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Preface

Sein Geist drang in die tiefsten Geheimnisse der Zahl, des Raumes und
der Natur; er mafl den Lauf der Gestirne, die Gestalt und die Kréafte der
Erde; die Entwicklung der mathematischen Wissenschaft eines kommenden
Jahrhunderts trug er in sich.!

Lines under the portrait of Carl Friedrich Gauss (1777-1855)
in the German Museum in Munich

Force equals curvature.
The basic principle of modern physics

A theory is the more impressive, the simpler are its premises, the more
distinct are the things it connects, and the broader is the range of appli-
cability.

Albert Einstein (1879-1955)

Textbooks should be attractive by showing the beauty of the subject.
Johann Wolfgang von Goethe (1749-1832)

The present book is the third volume of a comprehensive introduction to the math-
ematical and physical aspects of modern quantum field theory which comprises the
following six volumes:

Volume I: Basics in Mathematics and Physics
Volume II: Quantum Electrodynamics

Volume III: Gauge Theory

Volume IV: Quantum Mathematics

Volume V: The Physics of the Standard Model
Volume VI: Quantum Gravitation and String Theory.

It is our goal to build a bridge between mathematicians and physicists based on
challenging questions concerning the fundamental forces in

e the macrocosmos (the universe) and
e the microcosmos (the world of elementary particles).

! His mind pierced the deepest secrets of numbers, space, and nature; he measured
the orbits of the planets, the form and the forces of the earth; in his mind he
carried the mathematical science of a coming century.

VII
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The six volumes address a broad audience of readers, including both undergraduate
and graduate students, as well as experienced scientists who want to become familiar
with quantum field theory, which is a fascinating topic in modern mathematics and
physics, full of many crucial open questions.

For students of mathematics, detailed knowledge of the physical background
helps to enliven mathematical subjects and to discover interesting interrelation-
ships between quite different mathematical topics. For students of physics, fairly
advanced mathematical subjects are presented that go beyond the usual curriculum
in physics. The strategies and the structure of the six volumes are thoroughly dis-
cussed in the Prologue to Volume I. In particular, we will try to help the reader to
understand the basic ideas behind the technicalities. In this connection, the famous
ancient story of Ariadne’s thread is discussed in the Preface to Volume I:

In terms of this story, we want to put the beginning of Ariadne’s thread in
quantum field theory into the hands of the reader.

There are four fundamental forces in the universe, namely,

gravitation,

electromagnetic interaction (e.g., light),

strong interaction (e.g., the binding force of the proton),
weak interaction (e.g., radioactive decay).

In modern physics, these four fundamental forces are described by

e Einstein’s theory of general relativity (gravitation), and
e the Standard Model in elementary particle physics (electromagnetic, strong, and
weak interaction).

The basic mathematical framework is provided by gauge theory:

The main idea is to describe the four fundamental forces by the curvature
of appropriate fiber bundles.

In this way, the universal principle force equals curvature is implemented. There are
many open questions:

e A mathematically rigorous quantum field theory for the quantized version of the
Standard Model in elementary particles has yet to be found.

e We do not know how to combine gravitation with the Standard Model in ele-
mentary particle physics (the challenge of quantum gravitation).

e Astrophysical observations show that 96 percent of the universe consists of both
dark matter and dark energy. However, both the physical structure and the
mathematical description of dark matter and dark energy are unknown.

One of the greatest challenges of the human intellect is the discovery of
a unified theory for the four fundamental forces in nature based on first
principles in physics and rigorous mathematics.

In the present volume, we concentrate on the classical aspects of gauge theory
related to curvature. These have to be supplemented by the crucial, but elusive
quantization procedure. The quantization of the Maxwell-Dirac system leads to
quantum electrodynamics (see Vol. IT). The quantization of both the full Standard
Model in elementary particle physics and the quantization of gravitation will be
studied in the volumes to come.

One cannot grasp modern physics without understanding gauge theory,
which tells us that the fundamental interactions in nature are based on
parallel transport, and in which forces are described by curvature, which
measures the path-dependence of the parallel transport.
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Gauge theory is the result of a fascinating long-term development in both math-
ematics and physics. Gauge transformations correspond to a change of potentials,
and physical quantities measured in experiments are invariants under gauge trans-
formations. Let us briefly discuss this.

Gauss discovered that the curvature of a two-dimensional surface is an intrinsic
property of the surface. This means that the Gaussian curvature of the surface can
be determined by using measurements on the surface (e.g., on the earth) without
using the surrounding three-dimensional space. The precise formulation is provided
by Gauss’ theorema egregium (the egregious theorem). Bernhard Riemann (1826—
1866) and Elie Cartan (1859-1951) formulated far-reaching generalizations of the
theorema egregium which lie at the heart of

e modern differential geometry (the curvature of general fiber bundles), and
e modern physics (gauge theories).

Interestingly enough, in this way,

e Einstein’s theory of general relativity (the curvature of the four-dimensional
space-time manifold), and

e the Standard Model in elementary particle physics (the curvature of a specific
fiber bundle with the symmetry group U(1) x SU(2) x SU(3))

can be traced back to Gauss’ theorema egregium.

In classical mechanics, a large class of forces can be described by the differen-
tiation of potentials. This simplifies the solution of Newton’s equation of motion
and leads to the concept of potential energy together with energy conservation (for
the sum of kinetic and potential energy). In the 1860s, Maxwell determined that
the computation of electromagnetic fields can be substantially simplified by intro-
ducing potentials for both the electric and the magnetic field (the electromagnetic
four-potential).

Gauge theory generalizes this by describing forces (interactions) by the
differentiation of generalized potentials (also called connections).

The point is that gauge transformations change the generalized potentials, but not
the essential physical effects.

Physical quantities, which can be measured in experiments, have to be in-
variant under gauge transformations.

Parallel to this physical situation, in mathematics the Riemann curvature tensor can
be described by the differentiation of the Christoffel symbols (also called connection
coefficients or geometric potentials). The notion of the Riemann curvature tensor
was introduced by Riemann in order to generalize Gauss’ theorema egregium to
higher dimensions. In 1915, Einstein discovered that the Riemann curvature tensor
of a four-dimensional space-time manifold can be used to describe gravitation in
the framework of the theory of general relativity.

The basic idea of gauge theory is the transport of physical information
along curves (also called parallel transport).

This generalizes the parallel transport of vectors in the three-dimensional Euclidean
space of our intuition.

In 1917, it was discovered by Levi- Civita that the study of curved manifolds
in differential geometry can be based on the motion of parallel transport of
tangent vectors (velocity vectors).
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In particular, curvature can be measured intrinsically by transporting a tangent
vector along a closed path. This idea was further developed by Elie Cartan in
the 1920s (the method of moving frames) and by Ehresmann in the 1950s (the
connection of both principal fiber bundles and their associated vector bundles).
The very close relation between

e gauge theory in modern physics (the transport of local SU(2)-phase factors in-
vestigated by Yang and Mills in 1954), and

e the formulation of differential geometry in terms of fiber bundles in modern
mathematics

was only noticed by physicists in 1975 (see T. Wu and C. Yang, Concept of non-
integrable phase factors and global formulation of gauge fields, Phys. Rev. D12
(1975), 3845-3857).

The present Volume III on gauge theory and the following Volume IV on quan-
tum mathematics form a unified whole. The two volumes cover the following topics:

Volume III: Gauge Theory

Part I: The Euclidean Manifold as a Paradigm

Chapter 1: The Euclidean Space Es3 (Hilbert Space and Lie Algebra Structure)

Chapter 2: Algebras and Duality (Tensor Algebra, Grassmann Algebra, Clifford
Algebra, Lie Algebra)

Chapter 3: Representations of Symmetries in Mathematics and Physics

Chapter 4: The Euclidean Manifold E?

Chapter 5: The Lie Group U(1) as a Paradigm in Harmonic Analysis and Geometry

Chapter 6: Infinitesimal Rotations and Constraints in Physics

Chapter 7: Rotations, Quaternions, the Universal Covering Group, and the Elec-
tron Spin

Chapter 8: Changing Observers — A Glance at Invariant Theory Based on the
Principle of the Correct Index Picture

Chapter 9: Applications of Invariant Theory to the Rotation Group

Chapter 10: Temperature Fields on the Euclidean Manifold E?

Chapter 11: Velocity Vector Fields on the Euclidean Manifold E®

Chapter 12: Covector Fields on the Euclidean Manifold E* and Cartan’s Exterior
Differential — the Beauty of Differential Forms

Part II: Ariadne’s Thread in Gauge Theory

Chapter 13: The Commutative Weyl U(1)-Gauge Theory and the Electromagnetic
Field

Chapter 14: Symmetry Breaking

Chapter 15: The Noncommutative Yang-Mills SU(N)-Gauge Theory

Chapter 16: Cocycles and Observers

Chapter 17: The Axiomatic Geometric Approach to Vector Bundles and Principal
Bundles

Part III: Einstein’s Theory of Special Relativity

Chapter 18: Inertial Systems and Einstein’s Principle of Special Relativity

Chapter 19: The Relativistic Invariance of the Maxwell Equations

Chapter 20: The Relativistic Invariance of the Dirac Equations and the Electron
Spin
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Part IV: Ariadne’s Thread in Cohomology

Chapter 21: Exact Sequences
Chapter 22: Electrical Circuits as a Paradigm in Homology and Cohomology
Chapter 23: The Electromagnetic Field and the de Rham Cohomology.

Volume IV: Quantum Mathematics

Part I: The Hydrogen Atom as a Paradigm

Chapter 1: The Non-Relativistic Hydrogen Atom via Lie Algebra, Gauss’s Hyper-
geometric Functions, von Neuman’s Functional Analytic Approach, the Weyl—
Kodaira Theory, Gelfand’s Generalized Eigenfunctions, and Supersymmetry

Chapter 2: The Dirac Equation and the Relativistic Hydrogen Atom via the Clif-
ford Algebra of the Minkowski Space

Part II: The Four Fundamental Forces in the Universe

Chapter 3: Relativistic Invariance and the Energy—Momentum Tensor in Classical
Field Theories

Chapter 4: The Standard Model for Electroweak and Strong Interaction in Particle
Physics

Chapter 5: Gravitation, Einstein’s Theory of General Relativity, and the Standard
Model in Cosmology

Part III: Lowest-Order Radiative Corrections in Quantum Electrodynamics (QED)

Chapter 6: Dimensional Regularization for the Feynman Propagators in QED
(Quantum Electrodynamics)

Chapter 7: The Electron in an External Electromagnetic Field (Renormalization
of Electron Mass and Electron Charge)

Chapter 8: The Lamb Shift

Part IV: Conformal Symmetry

Chapter 9: Conformal Transformations According to Gauss, Riemann, and Licht-
enstein

Chapter 10: Compact Riemann Surfaces

Chapter 11: Minimal Surfaces

Chapter 12: Strings and the Graviton

Chapter 13: Complex Function Theory and Conformal Quantum Field Theory

Part V: Models in Quantum Field Theory

Part VI: Distributions and the Epstein—Glaser Approach to Perturbative Quantum
Field Theory

Part VII: Nets of Operator Algebras and the Haag—Kastler Approach to Quantum
Field Theory

Part VIII: Symmetry and Quantization — the BRST Approach to Quantum Field
Theory

Part IX: Topology, Quantization, and the Global Structure of Physical Fields

Part X: Quantum Information.
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Readers who want to understand modern differential geometry and modern physics
as quickly as possible should glance at the Prologue of the present volume and at
Chaps. 13 through 17 on Ariadne’s thread in gauge theory.

Cohomology plays a fundamental role in modern mathematics and physics.

It turns out that cohomology and homology have their roots in the rules for
electrical circuits formulated by Kirchhoff in 1847.

This helps to explain why the Maxwell equations in electrodynamics are closely
related to cohomology, namely, de Rham cohomology based on Cartan’s calculus
for differential forms and the corresponding Hodge duality on the Minkowski space.
Since the Standard Model in particle physics is obtained from the Maxwell equations
by replacing the commutative gauge group U(1) with the noncommutative gauge
group U(1) x SU(2) x SU(3), it should come as no great surprise that de Rham
cohomology also plays a key role in the Standard Model in particle physics via
the theory of characteristic classes (e.g., Chern classes which were invented by
Shing-Shen Chern in 1945 in order to generalize the Gauss—Bonnet theorem for
two-dimensional manifolds to higher dimensions).

It is our goal to show that the gauge-theoretical formulation of modern physics
is closely related to important long-term developments in mathematics pioneered by
Gauss, Riemann, Poincaré and Hilbert, as well as Grassmann, Lie, Klein, Cayley,
Elie Cartan and Weyl. The prototype of a gauge theory in physics is Maxwell’s
theory of electromagnetism. The Standard Model in particle physics is based on the
principle of local symmetry. In contrast to Maxwell’s theory of electromagnetism,
the gauge group of the Standard Model in particle physics is a noncommutative
Lie group. This generates additional interaction forces which are mathematically
described by Lie brackets.

We also emphasize the methods of invariant theory. In terms of physics, differ-
ent observers measure different values in their experiments. However, physics does
not depend on the choice of observers. Therefore, one needs both an invariant ap-
proach and the passage to coordinate systems which correspond to the observers, as
emphasized by Einstein in the theory of general relativity and by Dirac in quantum
mechanics. The appropriate mathematical tool is provided by invariant theory.
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