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Preface

Stochastic analysis is currently undergoing a period of intensive research and
various new developments, motivated in part by the need to model, understand,
forecast, and control the behavior of many natural phenomena that evolve in time in
a random way. Such phenomena appear in the fields of finance, telecommunications,
economics, biology, geology, demography, physics, chemistry, signal processing,
and modern control theory, to mention just a few.

Often, it is very convenient to use stochastic differential equations and stochastic
processes to study stochastic dynamics. In such cases, research needs the guarantee
of some theoretical properties, such as the existence and uniqueness of the stochastic
equation solution. Without a deep understanding of the nature of the stochastic pro-
cess this is seldom possible. The theoretical background of both stochastic processes
and stochastic differential equations are therefore very important.

Nowadays, quite a few stochastic differential equations can be solved by means
of exact methods. Even if this solution exists, it cannot necessarily be used for
computer simulations, in which the continuous model is replaced by a discrete one.
The problems of “ill-posed” tasks, the “stiffness” or “stability” of the system limit
numerical approximations of the stochastic differential equation. As a result, new
approaches for the numerical solution and, consequently, new numerical algorithms
are also very important.

This volume contains 8 refereed papers dealing with these topics, chosen from
among the contributions presented at the international conference on Stochastic
Analysis and Applied Probability (SAAP 2010), which was held at Yasmine-
Hammamet, Tunisia, from 7 to 9 October 2010. This conference was organized by
the “Applied Mathematics & Mathematical Physics” research unit of the preparatory
institute to the military academies of Sousse, Tunisia. It brought together some 60
researchers and PhD students, from 14 countries and 5 continents. Through lectures,
communications, and posters, these researchers reported on theoretical, numerical,
or application work as well as on significant results obtained for several topics
within the field of stochastic analysis and probability, particularly for “Stochastic
processes and stochastic differential equations.” The conference program was
planned by an international committee chaired by Mounir Zili (Preparatory Institute
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vi Preface

to the Military Academies of Sousse, Tunisia) and consisted of Darya Filatova (Jan
Kochanowski University in Kielce, Poland), Ibtissem Hdhiri (Faculty of Sciences of
Gabès, Tunisia), Ciprian A. Tudor (University of Lille, France), and Mouna Ayachi
(Faculty of Sciences of Monastir, Tunisia).

As this book emphasizes the importance of numerical and theoretical studies
of the stochastic differential equations and stochastic processes, it will be useful
for a wide spectrum of researchers in applied probability, stochastic numerical and
theoretical analysis and statistics, as well as for graduate students.

To make it more complete and accessible for graduate students, practitioners,
and researchers, we have included a survey dedicated to the basic concepts of
numerical analysis of the stochastic differential equations, written by Henri Schurz.
This survey is valuable not only due to its excellent theoretical conception with
respect to modern tendencies, but also with regard to its comprehensive concept
of the dynamic consistency of numerical methods for the stochastic differential
equations. In a second paper, motivated by its applications in econometrics, Ciprian
Tudor develops an asymptotic theory for some regression models involving standard
Brownian motion and the standard Brownian sheet. The result proved in this paper is
an impressive example of convergence in distribution to a non-Gaussian limit. The
paper “General shot noise processes and functional convergence to stable processes”
by Wissem Jedidi, Jalal Almhana, Vartan Choulakian, and Robert McGorman also
addresses the topic of stochastic processes, and the authors consider a model appro-
priate for the network traffic consisting of an infinite number of sources linked to a
unique server. This model is based on a general Poisson shot noise representation,
which is a generalization of a compound Poisson process. In the fourth paper of
this volume, Charles El-Nouty deals with the lower classes of the sub-fractional
Brownian motion, which has been introduced to model some self-similar Gaussian
processes, with non-stationary increments. Then, in a paper by Mohamed Erraoui
and Youssef Ouknine, the bounded variation of the flow of a stochastic differential
equation driven by a fractional Brownian motion and with non-Lipschitz coefficients
is studied. In the sixth paper, Antoine Ayache and Qidi Peng develop an extension of
several probabilistic and statistical results for stochastic volatility models satisfying
some stochastic differential equations for cases in which the fractional Brownian
motion is replaced by the multifractional Brownian motion. The advantage of the
multifractional stochastic volatility models is that they allow account variations
with respect to time of volatility local roughness. The seventh paper was written
by Archil Gulisashvili and Josep Vives and addresses two-sided estimates for the
distribution density of standard models, perturbed by a double exponential law. The
results obtained in this paper can especially be used in the study of distribution
densities arising in some stochastic stock price models. And in the last paper in the
volume, Mario Lefebvre explicitly solves the problem of maximizing a function of
the time spent by a stochastic process by arriving at solutions of some particular
stochastic differential equations.

All the papers presented in this book were carefully reviewed by the members of
the SAAP 2010 Scientific Committee, a list of which is presented in the appendix.
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Chapter 1
Basic Concepts of Numerical Analysis
of Stochastic Differential Equations Explained
by Balanced Implicit Theta Methods

Henri Schurz

Abstract We present the comprehensive concept of dynamic consistency of
numerical methods for (ordinary) stochastic differential equations. The concept
is illustrated by the well-known class of balanced drift-implicit stochastic Theta
methods and relies on several well-known concepts of numerical analysis to
replicate the qualitative behaviour of underlying continuous time systems under
adequate discretization. This involves the concepts of consistency, stability,
convergence, positivity, boundedness, oscillations, contractivity and energy
behaviour. Numerous results from literature are reviewed in this context.

1.1 Introduction

Numerous monographs and research papers on numerical methods of stochastic
differential equations are available. Most of them concentrate on the construction
and properties of consistency. A few deal with stability and longterm properties.
However, as commonly known, the replication of qualitative properties of numerical
methods in its whole is the most important issue for modeling and real-world
applications. To evaluate numerical methods in a more comprehensive manner,
we shall discuss the concept of dynamic consistency of numerical methods for
stochastic differential equations. For the sake of precise illustration, we will treat the
example class of balanced implicit outer Theta methods. This class is defined by

H. Schurz (�)
Southern Illinois University, Department of Mathematics, 1245 Lincoln Drive, Carbondale,
IL 62901, USA
e-mail: hschurz@math.siu.edu

M. Zili and D.V. Filatova (eds.), Stochastic Differential Equations and Processes,
Springer Proceedings in Mathematics 7, DOI 10.1007/978-3-642-22368-6 1,
© Springer-Verlag Berlin Heidelberg 2012
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XnC1 D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

XnC Œ�na.tnC1; XnC1/C.I��n/a.tn; Xn/� hnC
mX

jD1
bj .tn; Xn/�W

j
n

C
mX

jD0
cj .tn; Xn/.Xn � XnC1/j�W j

n j
(1.1)

with appropriate (bounded) matrices cj with continuous entries, where I is the unit
matrix in IRd�d and

�W 0
n D hn; �W j

n D W j .tnC1/�W j .tn/

along partitions

0 D t0 < t1 < : : : < tn < tnC1 < : : : < tnT D T < C1

of finite time-intervals Œ0; T �. These methods are discretizations of d -dimensional
ordinary stochastic differential equations (SDEs), [3, 14, 32, 33, 81, 86, 102, 108]

dX.t/Da.t; X.t//dtC
mX

jD1
bj .t; X.t//dW j .t/

0

@D
mX

jD0
bj .t; X.t//dW j .t/

1

A (1.2)

(with b0 D a, W 0.t/D t), driven by i.i.d. Wiener processes W j and started at
adapted initial values X.0/ D x0 2 IRd . The vector fields a and bj are supposed
to be sufficiently smooth throughout this survey. All stochastic processes are
constructed on the complete probability basis .˝;F ; .Ft /t�0; IP /.

The aforementioned Theta methods (1.1) represent a first natural generalization
of explicit and implicit Euler methods. Indeed, they are formed by a convex
linear combinations of explicit and implicit Euler increment functions of the
drift part, whereas the diffusion part is explicitly treated due to the problem of
adequate integration within one and the same stochastic calculus. The balanced
terms cj are appropriate matrices and useful to control the pathwise (i.e. almost
sure) behaviour and uniform boundedness of those approximations. The parameter
matrices .�n/n2IN 2 IRd�d determine the degree of implicitness and simplective
behaviour (energy- and area-preserving character) of related approximations. Most
popular representatives are those with simple scalar choices �n D �nI where I
denotes the unit matrix in IRd�d and �n 2 IR1. Originally, without balanced terms
cj , they were invented by Talay [138] in stochastics, who proposed �n D �I with
autonomous scalar choices � 2 Œ0; 1�. This family with matrix-valued parameters
� 2 IRd�d has been introduced by Ryashko and Schurz [116] who also proved
their mean square convergence with an estimate of worst case convergence rate 0:5.
If � D 0 then its scheme reduces to the classical (forward) Euler method (see
Maruyama [90], Golec et al. [35–38], Guo [39, 40], Gyöngy [41, 42], Protter and
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Talay [109], Römisch & Wakolbinger [115], Tudor & Tudor [143] among others),
if � D 1 to the backward Euler method which is also called (drift-)implicit Euler
method (Hu [55]), and if � D 0:5 to the (drift-implicit) trapezoidal method,
reducing to the scheme

XnC1 D Xn C 1

2
Œa.tnC1; XnC1/C a.tn; Xn/� hn C

mX

jD1
bj .tn; Xn/�W

j
n (1.3)

without balanced terms cj . A detailed study of the qualitative dynamic behaviour of
these methods can be found in Stuart and Peplow [136] in deterministic numerical
analysis (in the sense of spurious solutions), and in Schurz [120] in stochastic
numerical analysis.

A slightly different class of numerical methods is given by the balanced implicit
inner Theta methods

XnC1D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

XnCa .tnC�nhn;�nXnC1C.I��n/Xn/ hn C
mX

jD1
bj .tn; Xn/�W

j
n

C
mX

jD0
cj .tn; Xn/.Xn � XnC1/j�W j

n j
(1.4)

where �n 2 IR, �n 2 IRd�d such that local algebraic resolution can be guaranteed
always. The most known representative of this class (1.4) with �n D 0:5I

and without balanced terms cj is known as the drift-implicit midpoint method
governed by

XnC1 D Xn C a

�
tnC1 C tn

2
;
XnC1 CXn

2

�

�n C
mX

jD1
bj .tn; Xn/�W

j
n : (1.5)

This method is superior for the integration of conservation laws and Hamiltonian
systems. Their usage seems to be very promising for the control of numerical
stability, area-preservation and boundary laws in stochastics as well. The drawback
for their practical implementation can be seen in the local resolution of nonlinear
algebraic equations which is needed in addition to explicit methods. However, this
fact can be circumvented by its practical implementation through predictor-corrector
methods (PCMs), their linear- (LIMs) or partial-implicit (PIMs) derivates (versions).
In passing, note that the partitioned Euler methods (cf. Strommen–Melbo and
Higham [135]) are also a member of stochastic Theta methods (1.1) with the special
choice of constant implicitness-matrix

�n D
�
0 0

1 1

�

:



4 H. Schurz

In passing, note that stochastic Theta methods (1.1) represent the simplest class of
stochastic Runge-Kutta methods. Despite their simplicity, they are rich enough to
cover many aspects of numerical approximations in an adequate manner.

The purpose of this survey is to compile some of the most important facts
on representatives of classes (1.1) and (1.4). Furthermore, we shall reveal the
goodness of these approximation techniques in view of their dynamic consistency.
In the following sections we present and discuss several important key concepts
of stochastic numerical analysis explained by Theta methods. At the end we
finalize our presentation with a summary leading to the governing concept of
dynamic consistency unifying the concepts presented before in a complex fashion.
The paper is organized in 12 sections. The remaining part of our introduction
reports on auxiliary tools to construct, derive, improve and justify consistency of
related numerical methods for SDEs. Topics as consistency in Sect. 1.2, asymptotic
stability in Sect. 1.3, convergence in Sect. 1.4, positivity in Sect. 1.5, boundedness
in Sect. 1.6, oscillations in Sect. 1.7, energy in Sect. 1.8, order bounds in Sect. 1.9,
contractivity in Sect. 1.10 and dynamic consistency in Sect. 1.11 are treated. Finally,
the related references are listed alphabetically, without claiming to refer to all
relevant citations in the overwhelming literature on those subjects. We recommend
also to read the surveys of Artemiev and Averina [5], Kanagawa and Ogawa [66],
Pardoux and Talay [106], S. [125] and Talay [140] in addition to our paper. A good
introduction to related basic elements is found in Allen [1] and [73] too.

1.1.1 Auxiliary tool: Itô Formula (Itô Lemma)
with Operators L j

Define linear partial differential operators

L 0 D @

@t
C < a.t; x/;rx >d C1

2

mX

jD1

dX

i;kD1
b
j
i .t; x/b

j

k .t; x/
@2

@xk@xi
(1.6)

and L jD < bj .t; x/;rx >d where jD1; 2; : : : ; m. Then, thanks to the fundamen-
tal contribution of Itô [56] and [57], we have the following lemma.

Lemma 1.1.1 (Stopped Itô Formula in Integral Operator Form). Assume that
the given deterministic mapping V 2 C1;2.Œ0; T � � IRd ; IRk/. Let � be a finite Ft -
adapted stopping time with 0 � t � � � T .
Then, we have

V.�;X.�// D V.t; X.t//C
mX

jD0

Z �

t

L j V .s; X.s// dW j .s/ : (1.7)
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1.1.2 Auxiliary Tool: Derivation of Stochastic Itô-Taylor
Expansions

By iterative application of Itô formula we gain the family of stochastic Taylor
expansions. This idea is due to Wagner and Platen [144]. Suppose we have enough
smoothness of V and of coefficients a; bj of the Itô SDE. Remember, thanks to Itô’s
formula, for t � t0

V .t; X.t// D V.t0; X.t0//C
Z t

t0

L 0V .s; X.s//dsC
mX

jD1

Z t

t0

L j V .s; X.s// dW j .s/:

Now, take V.t; x/ D x at the first step, and set b0.t; x/ � a.t; x/;W 0.t/ � t . Then
one derives

X.t/ D X.t0/C
Z t

t0

a.s; X.s//ds C
mX

jD1

Z t

t0

bj .s; X.s// dW j .s/

V � bj

D X.t0/C
Z t

t0

"

a.t0; X.t0//C
mX

kD0

Z s

t0

L ka.u; X.u//dW k.u/

#

ds

C
mX

jD1

Z t

t0

"

bj .t0; X.t0//C
mX

kD0

Z s

t0

L ka.u; X.u//dW k.u/

#

dW j .s/

b0 � a

D X.t0/C
mX

jD0
bj .t0; X.t0//

Z t

t0

dW j .s/

„ ƒ‚ …

Euler Increment

C
mX

j;kD0

Z t

t0

Z s

t0

L kbj .u; X.u// dW k.u/dW j .s/

„ ƒ‚ …

Remainder Term RE

V � L kbj

D X.t0/

C
mX

jD0
bj .t0; X.t0//

Z t

t0

dWj .s/C
mX

j;kD1
L kbj .t0; X.t0//

Z t

t0

Z s

t0

dW k.u/dWj.s/

„ ƒ‚ …

Increment of Milstein Method
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C
mX

jD1

Z t

t0

Z s

t0

L 0bj .u; X.u// du dW j .s/

C
mX

kD1

Z t

t0

Z s

t0

L ka.u; X.u// dW k.u/ds

C
mX

j;kD1;lD0

Z t

t0

Z s

t0

Z u

t0

L lL kbj .z; X.z// dW l .z/dW k.u/dW j .s/

„ ƒ‚ …

Remainder Term RM

V � L kbj

D X.t0/

C
mX

jD0
bj .t0; X.t0//

Z t

t0

dW j .s/C
mX

j;kD0
L kbj .t0; X.t0//

Z t

t0

Z s

t0

dWk.u/dW j .s/

„ ƒ‚ …

Increment of 2nd order Taylor Method

C
mX

j;k;lD0

Z t

t0

Z s

t0

Z u

t0

L lL kbj .z; X.z// dW l .z/dW k.u/dW j .s/

„ ƒ‚ …

Remainder Term RTM2

V � L rL kbj

D X.t0/

C
mX

jD0
bj .t0; X.t0//

Z t

t0

dW j .s/C
mX

j;kD0
L kbj .t0; X.t0//

Z t

t0

Z s

t0

dWk.u/dWj .s/

„ ƒ‚ …

Increment of 3rd order Taylor Method

C
mX

j;k;rD0
L rL kbj .t0; X.t0//

Z t

t0

Z s

t0

Z u

t0

dW r.v/dW k.u/dW j .s/

„ ƒ‚ …

Increment of 3rd order Taylor Method

C
mX

j;k;r;lD0

Z t

t0

Z s

t0

Z u

t0

Z v

t0

L lL rL kbj .z; X.z//dW l .z/dW r.v/dW k.u/dW j .s/

„ ƒ‚ …

Remainder Term RTM3

: : : : : : : : : : : : : : :



1 Basic Concepts of Numerical Analysis Stochastic Differential Equations Explained 7

This process can be continued under appropriate assumptions of smoothness and
boundedness of the involved expressions. Thus, this is the place from which most
numerical methods systematically originate, and where the main tool for consis-
tency analysis is coming from. One has to expand the functionals in a hierarchical
way, otherwise one would loose important order terms, and the implementation
would be inefficient. Of course, for qualitative, smoothness and efficiency reasons
we do not have to expand all terms in the Taylor expansions at the same time (e.g.
cf. Milstein increment versus 2nd order Taylor increments). The Taylor method can
be read down straight forward by truncation of stochastic Taylor expansion. Explicit
and implicit methods, Runge-Kutta methods, inner and outer Theta methods, linear-
implicit or partially implicit methods are considered as modifications of Taylor
methods by substitution of derivatives by corresponding difference quotients,
explicit expressions by implicit ones, respectively. However, it necessitates finding a
more efficient form for representing stochastic Taylor expansions and hence Taylor-
type methods. For this aim, we shall report on hierarchical sets, coefficient functions
and multiple integrals in the subsection below.

In general, Taylor-type expansions are good to understand the systematic con-
struction of numerical methods with certain orders. Moreover, they are useful to
prove certain rates of local consistency of numerical methods. However, the rates
of convergence (global consistency) of them are also determined by other complex
dynamical features of numerical approximations, and “order bounds” and “practical
modeling / simulation issues” may decisively limit their usage in practice. To fully
understand this statement, we refer to the concept of “dynamic consistency” as
developed in the following sections in this paper.

1.1.3 Auxiliaries: Hierarchical Sets, Coefficient Functions,
Multiple Integrals

Kloeden and Platen [72] based on the original work of Wagner and Platen [144] have
introduced a more compact, efficient formulation of stochastic Taylor expansions.
For its statement, we have to formulate what is meant by multiple indices,
hierarchical sets, remainder sets, coefficient functions and multiple integrals in the
Itô sense.

Definition 1.1.1. A multiple index has the form ˛ D .˛1; ˛2; : : : ; ˛l.˛// where
l.˛/ 2 IN is called the length of the multiple index ˛, and n.˛/ is the total number
of zero entries of ˛. The symbol � denotes the empty multiple index with l.�/ D 0.
The operations ˛� D .˛1; : : : ; ˛l.˛/�1/ and �˛ D .˛2; : : : ; ˛l.˛// are called right-
and left-subtraction, respectively (in particular, .˛1/� D �.˛1/ D �). The set of all
multiple indices is defined to be

Mk;mD ˚
˛D.˛1; ˛2; : : : ; ˛l.˛// W ˛i2fk; kC1; : : : ; mg; iD1; 2; : : : ; l.˛/; l.˛/2IN

�
:
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A hierarchical set Q � M0;m is any set of multiple indices ˛ 2 M0;m such that
� 2 Q and ˛ 2 Q implies �˛ 2 Q. The hierarchical set Qk denotes the set of all
multiple indices ˛ 2 M0;m with length smaller than k 2 IN, i.e.

Qk D f˛ 2 M0;m W l.˛/ � kg :

The set
R.Q/ D f˛ 2 M0;m nQ W ˛� 2 Qg

is called the remainder set R.Q/ of the hierarchical set Q. A multiple (Itô) integral
I˛;s;t ŒV .:; :/� is defined to be

I˛;s;t ŒV .: ; :/� D
� R t

s
I�˛;s;uŒV .: ; :/� dW ˛1.u/ if l.˛/ > 1

R t
s
V .u; Xu/ dW

˛l.˛/ .u/ otherwise

for a given process V.t; X.t//where V 2 C0;0 and fixed ˛ 2 M0;mnf�g. A multiple
(Itô) coefficient function V˛ 2 C0;0 for a given mapping V D V.t; x/ 2 C l.˛/;2l.˛/

is defined to be

V˛.t; x/ D
�

L l.˛/V˛�.t; x/ if l.˛/ > 0

V.t; x/ otherwise
:

Similar notions can be introduced with respect to Stratonovich calculus (in fact, in
general with respect to any stochastic calculus), see [72] for Itô and Stratonovich
calculus.

1.1.4 Auxiliary Tool: Compact Formulation of Wagner-Platen
Expansions

Now we are able to state a general form of Itô-Taylor expansions. Stochastic Taylor-
type expansions for Itô diffusion processes have been introduced and studied by
Wagner and Platen [144] (cf. also expansions in Sussmann [137], Arous [4], and
Hu [54]). Stratonovich Taylor-type expansions can be found in Kloeden and Platen
[72]. We will follow the original main idea of Wagner and Platen [144].

An Itô-Taylor expansion for an Itô SDE (1.2) is of the form

V.t; X.t// D
X

˛2Q
V˛.s; X.s//I˛;s;t C

X

˛2R.Q/
I˛;s;t ŒV˛.: ; :/� (1.8)

for a given mapping V D V.t; x/ W Œ0; T � � IRd �! IRk which is smooth enough,
where I˛;s;t without the argument Œ	� is understood to be I˛;s;t D I˛;s;t Œ1�. Sometimes
this formula is also referred to as Wagner-Platen expansion. Now, for completeness,
let us restate the Theorem 5.1 of Kloeden and Platen [72].
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Theorem 1.1.1 (Wagner-Platen Expansion). Let � and � be two Ft -adapted
stopping times with t0 � � � � � T < C1 (a.s.). Assume V W Œ0; T ��IRd �! IRk .
Take any hierarchical set Q 2 M0;m.

Then, each Itô SDE with coefficients a; bj possesses a Itô-Taylor expansion (1.8)
with respect to the hierarchical set Q, provided that all derivatives of V; a; bj

(related to Q) exist.

A proof is carried out in using the Itô formula and induction on the maximum length
sup˛2Q l.˛/ 2 IN. A similar expansion holds for Stratonovich SDEs.

1.1.5 Auxiliary Tool: Relations Between Multiple Integrals

The following lemma connects different multiple integrals. In particular, its formula
can be used to express multiple integrals by other ones and to reduce the compu-
tational effort of their generation. The following lemma is a slightly generalized
version of an auxiliary lemma taken from Kloeden and Platen [72], see proposition
5.2.3, p. 170.

Lemma 1.1.2 (Fundamental Lemma of Multiple Integrals). Let ˛D .j1; j2; : : : ;

jl.˛// 2 M0;m n f�g with l.˛/ 2 IN.
Then, 8k 2 f0; 1; : : : ; mg 8t; s W 0 � s � t � T we have

.W k.t/ �W k.s//I˛;s;t D
l.˛/X

iD0
I.j1;j2;:::;ji ;k;jiC1;:::;jl.˛//;s;t (1.9)

C
l.˛/X

iD0
	fjiDk¤0gI.j1;j2;:::;ji�1;0;jiC1;:::;jl.˛//;s;t

D I.k;j1;j2;:::;jl.˛//;s;t C I.j1;k;j2;:::;jl.˛//;s;t C I.j1;j2;k;j3;:::;jl.˛//;s;t C : : :C

C I.j1;j2;j3;:::;jl.˛/;k/;s;t C
l.˛/X

iD0
	fjiDk¤0gI.j1;j2;:::;ji�1;0;jiC1;:::;jl.˛//;s;t

where 	f:g denotes the characteristic function of the subscribed set.

Hence, it obviously suffices to generate “minimal basis sets” of multiple integrals.
In order to have a more complete picture on the structure of multiple integrals, we
note the following assertion.

Lemma 1.1.3 (Hermite Polynomial Recursion of Multiple Integrals). Assume
that the multiple index ˛ is of the form

˛ D .j1; j2; : : : ; jl.˛// 2 M0;m with j1 D j2 D : : : D jl.˛/ D j 2 0; 1; : : : ; m
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and its length l.˛/ � 2.
Then, for all t with t � s � 0 we have

I˛;s;t D

8
ˆ̂
<̂

ˆ̂
:̂

.t � s/l.˛/

l.˛/Š
; j D 0

.W j .t/ �W j .s//I˛�;s;t � .t � s/I.˛�/�;s;t
l.˛/Š

; j � 1

(1.10)

This lemma corresponds to a slightly generalized version of Corollary 5.2.4
(p. 171) in [72]. It is also interesting to note that this recursion formula for
multiple Itô integrals coincides with the recursion formula for hermite polynomials.
Let us conclude with a list of relations between multiple integrals which exhibit
some consequences of Lemmas 1.1.2 and 1.1.3. For more details, see [72]. Take
j; k 2 f0; 1; : : : ; mg and 0 � s � t � T .

I.j /;s;t D W j .t/ �W j .s/

I.j;j /;s;t D 1

2Š

�
I 2.j /;s;t � .t � s/

�

I.j;j;j /;s;t D 1

3Š

�
I 3.j /;s;t � 3.t � s/I.j /;s;t

�

I.j;j;j;j /;s;t D 1

4Š

�
I 4.j /;s;t � 6.t � s/I 2.j /;s;t C 3.t � s/2

�

I.j;j;j;j;j /;s;t D 1

5Š

�
I 5.j /;s;t � 10.t � s/I 3.j /;s;t C 15.t � s/2I.j /;s;t

�

: : : : : : : : : :

.t � s/I.j /;s;t D I.j;0/;s;t C I.0;j /;s;t

.t � s/I.j;k/;s;t D I.j;k;0/;s;t C I.j;0;k/;s;t C I.0;j;k/;s;t

I.j /;s;t I.0;j /;s;t D 2I.0;j;j /;s;t C I.j;0;j /;s;t C I.j;j;0/;s;t

I.j /;s;t I.j;0/;s;t D I.0;j;j /;s;t C I.j;0;j /;s;t C 2I.j;j;0/;s;t

: : : : : : : : : ::

Some attempts has been made to approximate multiple stochastic integrals. For
example, [72] use the technique of Karhunen-Loeve expansion (i.e. the Fourier
series expansion of the Wiener process) or [30] exploit Box counting methods and
related levy areas. A minimal basis set for multiple integrals is known, see [28, 29].
However, computationally more efficient approximation procedures of multiple
stochastic integrals are still a challenge to be constructed and verified (especially
in higher dimensions).
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1.2 Local Consistency

Throughout this section, fix the time interval Œ0; T � with finite and nonrandom
terminal time T . Let k:kd be the Euclidean vector norm on IRd and Mp.Œs; t �/ the
Banach space of .Fu/s�u�t -adapted, continuous, IRd -valued stochastic processes
X with finite norm kXkMp D .sups�u�t IEjjX.s/jjpd/1=p < C1 where p � 1,
M .Œ0; s�/ the space of .Fs;B.IRd //-measurable stochastic processes and B.S/
the 
-algebra of Borel sets of inscribed set S .

Recall that every (one-step) numerical method Y (difference scheme) defined by

YnC1 D Yn C ˚n.Y /

with increment functional˚n has an associated continuous one-step representation

Ys;x.t/ D x C ˚.t js; x/

along partitions

0 D t0 < t1 < : : : < tn < tnC1 < : : : < tnT D T < C1:

The continuity modulus of this one-step representation is the main subject of related
consistency analysis. For this analysis, the auxiliary tools we presented in the intro-
duction such as Itô formula and relations between multiple integrals are essential in
deriving estimates of the one-step representation. For example, the continuous time
one-step representation of stochastic Theta methods (1.1) is given by

Ys;x.t/ WD x C Œ�a.t; Ys;x.t//C .I ��/a.s; x/� .t � s/

C
mX

jD1
bj .s; x/.W j .t/ (1.11)

�W j .s//C
mX

jD0
cj .s; x/.x � Ys;x.t//jW j .t/ �W j .s/j

driven by stochastic processesW j , for all t � s � 0 and started at x 2 ID at time s.

Definition 1.2.1. A numerical method Y with one-step representation Ys;y.t/ is
said to be mean consistent with rate r0 on Œ0; T � iff 9 Borel-measurable function
V W ID ! IR1C and 9 real constants KC

0 � 0; ı0 > 0 such that 8.Fs;B.ID//-
measurable random variablesZ.s/ with Z 2 M .Œ0; s�/ and 8s; t W 0 � t � s � ı0

jjIEŒXs;Z.s/.t/ � Ys;Z.s/.t/jFs �jjd � KC
0 V.Z.s// .t � s/r0 : (1.12)



12 H. Schurz

Remark 1.2.1. In the subsections below, we shall show that the balanced Theta
methods (1.1) with uniformly bounded weights cj and uniformly bounded param-
eters �n are mean consistent with worst case rate r0 � 1:5 and moment control
function V.x/ D .1C jjxjj2d /1=2 for SDEs (1.2) with global Hölder-continuous and
linear growth-bounded coefficients bj 2F �C1;2.Œ0; T �� ID/ (j D 0; 1; 2; : : : ; m).

Definition 1.2.2. A numerical method Y with one-step representation Ys;y.t/ is
said to be p-th mean consistent with rate r2 on Œ0; T � iff 9 Borel-measurable
function V W ID ! IR1C and 9 real constants KC

p � 0; ı0 > 0 such that
8.Fs;B.ID//-measurable random variables Z.s/ with Z 2 Mp.Œ0; s�/ and 8s; t W
0 � t � s � ı0

�
IEŒjjXs;Z.s/.t/ � Ys;Z.s/.t/jjpd jFs�

�1=p � KC
p V.Z.s// .t � s/rp : (1.13)

If p D 2 then we also speak of mean square consistency with local mean square
rate r2.

Remark 1.2.2. Below, we shall prove that the balanced Theta methods (1.1) are
mean square consistent with worst case rate r2 � 1:0 and moment control function
V.x/ D .1C jjxjj2/1=2d for SDEs (1.2) with global Lipschitz-continuous and linear
growth-bounded coefficients bj 2 F � C1;2.Œ0; T � � ID/ (j D 0; 1; 2; : : : ; m).

In the proofs of consistency of balanced Theta methods (1.1) below, it is crucial
that one exploits the explicit identity

Ys;x.t/ � x
D M�1s;x.t/ Œ�a.t; Ys;x.t// � .I ��/a.s; x/� .t � s/

CM�1s;x.t/
mX

jD1
bj .s; x/.W j.t/�W j.s//

D M�1s;x .t/� Œa.t; Ys;x.t// � a.s; x/�

Z t

s

du CM�1s;x .t/
mX

jD0
bj .s; x/

Z t

s

dW j .u/

where I is the d�d unit matrix in IRd�d , b0.s; x/ D a.s; x/;W 0.t/ D t;W 0.s/ D s

and

Ms;x.t/ D I C
mX

jD0
cj .s; x/jW j .t/ �W j .s/j:

1.2.1 Main Assumptions for Consistency Proofs

Let jj:jjd�d denote a matrix norm on IRd�d which is compatible to the Euclidean
vector norm jj:jjd on IRd , and h:; :id the Euclidean scalar product on IRd .
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Furthermore we have to assume that the coefficients a and bj are Caratheodory
functions such that a strong, unique solution X D .X.t//0�t�T exists. Recall
that ID 
 IRd is supposed to be a nonrandom set. Let ID be simply connected.
To guarantee certain rates of consistency of the BTMs (and also its rates of
convergence) the following conditions have to be satisfied:

(A0) 8s; t 2 Œ0; T � W s < t H) IP .fX.t/ 2 IDjX.s/ 2 IDg/DIP .fYs;y.t/2IDj
y2IDg/D1

(A1) 9 constantsKB D KB.T /;KV D KV .T / � 0 such that

8t 2 Œ0; T � 8x 2 ID W
mX

jD0
jjbj .t; x/jj2d � .KB/

2 ŒV .x/�2 (1.14)

sup
0�t�T

IEŒV .X.t//�2 � .KV /
2IEŒV .X.0//�2 < C1 (1.15)

with appropriate Borel-measurable function V W ID ! IR1C satisfying

8x 2 ID W jjxjjd � V.x/

(A2) Hölder continuity of .a; bj /, i.e. 9 real constants La and Lb such that

8s; t W 0 � t � s � ı0;8x; y 2 ID W jja.t; y/� a.s; x/jjd � La.jt � sj1=2

Cjjy � xjjd / (1.16)
mX

jD1
jjbj .t; y/� bj .s; x/jj2d � .Lb/

2.jt�sjCjjy�xjj2d / (1.17)

(A3) 9 real constantsKM D KM.T / � 0 such that, for the chosen weight matrices
cj 2 IRd�d of balanced Theta methods (1.1), we have

8s; t W 0�t�s�ı0;8x2ID W 9M�1s;x .t/ with jjM�1s;x .t/jjd�d�KM (1.18)

(A4) 9 real constants Kca D Kca.T / � 0 and Kcb D Kcb.T / � 0 such that, for
the chosen weight matrices cj 2 IRd�d of BTMs (1.1), we have

8s 2 Œ0; T � 8x 2 ID W
mX

jD0
jjcj .s; x/a.s; x/jjd � KcaV.x/ (1.19)

mX

kD0

mX

jD0
jjck.s; x/bj .s; x/jj2d�K2

cbŒV .x/�
2 (1.20)
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(A5) jj�jjd�d � K�, jjI � �jjd�d � KI��, and all step sizes hn � ı0 are
uniformly bounded by nonrandom quantity ı0 such that

KMKBK�ı0 < 1:

Remark 1.2.3. Condition (A3) with uniform estimate (1.18) is guaranteed with the
choice of positive semi-definite weight matrices cj (j D 0; 1; : : : ; m) in BTMs
(1.1). In this case, we have KM � 1. To control boundedness of moments and an
appropriate constantKM for invertible matricesM , it also suffices to take uniformly
bounded weights c0 and vanishing cj for j D 1; 2; : : : ; m together with sufficiently
small step sizes h. Assumption (A5) ensures that the implicit expressions of Y are
well-defined, together with the finiteness of some moments and Hölder-continuity
(i.p. a guarantee of local resolution).

1.2.2 Rate of Mean Consistency

For simplicity, consider BTMs (1.1) with autonomous implicitness matrices � 2
IRd�d (i.e. � is independent of time-variable n).

Theorem 1.2.1 (Mean Consistency of BTMs with Rate r0 � 1:5). Assume that
the assumptions (A0)–(A5) are satisfied.
Then, the BTMs (1.1) with autonomous implicitness matrices � 2 IRd�d and
nonrandom step sizes hn � ı0 < 1 are mean consistent with worst case rate
r0 � 1:5.

Remark 1.2.4. The proof is based on auxiliary Lemmas 1.2.1 and 1.2.2 as stated
and proved below.

Proof. First, rewrite the one-step representations of X and Y in integral form to

Xs;x.t/ D x C
mX

jD0

Z t

s

bj .u; X.u//dW j .u/

Ys;x.t/ D x CM�1s;x.t/Œ�a.t; Ys;x.t//C .I ��/a.s; x/�
Z t

s

du

CM�1s;x .t/bj .s; x/
Z t

s

dW j .u/:

Notice that

Ys;x.t/

D x C
Z t

s

a.s; x/du C .M�1s;x .t/ � I /
Z t

s

a.s; x/du C
mX

jD1

Z t

s

bj .s; x/dW j .u/

CM�1s;x .t/�
Z t

s

Œa.t; Ys;x.t// � a.s; x/�duC
mX

jD1
.M�1s;x .t/�I /

Z t

s

bj .s; x/dW j.u/:



1 Basic Concepts of Numerical Analysis Stochastic Differential Equations Explained 15

Second, subtracting both representations gives

Xs;x.t/ � Ys;x.t/

D
Z t

s

Œa.u; X.u//� a.s; x/�du C
mX

jD1

Z t

s

Œbj .u; X.u//� bj .s; x/�dW j .u/

C .M�1s;x .t/ � I /
Z t

s

a.s; x/du CM�1s;x .t/�
Z t

s

Œa.t; Ys;x.t// � a.s; x/�du

C
mX

jD1
.M�1s;x .t/ � I /

Z t

s

bj .s; x/dW j .u/:

Recall that the above involved stochastic integrals driven by W j form martingales
with vanishing first moment.
Third, pulling the expectation IE over the latter identity and applying triangle
inequality imply that

jjIEŒXs;x.t/ � Ys;x.t/�jjd

�
Z t

s

IEjja.u; X.u//� a.s; x/jjd du C IEjjM�1s;x .t/ � I jjd
Z t

s

jja.s; x/jjd du

C IEŒjjM�1s;x .t/�jjd
Z t

s

jja.t; Ys;x.t// � a.s; x/jjd du�

C
mX

jD1
IEŒjjM�1s;x .t/ � I jj 	 jj

Z t

s

bj .s; x/dW j .u/jjd �

� La

Z t

s

Œju � sj1=2 C .IEjjXs;x.u/� xjj2d /1=2�du

CKM.t � s/

mX

jD0
jjcj .s; x/a.s; x/jjd IEŒj

Z t

s

dW j .u/j�

CKM.t � s/jj�jjLaŒjt � sj1=2 C .IEjjYs;x.t/ � xjj2d /1=2�:

Note that we used the facts that

M�1s;x .t/ � I D �M�1s;x .t/
mX

kD0
ck.s; x/

ˇ
ˇ
ˇ
ˇ

Z t

s

dW k.u/

ˇ
ˇ
ˇ
ˇ

and

IE

2

4
mX

kD0

mX

jD1
M�1s;x .t/ck.s; x/bj .s; x/

ˇ
ˇ
ˇ
ˇ

Z t

s

dW k.u/

ˇ
ˇ
ˇ
ˇ

Z t

s

dW j .v/

3

5 D 0


