lyapunov operator of the system (1.30), retaining
the notation d0/dt for the Lyapunov operator of the system (1.31).

Theorem 1.7 Let ξ(t,ω) ∈ L be a stochastic process, F a vector and σ a matrix
satisfying the local Lipschitz condition (1.16), where F(0, t) ∈ L and

sup
Rl×{t>t0}

‖σ(x, t)‖< c2. (1.32)
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Assume that a Lyapunov function V (x, t) ∈ C0 of the system (1.31) exists with

VR = inf
U c
R×{t>t0}

V (x, t)→ ∞ as R→ ∞, (1.33)

d0V

dt
< c1V. (1.34)

Then the solution of problem (1.30), (1.26) exists and determines an absolutely
continuous stochastic process for all t ≥ t0.

To prove this theorem we need the following lemma.

Lemma 1.3 If V (x, t) ∈ C0, then for almost all t the following relation holds almost
surely:

d(1)V (x, t)

dt
≤ d0V (x, t)

dt
+B‖σ(x, t)‖|ξ(t,ω)|, (1.35)

where B is the constant in the condition (1.16).

Proof It can be easily verified that the difference x(t + h,ω,x, t)− x(t + h,x, t)

between solutions of (1.30) and (1.31) with the initial condition x(t)= x, satisfies
for almost all t , ω the inequality

|x(t + h,ω,x, t)− x(t + h,x, t)| ≤ h‖σ(x, t)‖|ξ(t,ω)| + o(h) (h→ 0).

This inequality, together with (1.16), implies (1.35). �

Proof of Theorem 1.7 We shall show that the assumptions of Theorem 1.6 are sat-
isfied. Since conditions (1.24) and (1.28) are obviously satisfied, it will suffice to
prove (1.29). Let x(t,ω) be a solution of problem (1.30), (1.26). It follows from the
assumptions of the theorem and from Lemma 1.3 that the function V (x(t,ω), t) is
absolutely continuous, and for almost all t , ω

dV (x(t,ω), t)

dt
≤ d0V (x(t,ω), t)

dt
+B‖σ(x(t,ω), t)‖|ξ(t,ω)|

≤ c1V (x(t,ω), t)+Bc2|ξ(t,ω)|.
Combining this with Lemma 1.1 we get that almost surely

V (x(t,ω), t)≤ ec1(t−t0)
[

V (x0(ω), t0)+Bc2

∫ t

t0

|ξ(s,ω)|ds
]

. (1.36)

Let τR(ω) denote a solution of the equation

ec1(τR−t0)
[

V (s0(ω), t0)+Bc2

∫ τR

t0

|ξ(s,ω)|ds
]

= VR. (1.37)
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It now follows from the relation ξ(t,ω) ∈ L and from (1.33) that τR ↑ ∞ almost
surely as R→ ∞. (1.29) follows now from (1.36) and (1.37). Thus all assumptions
of Theorem 1.6 are satisfied. �

Remark 1.3 If the relation |ξ(t,ω)|(1+ε)/ε ∈ L holds for some ε > 0, condition
(1.32) can be slightly weakened and replaced by the condition

‖σ(x, t)‖1+ε ≤ c3V (x, t). (1.38)

To prove this, we need only use Young’s inequality

|ab|< |a|p
p

+ |b|q
q

(

1

p
+ 1

q
= 1, p, q > 0

)

(1.39)

for estimating ‖σ‖|ξ |. In particular, if for each T > 0, there is a constant c such that
the process ξ(t,ω) satisfies the condition

P
{

sup
0≤t≤T

|ξ(t,ω)|< c
}

= 1,

then it is enough to require that inequality (1.38) holds for sufficiently small ε > 0.

Remark 1.4 The conditions of Theorem 1.7 guarantee that the solutions of (1.30) are
unboundedly continuable, uniformly in the following sense: For all initial conditions
x0(ω) which satisfy the relation

P{|x0(ω)|<K} = 1 (1.40)

for some K , one can find a family of random variables τ(R,ω) satisfying condition
(1.29). Since

P
{

max
0≥t≥T

|x(t,ω, x0(ω))|>R
}

≤ P{τR < T },
this implies in particular that for every ε > 0, T > 0 andK > 0 there exists an R > 0
such that

P
{

max
0≥t≥T

|x(t,ω, x0(ω))|>R
}

> ε

for all x0(ω) satisfying condition (1.40).

Example 1.2 In the one-dimensional case with the Lyapunov function V (x, t) =
|x|+ 1 we get the following result. If F ∈ C, σ ∈ C, σ satisfies the condition (1.32),
while ξ(t,ω),F (0, t) ∈ L, then a sufficient condition for the solutions of problem
(1.30), (1.26) to be unboundedly extendable is that F(x, t) signx < c(|x| + 1) for
some c > 0.

Example 1.3 Consider the equation

x′′ + f (x)x′ + g(x)= σ(x, x′)ξ(t,ω). (1.41)
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This equation describes the process “at the output” of many mechanical systems
driven by a stochastic process. In particular, for f (x) = x2 − 1, g(x) = x and
σ(x, x′) = 1, the output process is that of a system described by a Van der Pol
equation. Let the function f (x) be bounded from below and assume that

|σ(x, x′)|< c1,

∣

∣

∣

∣

g(x)

x

∣

∣

∣

∣

< c2.

Then

V (x, y)= (x2 + y2)1/2 ∈ C0

is obviously a Lyapunov function for the system

dx

dt
= y,

dy

dt
= −f (x)y − g(x).

Moreover V satisfies conditions (1.33) and (1.34). Applying Theorem 1.7, we see
that the process in (1.41) exists for all t ≥ t0 provided that ξ(t,ω) ∈ L.

1.4 Boundedness in Probability of Stochastic Processes Defined
by Systems of Differential Equations

A stochastic process ξ(t,ω) (t ≥ 0) is said to be bounded in probability if the ran-
dom variables |ξ(t,ω)| are bounded in probability uniformly in t , i.e.,

sup
t>0

P{|ξ(t,ω)|>R} → 0 as R→ ∞.

We shall say that a random variable x0(ω) is in the class AR0 if

P{|x0(ω)|<R0} = 1. (1.42)

The system (1.25) will be called dissipative if the random variables
|x(t,ω, x0, t0)| are bounded in probability, uniformly in t ≥ t0 whenever x0(ω) ∈AR
for some R > 0.

It is readily seen that this definition agrees with that of a deterministic dissipative
system (see Sect. 1.2).

Theorem 1.8 Let V (x, t) ∈ C0 be a non-negative Lyapunov function, defined on the
domain E which satisfies condition (1.33) and the condition

d0V

dt
≤ −c1V (c1 = const> 0). (1.43)

Let F and σ satisfy a local Lipschitz condition (1.16), and let σ also satisfy condi-
tion (1.32).
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Then the system (1.30) is dissipative for every stochastic process ξ(t,ω) such
that

sup
t>0

E|ξ(t,ω)|<∞. (1.44)

Before proving this theorem, we shall prove a lemma which yields a convenient
for further applications form of Chebyshev’s inequality.

Lemma 1.4 Let V (x, t) be a nonnegative function and η(t,ω) a stochastic process
such that EV (η(t,ω), t) exists.

Then

P{|η(t,ω)|>R} ≤ EV (η(t,ω), t)
infU c

R×{s>t0} V (x, s)
. (1.45)

The proof follows from the following chain of inequalities:

EV (η(t,ω), t)≥
∫

|η(t,ω)|>R
V (η(t,ω), t)P(dω)

≥ inf
U c
R×{s>t0}

V (x, s)P{|η(t,ω)|>R}. �

Proof of Theorem 1.8 Let x(t,ω) be a solution of problem (1.30), (1.26). Then the
function V (x(t,ω), t) is differentiable for almost all t , ω. By Lemma 1.3 and by
(1.43),

dV (x(t,ω), t)

dt
≤ d0V (x(t,ω), t)

dt
+Bc2|ξ(t,ω)|

≤ −c1V (x(t,ω), t)+Bc2|ξ(t,ω)|.
Hence, by Lemma 1.1,

V (x(t,ω), t)≤ V (x0(ω), t0)e
c1(t−t0) +Bc2

∫ t

t0

ec1(s−t)|ξ(s,ω)|ds.

Calculating the expectation of both sides of this inequality and using (1.44), we see
that the function EV (x(t,ω), t) is bounded uniformly for t ≥ t0 and for all x0(ω)

satisfying condition (1.42). Together with (1.45), this implies the theorem. �

Remark 1.5 It is clear from Remark 1.1 that the existence of a function V satisfying
conditions (1.33), (1.43) is not only sufficient but also necessary for the system
(1.30) to be dissipative for each stochastic process ξ(t,ω) satisfying (1.44).

Remark 1.6 If for some ε > 0

sup
t>0

E|ξ(t,ω)|(1+ε)/ε <∞,


