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Preface

This book is an attempt to present a coherent account of Oka theory, from the
classical Oka-Grauert theory originating in the works of Kiyoshi Oka and Hans
Grauert to the contemporary developments initiated by Mikhael Gromov.

At the core of Oka theory lies the heuristic Oka principle, a term coined
by Jean-Pierre Serre in 1951: Analytic problems on Stein manifolds admit
analytic solutions if there are no topological obstructions. The Cartan-Serre
Theorems A and B are primary examples. The main exponent of the classical
Oka-Grauert theory is the equivalence between topological and holomorphic
classification of principal fiber bundles over Stein spaces. On the interface
with affine algebraic geometry the Oka principle holds only rarely, while in
projective geometry we have Serre’s GAGA principle, the equivalence of ana-
lytic and algebraic coherent sheaves on compact projective algebraic varieties.
In smooth geometry there is the analogous homotopy principle originating in
the Smale-Hirsch homotopy classification of smooth immersions.

Modern Oka theory focuses on those properties of a complex manifold Y
which insure that any continuous map X → Y from a Stein source space X
can be deformed to a holomorphic map; the same property is considered for
sections of a holomorphic submersion Y → X. By including the Runge ap-
proximation and the Cartan extension condition one obtains several ostensibly
different Oka properties. Gromov’s main result is that a geometric condition
called ellipticity – the existence of a dominating holomorphic spray on Y –
implies all forms of the Oka principle for maps or sections X → Y . Subse-
quent research culminated in the result that all Oka properties of a complex
manifold Y are equivalent to the following Runge approximation property:

A complex manifold Y is said to be an Oka manifold if every holomorphic
map f :K → Y from a neighborhood of a compact convex set K ⊂ C

n to Y
can be approximated uniformly on K by entire maps C

n → Y .

The related concept of an Oka map pertains to the Oka principle for lifting
holomorphic maps from Stein sources. The class of Oka manifolds is dual to
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VI Preface

the class of Stein manifolds in a sense that can be made precise by means
of abstract homotopy theory. Finnur Lárusson constructed a model category
containing all complex manifolds in which Stein manifolds are cofibrant, Oka
manifolds are fibrant, and Oka maps are fibrations. This means that

Stein manifolds are the natural sources of holomorphic maps, while Oka
manifolds are the natural targets.

Oka manifolds seem to be few and special; in particular, no compact com-
plex manifold of Kodaira general type is Oka. However, special and highly
symmetric objects are often more interesting than average generic ones.

A few words about the content. Chapter 1 contains some preparatory ma-
terial, and Chapter 2 is a brief survey of Stein space theory. In Chapter 3
we construct open Stein neighborhoods of certain types of sets in complex
spaces that are used in Oka theory. Chapter 4 contains an exposition of the
theory of holomorphic automorphisms of Euclidean spaces and of the density
property, a subject closely intertwined with our main theme. In Chapter 5 we
develop Oka theory for stratified fiber bundles with Oka fibers (this includes
the classical Oka-Grauert theory), and in Chapter 6 we treat Oka-Gromov
theory for stratified subelliptic submersions over Stein spaces. Chapters 7 and
8 contain applications ranging from classical to the recent ones. In Chapter
8 we present results on regular holomorphic maps of Stein manifolds; high-
lights include the optimal embedding theorems for Stein manifolds and Stein
spaces, proper holomorphic embeddings of some bordered Riemann surfaces
into C

2, and the construction of noncritical holomorphic functions, submer-
sions and foliations on Stein manifolds. In Chapter 9 we explore implications
of Seiberg-Witten theory to the geometry of Stein surfaces, and we present the
Eliashberg-Gompf construction of Stein structures on manifolds with suitable
handlebody decomposition. A part of this story is the Soft Oka principle.

This book would not have existed without my collaboration with Jasna
Prezelj who explained parts of Gromov’s work on the Oka principle in her
dissertation (University of Ljubljana, 2000). Josip Globevnik suggested that
we look into this subject, while many years earlier Edgar Lee Stout proposed
that I study the Oka-Grauert principle. My very special thanks go to the col-
leagues who read parts of the text and offered suggestions for improvements:
Barbara Drinovec-Drnovšek, Frank Kutzschebauch, Finnur Lárusson, Takeo
Ohsawa, Marko Slapar, and Erlend Fornæss Wold. I am grateful to Reinhold
Remmert for his invitation to write a volume for the Ergebnisse series, and
to the staff of Springer-Verlag for their professional help.

Finally, I thank Angela Gheorghiu for all those incomparably beautiful
arias, and my family for their patience.

Ljubljana, Franc Forstnerič
May 1, 2011
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‘Say at last – who art thou?’
‘That Power I serve which wills forever evil yet does forever good.’

J. W. Goethe, Faust



‘Forgive me, but I don’t believe you,’ said Woland. ‘That cannot be.
Manuscripts don’t burn.’

M. A. Bulgakov, The Master and Margarita



1

Preliminaries

This preliminary chapter is a brief review of the basic notions and construc-
tions that are indispensable for reading the book. A comprehensive account
is available in a number of excellent sources; for smooth manifolds see [5] and
[503]; for complex and algebraic manifolds see [103, 233, 241, 370, 229, 508],
among others; and for the theory of Stein manifolds and Stein spaces see the
monographs [228, 241], and [267].

1.1 Complex Manifolds and Holomorphic Mappings

We denote by R the field of real numbers and by C the field of complex num-
bers. Let n ∈ N = {1, 2, 3, . . .} be a positive integer. The model n-dimensional
complex manifold is the complex Euclidean space C

n, the Cartesian product
of n copies of C. Let z = (z1, . . . , zn) denote the complex coordinates on C

n.
Write zj = xj + i yj , where xj , yj ∈ R and i =

√
−1. Given a differentiable

complex valued function f :D → C on a domain D ⊂ C
n, the differential df

splits as the sum of the C-linear part ∂f and the C-antilinear part ∂f :

df = ∂f + ∂f =
n∑

j=1

∂f

∂zj
dzj +

n∑

j=1

∂f

∂z̄j
dz̄j . (1.1)

Here dzj = dxj + i dyj , dz̄j = dxj − idyj , and

∂f

∂zj
=

1
2

(
∂f

∂xj
− i
∂f

∂yj

)
,

∂f

∂z̄j
=

1
2

(
∂f

∂xj
+ i
∂f

∂yj

)
. (1.2)

The function f is holomorphic if df = ∂f on D; that is, if the differential dfz
is C-linear at every point z ∈ D. Equivalently, f is holomorphic if and only if
∂f = 0, and this is equivalent to the n equations

∂f

∂z̄j
= 0, j = 1, . . . , n.

F. Forstnerič, Stein Manifolds and Holomorphic Mappings,
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series
of Modern Surveys in Mathematics 56, DOI 10.1007/978-3-642-22250-4 1,
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2 1 Preliminaries

Writing f = u + iv with u and v real, the equation ∂f/∂z̄j = 0 is equivalent
to the system of Cauchy-Riemann equations

∂u

∂xj
=
∂v

∂yj
,

∂u

∂yj
= − ∂v

∂xj
. (1.3)

A mapping f = (f1, f2, . . . , fm):D → Cm is holomorphic if each compo-
nent function fj is such. When m = n, f is biholomorphic onto its image
D′ = f(D) ⊂ C

n if it is bijective and its inverse f−1:D′ → D is also holo-
morphic. An injective holomorphic map of a domain D ⊂ C

n to C
n is always

biholomorphic onto its image [233, p. 19].
A topological manifold of dimension n is a second countable Hausdorff

topological space which is locally Euclidean, in the sense that each point has
an open neighborhood homeomorphic to an open set in R

n. Such a space is
metrizable, countably compact, and paracompact.

Assume now that X is a topological manifold of even dimension 2n. A
complex atlas on X is a collection U = {(Uα, φα)}α∈A, where {Uα}α∈A is an
open cover of X and φα is a homeomorphism of Uα onto an open subset U ′

α

in R
2n = C

n such that for every pair of indexes α, β ∈ A the transition map

φα,β = φα ◦ φ−1
β :φβ(Uα,β)→ φα(Uα,β) (1.4)

is biholomorphic. Here Uα,β = Uα ∩ Uβ . An element (Uα, φα) of a complex
atlas is called a complex chart, or a local holomorphic coordinate system on
X. We also say that charts in a complex atlas are holomorphically compatible.
For any three indexes α, β, γ ∈ A we have

φα,α = Id, φα,β = φ−1
β,α, φα,β ◦ φβ,γ = φα,γ (1.5)

on the respective domains of these maps. Two complex atlases U , V on a
topological manifoldX are said to be holomorphically compatible if their union
U ∪ V is also a complex atlas. This is an equivalence relation on the set of
all complex atlases on X. Each equivalence class contains a unique maximal
complex atlas – the union of all complex atlases in the given class.

A complex manifold of complex dimension n is a topological manifold X of
real dimension 2n equipped with a complex atlas. Two complex atlases deter-
mine the same complex structure on X if and only if they are holomorphically
compatible. We write n = dimCX. A complex manifold of dimension one is
called a Riemann surface, or a complex curve when it is seen as a complex
submanifold in another complex manifold. A complex surface is a complex
manifold of dimension n = 2.

A function f :X → C on a complex manifold is said to be holomorphic if for
any chart (U, φ) from the maximal atlas on X the function f ◦φ−1:φ(U)→ C

is holomorphic on the open set φ(U) ⊂ C
n. We denote by O(X) the Fréchet

algebra of all holomorphic functions on X with the compact-open topology.
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If D is a relatively compact domain with Cr smooth boundary in a complex
manifold X for some r ∈ N then Ar(D) denotes the Banach algebra of all
functions D̄ → C of class Cr that are holomorphic on D.

Let X and Y be complex manifolds of dimensions n and m, respectively.
A continuous map f :X → Y is said to be holomorphic if for any point p ∈ X
there are complex charts (U, φ) on X and (V, ψ) on Y such that p ∈ U , f(U) ⊂
V , and the map f̃ = ψ ◦ f ◦ φ−1:φ(U) −→ ψ(V ) ⊂ C

m is holomorphic on the
open set φ(U) ⊂ Cn. Since the charts in a complex atlas are holomorphically
compatible, the choice of charts is not important.

We adopt the convention that a map X → Y is holomorphic on a compact
set K in X if it is holomorphic in an open neighborhood of K in X; two such
maps are identified if they agree in some neighborhood of K. A family of maps
is holomorphic on K if every map in the family is holomorphic in an open
neighborhood of K that is independent of the map.

A map f :X → Y is biholomorphic if it is bijective and if both f and its
inverse f−1:Y → X are holomorphic. (This requires that dimX = dimY .)
As before, the latter condition is superfluous — a bijective holomorphic map
between complex manifolds is actually biholomorphic. Note that every local
chart φ:U → C

n on X is a biholomorphic map of U onto φ(U) ⊂ C
n.

A biholomorphic self-map f :X → X is called a holomorphic automorphism
of X; the collection of all automorphisms is the holomorphic automorphism
group AutX = AutholX. We denote by AutalgX the group of all algebraic au-
tomorphisms of an algebraic manifold. In many cases AutX has the structure
of a real or complex Lie group (see Example 1.2.4 below). For instance, Aut C

consists of all affine linear maps z 
→ αz+β (α ∈ C
∗ = C\{0}, β ∈ C) and is a

complex two dimensional Lie group. The automorphism group of any bounded
domain D ⊂ C

n is a finite dimensional real Lie group; the maximal dimension
is obtained when D is the ball B

n = {z ∈ C
n: |z|2 =

∑n
j=1 |zj |2 < 1}. The

group Aut B
n acts transitively on B

n, and the isotropy group of the origin
0 ∈ B

n is the unitary group U(n) (see [423]). Most bounded domains D ⊂ C
n

have no automorphisms other than the identity. On the other hand, for n > 1
the group Aut Cn is infinite dimensional (see Chapter 4).

Given a holomorphic map f = (f1, . . . , fm):D → C
m on a domainD ⊂ C

n,
we denote by rankpf the complex rank of f at a point p ∈ D; that is, the
rank of the complex m× n Jacobian matrix

f ′(p) =
(
∂fj
∂zk

(p)
)
. (1.6)

This matrix represents the differential dfp = ∂fp: TpC
n → Tf(p)C

m in stan-
dard bases on the tangent spaces TpC

n, Tf(p)C
m, respectively. (See §1.6.)

Clearly rankpf ≤ min{m,n}. The map f is an immersion at p if rankpf = n,
and is a submersion at p if rankpf = m. These notions coincide when n = m,
and in this case f is said to be locally biholomorphic at p. These notions, being
local, extend to holomorphic maps between complex manifolds.
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LetX be a complex manifold of dimension n. A subsetM ofX is a complex
submanifold of dimension m ∈ {0, 1, . . . , n} (and codimension d = n −m) if
every point p ∈ M admits an open neighborhood U ⊂ X and a holomorphic
chart φ:U → U ′ ⊂ C

n such that φ(U ∩M) = U ′ ∩ (Cm × {0}n−m). Any such
chart (U, φ) on X is said to be adapted to M . Let π: Cn → C

m denote the
coordinate projection π(z1, . . . , zm, . . . , zn) = (z1, . . . , zm). For each adapted
complex chart (U, φ) on X we get a complex chart (U ∩M,π ◦ φ|U∩M ) on M
with values in C

m. The collection of all such charts is a complex atlas on M ,
and the corresponding complex structure on M is the complex submanifold
structure induced by the inclusion map ι:M ↪→ X. Considering M with this
submanifold structure as a complex manifold in its own right, the inclusion
ι is a holomorphic embedding of M in X, that is, an injective holomorphic
immersion of M onto the complex submanifold ι(M) of X.

The image of an injective holomorphic immersion f :M → X need not be a
submanifold of X, not even a topological one, due to possible accumulation of
the image on itself. The following important property prevents this behavior.

Definition 1.1.1. A continuous map f :X → Y of topological spaces is said
to be proper if the preimage f−1(K) of any compact set K ⊂ Y is compact.

A map f :X → Y between manifolds is proper if and only if it maps
any discrete sequence in X to a discrete sequence in Y . If X and Y are
complex manifolds and f :X → Y is a proper injective holomorphic immersion,
then f(X) is a closed complex submanifold of Y ; such f is called a proper
holomorphic embedding. More generally, if X and Y are complex spaces (see
§1.3 below) and f :X → Y is a proper holomorphic map then f(X) is a closed
complex subvariety of Y according to a theorem of Remmert [412].

1.2 Examples of Complex Manifolds

Example 1.2.1. (Riemann surfaces.) These are one dimensional complex man-
ifolds. By the Riemann-Koebe uniformization theorem [303, 250, 251] the
only connected and simply connected Riemann surfaces up to a biholomor-
phism are the complex plane C, the Riemann sphere C ∪ {∞} = P

1, and
the disc D = {z ∈ C: |z| < 1}. If R is a connected Riemann surface then
its universal covering space X is one of the surfaces P

1,C,D, and R is bi-
holomorphic to the quotient X/Γ for some group Γ ⊂ AutX acting without
fixed points and properly discontinuously on X. The automorphism group
Aut P

1 = {z 
→ az+b
cz+d : ad− bc = 1} does not contain any nontrivial subgroups

with these properties; hence P
1 has no nontrivial holomorphic quotients. The

only subgroups Γ ⊂ Aut C with the required properties are lattices, i.e., dis-
crete Z-submodules of C acting on C by translations. Such Γ has either one
or two generators: Γ = Za (a �= 0), or Γ = Za+Zb where a, b ∈ C are nonzero
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numbers with ab−1 /∈ R. The quotient C/Γ is C
∗ = C\{0} in the case of a

single generator, and is a complex one dimensional torus in the case of two
generators. All other Riemann surfaces are quotients of the disc D. 
�

Example 1.2.2. (Affine algebraic manifolds.) An affine algebraic variety in C
n

is the common zero set of finitely many holomorphic polynomials in n complex
variables. An affine algebraic variety without singular points is called an affine
algebraic manifold. 
�

Example 1.2.3. (Stein manifolds.) The class of Stein manifolds was introduced
by Karl Stein in 1951 [460] (under the name of holomorphically complete man-
ifolds) by a system of three axioms postulating the existence of many global
holomorphic functions, in analogy to the properties of domains of holomorphy
(see Def. 2.2.1 on p. 47). The simplest characterization of this class is given by
the Remmert embedding theorem [411]: A complex manifold is Stein if and
only if it is biholomorphic to a closed complex submanifold of a Euclidean
space C

N . (For a more precise result see Theorem 2.2.8.) Hence Stein man-
ifolds are holomorphic analogues of affine algebraic manifolds, a fact that is
made precise by the algebraic approximations theorems (see p. 50). Analytic
properties of Stein manifolds are in many aspects close to those of smooth
manifolds, and are very different from those of compact complex manifolds.
The main topic of this book is the theory of holomorphic mappings from Stein
manifolds and Stein spaces to other complex manifolds. 
�

Example 1.2.4. (Lie groups and homogeneous manifolds.) A complex man-
ifold G that is also a group with holomorphic group operations is called
a complex Lie group. The main examples include the general linear group
GLn(C) (the group of invertible complex n × n matrices) and its subgroups
such as SLn(C) = {A ∈ GLn(C): detA = 1}; the symplectic subgroup
Spn(C) ⊂ GL2n(C); certain quotients such as the projective linear group
PGLn(C) = GLn+1(C)/C∗ = Aut P

n (the holomorphic automorphism group
of Pn); universal coverings of Lie groups, etc. A complex manifold X is said to
be G-homogeneous if there exists a transitive holomorphic action G×X → X
of G on X by holomorphic automorphisms. Fixing a point p ∈ X, we see that
X is biholomorphic to the quotient G/H where H = {g ∈ G: g(p) = p} is the
isotropy subgroup of the point p. For results on this subject see e.g. [7, 56]. 
�

Example 1.2.5. (Complex projective spaces.) The complex projective spaces
P

n = CP
n = P(Cn+1) play the analogous role in algebraic geometry as the

Euclidean spaces play in affine and Stein geometry. As a set, P
n consists

of all complex lines through the origin in C
n+1. A complex line λ ⊂ C

n+1

is determined by any point 0 �= z = (z0, . . . , zn) ∈ λ; we denote this line by
[z] = [z0: z1: · · · : zn] and call these the homogeneous coordinates on Pn. Clearly
[z] = [w] if and only if w = tz for some t ∈ C

∗. There is a unique complex
manifold structure on P

n in which the projection π: Cn+1
∗ = C

n+1\{0} → P
n,
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π(z) = [z] ∈ P
n is holomorphic. A complex atlas is given by the collection

(Uj , φj) (j = 0, 1, . . . , n) where Uj = {[z0: z1: · · · : zn] ∈ P
n: zj �= 0} and

φj ([z0: z1: · · · : zn]) =
(
z0
zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . ,

zn
zj

)
∈ C

n.

It is immediate that φj maps Uj bijectively onto C
n and that the transition

maps φi ◦ φ−1
j are linear fractional. 
�

Example 1.2.6. (Projective manifolds and varieties.) A nonzero holomorphic
polynomial P (z0, . . . , zn) is homogeneous of degree d ∈ N if P (tz0, . . . , tzn) =
tdP (z0, . . . , zn) for all t ∈ C. Such P determines a complex hypersurface

V = V (P ) = {[z0: z1: · · · : zn] ∈ P
n:P (z0, . . . , zn) = 0}.

More generally, homogeneous polynomials P1, . . . , Pm on Cn+1 determine a
complex subvariety V (P1, . . . , Pm) = V (P1)∩· · ·∩V (Pm) ⊂ P

n. Subvarieties of
this type in P

n are called projective varieties, or projective manifolds when they
are nonsingular. A quasi-projective variety is a variety of the form V = X\Y ,
where X and Y are closed complex subvarieties of P

n. By Chow’s theorem
[85, 233, 241] every closed complex subvariety of Pn equals V (P1, . . . , Pm)
for some homogeneous polynomials in n + 1 variables. A compact complex
manifold (resp. a complex space) is said to be projective algebraic if it is
biholomorphic to a projective manifold (resp. to projective subvariety) in some
P

n. A considerable extension of Chow’s theorem is the GAGA principle of
J.-P. Serre [441] concerning the equivalence between analytic and algebraic
coherent sheaves over projective algebraic varieties. 
�

Example 1.2.7. (Stiefel manifolds.) Pick integers 1 ≤ k ≤ n. The complex
Stiefel manifold Vk,n consists of all complex k×nmatrices A ∈Mk,n(C) ∼= C

kn

with rankA = k. Clearly Vk,n is an open subset ofMk,n =Mk,n(C). The group
GLn(C) acts transitively on Vk,n by right multiplication, so Vk,n is a complex
homogeneous manifold. We have Vk,n = Mk,n\Σk,n where Σk,n consists of
all complex k × n matrices of less than maximal rank. Note that Σk,n is
an algebraic subvariety of Mk,n(C) ∼= C

kn defined by the vanishing of all
maximal k × k minors; these are homogeneous polynomial equations of order
k (so Σk,n is a complex cone in C

kn), and at every point of Σk,n at least
n− k + 1 of these equations are independent. In fact we have a stratification
Σk,n = Σ1

k,n ⊃ Σ2
k,n ⊃ · · · where for every i = 1, . . . , k the set

Σi
k,n = {A ∈Mk,n: rankA = k − i}

is an algebraic subvariety of complex codimension codimΣi
k,n = i(n− k + i).

(See e.g. [214, Proposition 5.3, p. 60].) In particular, codimΣk,n = n− k + 1.
It follows from the transversality theorem that the homotopy groups of Vk,n

vanish in the range up to 2(n− k):

πq(Vk,n) = 0, q = 1, 2, . . . , 2n− 2k. (1.7)
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Example 1.2.8. (Grassmann manifolds.) The complex Grassmann manifold
Gk,n = Gk(Cn) is the set of all k-dimensional complex linear subspaces of
C

n. (Thus G1,n = P
n−1.) Let Vk,n be the Stiefel manifold (Example 1.2.7

above). We have a surjective map π:Vk,n → Gk,n which sends A ∈ Vk,n to the
C-linear span of the row vectors in A. There is a unique complex structure
on Gk,n which makes this projection holomorphic. The group GLk(C) acts on
Vk,n by left multiplication, and we have π(A) = π(B) for A,B ∈ Vk,n if and
only if A = GB for some G ∈ GLk(C), so the Grassman manifold Gk,n is the
leaf space of this action. Grassmann manifolds are projective algebraic; the
Plücker embedding Gk,n(C)→ P(∧k

C
n) is induced by the map Vk,n → ∧k

C
n

sending a matrix A ∈ Vk,n with rows a1, . . . , ak to a1 ∧ · · · ∧ ak ∈ ∧k
C

n [508,
p. 11]. An important property for us is that every point in Gk,n contains a
Zariski open neighborhood isomorphic to C

k(n−k). 
�

Example 1.2.9. (Complexifications.) For every real analytic manifoldM there
exists a complex manifold X obtained by complexifying the transition maps
defining M [58]. Such X contains M as a maximal totally real submanifold,
and it can be chosen Stein according to Grauert [224, §3]. (See §3.5.) 
�

Example 1.2.10. (Hyperbolic manifolds.) The Kobayashi-Royden pseudomet-
ric on a complex manifold X is the largest pseudometric which equals the
Poincaré metric on the unit disc and such that holomorphic maps are dis-
tance decreasing. A complex manifold X is said to be Kobayashi hyperbolic
if the Kobayashi-Royden pseudometric on X is a metric, and is complete hy-
perbolic if this metric is complete (see [299, 300] for precise definitions). A
complex manifold X is Brody k-hyperbolic for some k ∈ {1, . . . ,dimX} if ev-
ery holomorphic map C

k → X has rank < k; for k = 1 this means that every
map C→ X is constant. For k = dimX this property is called (Brody) volume
hyperbolicity. A compact complex manifold is Brody 1-hyperbolic if and only
if it is Kobayashi hyperbolic [55]. For the notion of the Kobayashi-Eisenman
form and hyperbolicity see [126, 287]. 
�

1.3 Subvarieties and Complex Spaces

Let X be a complex manifold. We denote by Ox = OX,x the ring of germs
of holomorphic functions at a point x ∈ X. A germ [f ]x ∈ Ox is represented
by a holomorphic function in an open neighborhood of x; two such functions
determine the same germ at x if and only if they agree in some neighbor-
hood of x. The ring OX,x is isomorphic to the ring OCn,0 via any holomorphic
coordinate map sending x to 0. We can identify OCn,0 with the ring of conver-
gent power series in n complex variables (z1, . . . , zn). This ring is Noetherian
and a unique factorization domain. Its units are precisely the germs that do
not vanish at 0. The set of germs vanishing at 0 is the unique maximal ideal
m0 ⊂ OCn,0 and OCn,0/m0 = C. For further properties of the local ring see
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[103, 229, 233, 241]. The disjoint union OX = ∪x∈XOX,x is equipped with
the topology whose basis is given by sets {[f ]x:x ∈ U}, where f :U → C is
a holomorphic function on an open set U ⊂ X. This makes OX into a sheaf
of commutative rings, called the sheaf of germs of holomorphic functions or
the structure sheaf of X. The identity principle shows that the sheaf OX is
Hausdorff. We denote by CX the sheaf of germs of continuous functions on X.

Since the ring Ox has no zero divisors, we can form its quotient fieldMx,
called the field of germs of meromorphic functions on X at the point x. Thus
a meromorphic function on X is locally at every point x ∈ X given as the
quotient f/g of two holomorphic functions whose germs at x are coprime.
Such function is holomorphic off the zero locus of g, also called the polar set
of f/g, and its indeterminacy set is {f = 0, g = 0}.

A subset A of a complex manifold X is a complex (analytic) subvariety
of X if for every point p ∈ A there exist a neighborhood U ⊂ X of p and
functions f1, . . . , fd ∈ O(U) such that

A ∩ U = {x ∈ U : f1(x) = 0, . . . , fd(x) = 0}.

If such A is topologically closed in X then A is a closed complex subvariety
of X. Since the local ring Ox is Noetherian, a subset of X that is locally
defined by infinitely many holomorphic equations is still a subvariety and can
be locally defined by finitely many equations.

A point p in a subvariety A is a regular (or smooth) point if A is a complex
submanifold near p; the set of all regular points is denoted Areg. A point
p ∈ A\Areg = Asing is a singular point of A.

Let A be a closed complex subvariety X. For every point x ∈ X we denote
by JA,x the ideal in Ox consisting of all holomorphic function germs at x
whose restriction to A vanishes. In particular, JA,x = Ox for every x ∈ X\A.
The corresponding sheaf JA = ∪x∈XJA,x is the sheaf of ideals (or the ideal
sheaf, or simply the ideal) of A in X. The restriction of the quotient sheaf
OX/JA = ∪x∈XOX,x/JA,x to A is the sheaf of germs of holomorphic functions
on A, denoted OA and called the structure sheaf of A.

The notion of a complex space was first introduced in 1951 by H. Behnke
and K. Stein [42] and H. Cartan [75]; their definitions correspond to what
is now called a normal complex space (see [227]). The definition which is
accepted as the standard one, and which is also used in this book, was given
by J.-P. Serre in his GAGA paper [441]:

A reduced complex space is a pair (X,OX), where X is a paracompact
Hausdorff topological space and OX is a sheaf of rings of continuous functions
on X (a subsheaf of the sheaf CX of germs of continuous functions) such that
for every point x ∈ X there is a neighborhood U ⊂ X and a homeomorphism
φ:U → A ⊂ C

n onto a locally closed complex subvariety of C
n so that the

homomorphism φ∗: CA → CX , f 
→ f ◦ φ, induces an isomorphism of OA onto
OU = OX |U . Intuitively speaking, X is obtained by gluing pieces of subvari-
eties in Euclidean spaces using biholomorphic transition maps. Similarly one
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defines an algebraic spaces [441]. We get a nonreduced complex space by allow-
ing local models (A,F), where A is a closed complex subvariety in an open
set Ω ⊂ C

n and F = (OΩ/I)|A for some sheaf of ideals I ⊂ JA supported
on A (i.e., Ix = Ox for x /∈ A). The ring Fx may have nilpotent elements. By
the Nullstellensatz the radical

√
Ix of any such ideal equals JA,x.

Let (X,OX) and (Y,OY ) be complex spaces. A continuous map f :X → Y
is said to be holomorphic if for every x ∈ X the composition CY,f(x) � g 
→
g◦f ∈ CX,x defines a homomorphism f∗x :OY,f(x) → OX,x. For such map we can
define the differential dfx: TxX → Tf(x)Y as a C-linear map on the Zariski
tangent space (see (1.29) on p. 21). This is the usual differential at smooth
points, while at singular points we locally embed the two spaces as complex
subvarieties of Euclidean space of minimal dimension nx = embdimxX, my =
embdimyY , respectively, and take the differential dFx of the local holomorphic
extension F of f (a C-linear map C

nx → C
my ).

Among the most fundamental results in the theory of complex spaces is
Remmert’s theorem [412] saying that the image f(X) of a proper holomorphic
map f :X → Y is a closed analytic subvariety of Y . A more general result of
Grauert (see [229]) gives the coherence of the direct image f∗F of any coherent
analytic sheaf F under a proper holomorphic map. (See also p. 53 below.)

Definition 1.3.1. Let Z and X be reduced complex spaces. A holomorphic
map π:Z → X is a holomorphic submersion if for every point z0 ∈ Z there
exist an open neighborhood V ⊂ Z of z0, an open neighborhood U ⊂ X of
x0 = π(z0), an open set W in C

p, and a biholomorphic map φ:V → U ×W
such that pr1 ◦ φ = π. (Here pr1:U ×W → U is the projection on the first
factor.) Each such local chart φ will be called adapted to π.

Note that each fiber Zx = π−1(x) (x ∈ X) of a holomorphic submersion
is a closed complex submanifold of Z, and the dimension dimZx is constant
on every connected component of Z.

Definition 1.3.2. Assume that h:Z → X is a holomorphic submersion onto
a complex space X, X ′ is a closed complex subvariety of X, and S ⊂ OX

is a sheaf of ideals with support X ′, i.e., Sx = OX,x when x ∈ X\X ′. Local
holomorphic sections f0, f1 of h:Z → X in a neighborhood of a point x ∈ X ′

are S-tangent at x if there is a neighborhood V ⊂ Z of the point z = f0(x) =
f1(x) ∈ Z and a holomorphic embedding φ:V ↪→ C

N such that the germ at x
of any component of the map φf0 − φf1:U → C

N belongs to Sx. If f0 and f1
are holomorphic in a neighborhood of X ′ and S-tangent at each point x ∈ X ′,
then we say that f0 and f1 are S-tangent and write δ(f0, f1) ∈ S. If this holds
for the r-th power of the ideal sheaf JX′ of the subvariety X ′ then f0 and f1
are said to be tangent to order r along X ′.

Definition 1.3.3. A stratification of a finite dimensional complex space X is
a finite descending sequence X = X0 ⊃ X1 ⊃ · · · ⊃ Xm = ∅ of closed complex
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subvarieties such that each connected component S (stratum) of a difference
Xk\Xk+1 is a complex manifold and S\S ⊂ Xk+1.

Every finite dimensional complex space admits a stratification [514, p. 227]:
Take X1 to be the union of the singular locus of X = X0 and of all irreducible
components of X0 of less than maximal dimension; define X2 in the same way
with respect to X1, etc. By considering substratifications we can ask for many
additional properties. For example, a finite dimensional Stein space admits a
stratification whose strata are Stein manifolds. Whitney’s condition (a) is used
in transversality theorems proved in §7.8.

1.4 Holomorphic Fiber Bundles

Fiber bundles represent one of the most important constructions of new man-
ifolds from the existing ones.

Definition 1.4.1. A holomorphic fiber bundle is a triple (Z, π,X), where X
and Z are complex spaces and π:Z → X is a holomorphic map of Z onto X
such that there exist a complex manifold Y , an open cover U = {Uα} of X,
and for every α a biholomorphic map

θα:Z|Uα = π−1(Uα)→ Uα × Y, θα(z) = (π(z), ϑα(z)). (1.8)

The manifold Z is the total space, X is the base space, and Y is the fiber.
A holomorphic submersion π:Z → X is a stratified holomorphic fiber

bundle if there is a stratification X = X0 ⊃ X1 ⊃ · · · ⊃ Xm = ∅ of X such
that the restriction of Z to every stratum S ⊂ Xk\Xk+1 is a holomorphic fiber
bundle over S. (Fibers over different strata may be different.)

The simplest example is a product bundle π:Z = X × Y → X, (x, y) 
→ x.
By definition, every fiber bundle is isomorphic to the product bundle over
small open sets in X. The fiber Zx = π−1(x) over any point x ∈ X is bi-
holomorphic to Y . A map θα (1.8) is a fiber bundle chart on Z, and the
collection {(Uα, θα)} is a holomorphic fiber bundle atlas on Z. The transition
maps θα,β = θα ◦ θ−1

β :Uα,β × Y → Uα,β × Y are of the form

θα,β(x, y) =
(
x, ϑα,β(x, y)

)
, x ∈ Uα,β , y ∈ Y, (1.9)

and they satisfy the cocycle condition

θα,α = Id, θα,β ◦ θβ,γ ◦ θγ,α = Id on Uα,β,γ × Y. (1.10)

For every fixed x ∈ Uα,β we have ϑα,β(x, · ) ∈ AutY . Conversely, given an
open cover U = {Uα} of X and a collection of biholomorphic self-maps (1.9)
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satisfying the cocycle condition (1.10), we get a holomorphic fiber bundle
Z → X with these transition maps by taking Z to be the disjoint union of all
Uα × Y , modulo the identifications provided by the transition maps.

A section of π:Z → X is a map f :X → Z such that π ◦ f is the identity
on X; that is, f(x) ∈ Zx for every x ∈ X. Any section of the product bundle
X × Y → X is of the form f(x) = (x, g(x)), where g:X → Y is a map to
the fiber. If {(Uα, θα)} is a holomorphic fiber bundle atlas on Z → X with
the transition maps θα,β (1.9), then a holomorphic section f :X → Z is given
by a collection of holomorphic maps fα:Uα → Y satisfying the compatibility
conditions

fα(x) = ϑα,β

(
x, fβ(x)

)
, x ∈ Uα,β . (1.11)

Definition 1.4.2. A holomorphic isomorphism of holomorphic fiber bundles
π:Z → X, π′:Z ′ → X is a biholomorphic map Φ:Z → Z ′ such that π′ ◦ Φ =
π; if such Φ exists then the bundles are holomorphically isomorphic. A fiber
bundle is trivial if it is isomorphic to the product bundle.

Isomorphisms of a fiber bundle onto itself are fiber bundle automorphisms.
Holomorphic automorphisms of a product bundle X×Y → X are biholomor-
phic self-maps of X×Y of the form (x, y) 
→ (x, ϕ(x, y)), with ϕ(x, · ) ∈ AutY
for every x ∈ X. In general we choose an open cover U = {Uα} of X and fiber
bundle atlases {(Uα, θα)} for (Z, π,X), and {(Uα, θ

′
α)} for (Z ′, π′, X). A fiber

bundle isomorphism Φ of (Z, π,X) to (Z ′, π′, X) is then given by a collection
of fiber preserving biholomorphic self-maps φα:Uα×Y → Uα×Y of the form
φα(x, y) = (x, ϕα(x, y)) so that the following diagrams commute:

Uα,β × Y

φα

Uα,β × Y
θα,β

φβ

Uα,β × Y Uα,β × Y
θ′

α,β

If there exists a fiber bundle atlas on Z → X (in the given isomorphism
class) such that all transition maps belong to a certain subgroup G of AutY ,
then we say G is the structure group of the bundle, or that the structure group
of the bundle has been reduced to G.

If π:Z → X is a holomorphic fiber bundle and X ′ is a complex subvariety
of X then the restriction π:Z ′ = Z|X′ → X ′ is a holomorphic fiber bundle
over X ′, called the restricted bundle.

Given a holomorphic fiber bundle π:Z → X with fiber Y and a holo-
morphic map f :W → X, the pull-back bundle π′: f∗Z → W and the map
F : f∗Z → Z are defined as follows:

f∗Z = {(w, z) ∈W×Z: f(w) = π(z)}, π′(w, z) = w, F (w, z) = z. (1.12)
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Let {(Uα, θα)} be a fiber bundle atlas for π:Z → X with

θα(z) = (π(z), ϑα(z)) ∈ Uα × Y.

Set Vα = f−1(Uα) ⊂ W and define a map θ′α: f∗Z|Vα → Vα × Y by
θ′α(w, z) = (w, ϑα(z)). (The map f appears implicitly in the above defini-
tion by the condition π(z) = f(w).) This is a holomorphic fiber bundle at-
las on π′: f∗Z → W with transition maps ϑ′α,β(w, y) = ϑα,β(f(w), y); hence
f∗Z →W is indeed a holomorphic fiber bundle with fiber Y .

Example 1.4.3. (Vector bundles.) These are fiber bundles with fiber Cn and
structure group GLn(C). They are considered in the following section. 
�

Example 1.4.4. (Affine bundles.) These are fiber bundles with fiber C
n and

structure group consisting of affine linear maps:

v 
→ a+Bv, a ∈ C
n, B ∈ GLn(C).

By [280] every projective analytic variety X carries an affine bundle E →
X whose total space E is a Stein space. (This will be of interest in §5.16.)
We recall the construction in the basic case X = P

n. Consider the Segre
embedding ρ: Pn × P

n ↪→ P
n2+2n,

(
[z0: · · · : zn], [w0: · · · :wn]

)

−→ [z0w0: · · · : ziwj : · · · : znwn].

Let Σ denote the quadratic hypersurface in P
n × P

n defined by the equation
z0w0 + · · · + znwn = 0 and set E = Pn × Pn\Σ. Choose homogeneous co-
ordinates [ζ0: ζ1: · · · : ζn2+2n] on P

n2+2n such that ζj = zjwj for j = 0, . . . , n
under the embedding ρ. Let H denote the hyperplane in P

n2+2n given by the
equation

∑n
j=0 ζj = 0. Then ρ embeds E properly into Pn2+2n\H = Cn2+2n,

so E is Stein. The projection π:E → P
n onto the first component is an affine

bundle with fiber C
n. The restriction E|X to any closed complex subvariety

X ⊂ P
n is still an affine bundle whose total space (being a closed analytic

subvariety of E) is Stein. For quasi-projective varieties there is some work to
see that one can get an affine bundle with Stein total space. 
�

Example 1.4.5. (Principal bundles.) Let G be a finite dimensional complex Lie
group. For every g ∈ G let σg ∈ AutG be the left multiplication on G by g:
σg(g′) = gg′ (g′ ∈ G). Set Γ = {σg: g ∈ G} ⊂ AutG. A holomorphic principal
G-bundle over X is a holomorphic fiber bundle π:Z → X with fiber G and
structure group Γ . Such bundle is determined by a 1-cocycle gα,β :Uα,β → G
over an open cover U = {Uα} of X; the corresponding transition maps are
φα,β(x, g) =

(
x, gα,β(x)g

)
. The group G acts holomorphically on the total

space Z by the right multiplication on the fibers Zx, and these fibers are
precisely the orbits of the action. See §7.1 and §7.2 for further results. 
�
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Example 1.4.6. (Fiber bundles associated to principal bundles.) Assume that
a complex Lie group G acts holomorphically on a complex manifold Y . Every
holomorphic 1-cocycle gα,β :Uα,β → G on an open cover U = {Uα} of X
determines a holomorphic fiber bundle with fiber Y , structure group G and
transition maps θα,β(x, v) =

(
x, gα,β(x)v)

)
. In this way we associate to a

principal G-bundle Z → X a fiber bundle E → X with fiber Y , structure
group G and the same structure cocycle that determines the bundle Z. In
particular, to a principal GLn(C)-bundle we associate a holomorphic vector
bundle of rank n. Conversely, to a holomorphic vector bundle E → X of rank
n we associate the principal GLn(C)-bundle Z = F (E)→ X, called the frame
bundle of the vector bundle E → X. The elements of Zx = F (Ex) are frames
(complex bases) on the vector space Ex

∼= C
n. 
�

Example 1.4.7. (Bundles with Euclidean fibers.) These are fiber bundles with
fiber C

n and structure group Aut C
n, the holomorphic automorphism group

of C
n. For n = 1 these are just affine bundles, but for n > 1 the group Aut C

n

is very large and we get many non-affine fiber bundles. In §4.21 we mention
examples, due to Skoda, Demailly and Rosay, of such bundles over the disc
or C whose total space is non-Stein. 
�

Example 1.4.8. (Flat bundles.) A holomorphic fiber bundle Z → X with fiber
Y is said to be flat if it admits a holomorphic fiber bundle atlas whose tran-
sition maps ϑα,β :Uα,β → AutY are locally constant, and hence constant on
every connected component of Uα,β . The trivial horizontal foliations of Uα×Y
with leaves Uα×{y} (y ∈ Y ) patch together to a horizontal holomorphic foli-
ation of the total space Z. Flat bundles arise naturally when considering the
Chern connection with vanishing curvature tensor on a Hermitian holomor-
phic vector bundle. A flat holomorphic fiber bundle is trivial over every simply
connected open set in the base X, and every holomorphic isomorphism class
of flat bundles is determined by a representation of the fundamental group
π1(X, p) in the automorphism group AutY . 
�

1.5 Holomorphic Vector Bundles

Vector bundles are a principal tool used to linearize problems in analysis and
geometry. They are also a subject of intrinsic investigation with a profound
impact on modern mathematics. We focus on holomorphic vector bundles,
recalling those constructions that will be important to us. Similar construc-
tions apply to other classes of vector bundles (topological, smooth, and with
C replaced by another field such as R).

Definition 1.5.1. A holomorphic vector bundle of rank n over a complex
space X is a holomorphic fiber bundle E → X (Def. 1.4.1) with fiber Y = C

n

and structure group GLn(C). A vector bundle of rank n = 1 is also called a
(holomorphic) line bundle.
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This means that we have an open cover U = {Uα} of X and vector bundle
charts θα:E|Uα

∼=−→ Uα × C
n with transition maps of the form

θα ◦ θ−1
β (x, v) = θα,β(x, v) =

(
x, gα,β(x) v

)
, x ∈ Uα,β , v ∈ C

n, (1.13)

where gα,β :Uα,β → GLn(C) is a holomorphic multiplicative 1-cocycle:

gα,α = 1, gα,β gβ,α = 1, gα,β gβ,γ gγ,α = 1. (1.14)

Every fiber Ex is a complex vector space such that the fiber bundle charts
θα:Z|Uα → Uα × C

n are C-vector space isomorphisms on each fiber.
If X is a real manifold of class Cr and E → X is a complex vector bundle

whose transition maps gα,β :Uα,β → GLn(C) are of class Cr, then we have a
complex vector bundle of class Cr over X. For r = 0 we have a topological
complex vector bundle over X. Replacing C by any field F we get topological
F -vector bundles over topological spaces, or smooth F -vector bundles over
smooth manifolds. For F = R we speak of real vector bundles.

Every vector bundle has the zero section sending each point x ∈ X to the
origin 0x ∈ Ex. Given a holomorphic vector bundle atlas {(Uα, θα)} on E with
transition maps gα,β (1.13), a section f :X → E is determined by a collection
of maps fα:Uα → C

n satisfying the compatibility conditions

fα = gα,βfβ on Uα,β . (1.15)

Example 1.5.2. (The tangent bundle.) Let X be a Cr manifold of dimension n.
Given an atlas {(Uα, φα)} on X with transition maps φα,β , the tangent bundle
TX → X is a real vector bundle of rank n and of class Cr−1 with vector bundle
charts θα: TX|Uα → Uα × R

n and the transition cocycle gα,β = (φα,β)′ ◦ φβ ,
where (φα,β)′ is the Jacobian matrix of φα,β . The cotangent bundle T∗X is
the dual bundle of TX. For complex manifolds see §1.6 – §1.7. 
�

Example 1.5.3. (The universal bundle.) Let Gk,n be the Grassmann manifold
whose points are k-dimensional subspace of C

n (Example 1.2.8), and set

Uk,n = {(λ, z) ∈ Gk,n × C
n: z ∈ λ}.

The projection π:Uk,n → Gk,n, π(λ, z) = λ, admits the structure of a holo-
morphic vector bundle (a holomorphic vector subbundle of the trivial bundle
Gk,n × C

n), called the universal bundle over Gk,n.
In particular, U1,n+1 → G1,n+1 = P

n is a holomorphic line bundle over the
projective space P

n. This bundle is trivial over every coordinate neighborhood
Vj = {[z0: · · · : zn]: zj �= 0} ∼= C

n in P
n; a local vector bundle chart is given by

θj([z0: · · · : zn], (v0, . . . , vn)) = ([z0: · · · : zn], vj) ∈ Vj × C.

The colinearity condition v ∈ [z0: · · · : zn] defining U1,n+1 implies vizj = vjzi,
which shows that the transition maps equal gi,j

(
[z0: · · · : zn]

)
= zi

zj
. 
�



1.5 Holomorphic Vector Bundles 15

Definition 1.5.4. Let π:E → X and π′:E′ → X be holomorphic vector bun-
dles. A holomorphic morphism of (E, π,X) to (E′, π′, X) is a holomorphic
map Φ:E → E′ such that π′ ◦ Φ = π, Φx:Ex → E′

x is C-linear for every
x ∈ X. If in addition dim kerΦx is independent of the point x ∈ X then
Φ is called a holomorphic vector bundle map. Such Φ is a isomorphism if
Φx:Ex → E′

x is an isomorphism of C-vector spaces for every x ∈ X. A Cr

morphism is a Cr map Φ:E → E′ that is C-linear on every fiber.

The kernel and cokernel of a morphism Φ:E → E′ are defined by

kerΦ =
⋃

x∈X

kerΦx ⊂ E, imΦ =
⋃

x∈X

imΦx ⊂ E′.

Definition 1.5.5. Let π:E → X be a holomorphic vector bundle of rank n.
A holomorphic vector subbundle of rank m ∈ {0, 1, . . . , n} of (E, π,X) is a
complex submanifold E′ ⊂ E, with the restricted projection π′ = π|E′ :E′ → X
onto X, such that every point x0 ∈ X admits an open neighborhood U ⊂ X and
a holomorphic vector bundle chart θ:E|U

∼=−→ U ×C
n satisfying the condition

θ(E′|U ) = U × (Cm × {0}n−m). (1.16)

Any such chart θ is said to be adapted to E′. Denote by

pr1: Cn = C
m × C

n−m → C
m, pr2: Cn = C

m × C
n−m → C

n−m

the projections onto the first and the second factor, respectively. For every θ
as above the map pr1 ◦ θ:E′|U → U ×C

m is a vector bundle chart on E′, and
the collection of all such charts is a holomorphic vector bundle atlas on E′.
In this structure the inclusion map E′ ↪→ E is a holomorphic vector bundle
morphism. We have the following elementary result.

Proposition 1.5.6. Let Φ:E → E′ be a holomorphic morphism of holomor-
phic vector bundles E → X, E′ → X. If dim kerΦx is independent of the point
x ∈ X, then the kernel kerΦ is a holomorphic vector subbundle of E and the
image imΦ is a holomorphic vector subbundle of E′.

We give a description of morphisms in local charts, beginning with the
simplest case of product bundles. Let Hom(Cn,Cm) denote the set of all C-
linear maps C

n → C
m. With respect to any pair of complex bases on the

two space this equals Mm,n(C) ∼= C
mn, the set of all complex m × n matri-

ces. A morphism Φ:X × C
n → X × C

m of product bundles is of the form
(x, v) → (x, ϕ(x)v) for a holomorphic map ϕ:X → Mm,n(C). In particular,
an automorphism of X × C

n is given by a map X → GLn(C) ⊂Mn,n(C).
Assume now that E → X and E′ → X are holomorphic vector bundles of

rank n, m, respectively. Choose holomorphic vector bundle atlases {(Uα, θα)},
{(Uα, θ

′
α)} for E, E′, with the transition maps gα,β , g′α,β , respectively. A mor-
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phism Φ:E → E′ is given by a collection of maps ϕα:Uα →Mm,n(C) satisfy-
ing the compatibility conditions

ϕα gα,β = g′α,β ϕβ on Uα,β .

If Φ is an isomorphism, then ϕα:Uα → GLn(C) and we can write

g′α,β = ϕα gα,β ϕ
−1
β . (1.17)

We say that the 1-cocycle g′ = (g′α,β) is obtained by twisting the 1-cocycle
g = (gα,β) by the 0-cochain ϕ = (ϕα), and we write g′ = ϕ � g. This leads to
the observation that the isomorphism classes of holomorphic vector bundles of
rank n overX are given by elements of the cohomology groupH1(X;OGLn(C))
with coefficients in the multiplicative sheaf of germs of holomorphic maps
X → GLn(C). (See §7.1 for a further discussion of this topic.)

The group H1(X;OGLn(C)) is Abelian only for n = 1 when it equals
H1(X;O∗). The multiplicative group H1(X;O∗) = Pic(X) of equivalence
classes of holomorphic line bundles on X is called the Picard group of X. The
product on Pic(X) corresponds to the tensor product of line bundles.

Example 1.5.7. (Line bundles and divisors.) A divisor D on a complex man-
ifold X is determined by an open cover U = {Uα}α∈A of X and a collection
of meromorphic functions fα ∈ M(Uα) that are not identically zero on any
connected component of Uα such that for any pair of indexes α, β ∈ A there
exists a nowhere vanishing holomorphic function fα,β ∈ O∗(Uα,β) satisfying

fα = fα,βfβ on Uα,β . (1.18)

The 1-cocycle (fα,β) determines a holomorphic line bundle E = [D] over X,
and the collection (fα) is a meromorphic section of [D] in view of (1.18). In
particular, a meromorphic function f ∈M(X) that is not identically zero on
any connected component determines a trivial line bundle on X. Conversely,
if a line bundle E is presented over an open cover U = {Uα}α∈A of X by
a 1-cocycle (fα,β) with coefficients in the sheaf O∗

X , then each meromorphic
section f of E is given in the respective holomorphic trivializations of E|Uα

∼=
Uα×C by a collection of meromorphic functions fα ∈M(Uα) satisfying (1.18).
If D is the divisor determined by (fα) then clearly E ∼= [D].

A complex hypersurface V ⊂ X determines a divisor D given by a col-
lection of local defining functions for V . Conversely, every divisor D on X
can be represented by a locally finite formal combination D =

∑
i aiVi of

irreducible complex hypersurfaces Vi ⊂ X with integer coefficients ai ∈ Z

[233, p. 130]. The divisors on X form an Abelian group, Div(X), and by the
above discussion we have a natural homomorphism Div(X) → Pic(X). This
homomorphism is surjective on any quasi-projective manifold. The line bun-
dle [D] determined by a divisor D is trivial if and only if D is given by a
global meromorphic function on X. (In this connection see the discussion in
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§5.2 concerning the second Cousin problem.) Two divisors D,D′ are linearly
equivalent if D = D′ + (f) for some f ∈ M(X); thus linear equivalence of a
pair of divisors corresponds to holomorphic equivalence of the corresponding
line bundles [D] and [D′]. For a sheaf theoretic interpretation of divisors and
linear equivalence see [233]. 
�

Definition 1.5.8. Given holomorphic vector bundles π:E → X, π′:E′ → X ′,
a morphism of the first to the second bundle is a pair of holomorphic maps
f :X → X ′, F :E → E′ such that π′ ◦ F = f ◦ π and F is C-linear on fibers.

An example is the tangent map F = Tf : TX → TX ′ of a holomorphic
map f :X → X ′; in this case Fx: TxX → Tf(x)X

′ is the differential dfx of f
at x. The analogous definition applies to Cr vector bundles.

Given a holomorphic vector bundle π:E → X and a holomorphic map
f :W → X, the pull-back bundle f∗E →W (see (1.12) on p. 11) is a holomor-
phic vector bundle over W . We have a natural morphism f∗E → E over f
which maps each fiber (f∗E)x isomorphically onto the fiber Ef(x).

Assume that E → X and F → X are complex (or holomorphic) vector
bundles. Using standard functors on complex vector spaces we obtain the
following derived complex (resp. holomorphic) vector bundles over X:

(a) E ⊕ F = ∪x∈XEx ⊕ Fx, the direct sum or the Whitney sum,
(b) E ⊗ F = ∪x∈XEx ⊗ Fx, the tensor product,
(c) E∗ = ∪x∈XE

∗
x, the dual bundle of E,

(d) Hom(E,F ) = ∪x∈XHom(Ex, Fx) = E∗ ⊗ F ,
(e) ∧kE = ∪x∈X ∧k Ex, the k-th exterior power of E,
(f) Sk(E) = ∪x∈XS

k(Ex), the k-th symmetric power of E.

The transition maps in these bundles are obtained by applying the re-
spective functor fiberwise to the transition maps of the original bundles. For
example, if E and E′ are given by cocycles gα,β , g′α,β over the same open cover
U = {Uα} of X then the direct sum E ⊕ E′ is given by the cocycle

(
gα,β 0
0 g′α,β

)
.

Given a subbundle E′ of E, the quotient bundle E/E′ → X is defined by
E/E′ = ∪x∈XEx/E

′
x. For any vector bundle chart θ on E satisfying (1.16)

the map pr2 ◦ θ:E|U → U × C
n−m factors through (E/E′)|U and induces a

bijective map θ̃: (E/E′)|U → U × C
n−m. The collection of all such maps is a

complex (resp. holomorphic) vector bundle atlas on E/E′. If E = E′ ⊕ E′′

is a direct sum of its subbundles E′, E′′ ⊂ E then the projection τ :E → E′′

with the kernel ker τ = E′ induces an isomorphism of E/E′ onto E′′.
A sequence of vector bundle maps over X,
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· · · Ek−1

σk−1
Ek

σk
Ek+1 · · ·

is a complex if σk ◦σk−1 = 0 (equivalently, imσk−1 ⊂ kerσk) for every k. The
sequence is exact at Ek if imσk−1 = kerσk. A short exact sequence is an exact
sequence of the form

0 E′ σ
E

τ
E′′ 0. (1.19)

This means that σ is injective, τ is surjective, and imσ = ker τ . Hence τ
induces an isomorphism of the quotient bundle E/σ(E′) onto E′′.

A short exact sequence (1.19) splits if there exists a vector bundle homo-
morphism ρ:E′′ → E such that τ ◦ ρ is the identity on E′′. Such ρ is called
a splitting map for the sequence. In this case E is isomorphic to the Whitney
sum E = σ(E′)⊕ ρ(E′′) of its subbundles σ(E′) and ρ(E′′). Note that every
short exact sequence splits locally over small open subsets of the base, and
any convex linear combination of splittings is again a splitting. By patching
local splittings with a partition of unity one gets the following.

Proposition 1.5.9. Every short exact sequence (1.19) of complex vector bun-
dle maps of class Cr (r ∈ {0, 1, . . . ,∞}) admits a Cr splitting. In particular,
we have E ∼= E′ ⊕E′′ as complex vector bundles of class Cr.

The analogous result for holomorphic vector bundles over Stein spaces
follows from Cartan’s Theorem B; see Corollary 2.4.5 on p. 54.

1.6 The Tangent Bundle

We assume that the reader is familiar with the construction of the real tangent
bundle TX of a smooth manifold X (Example 1.5.2). A tangent vector Vx ∈
TxX is viewed as a derivation C∞x � f 
→ Vx(f) ∈ R on the algebra of germs
of smooth functions at x. Sections X → TX are called vector fields on X. The
complexification CTX = TX⊗R C of TX is the complexified tangent bundle
of X; its sections are called complex vector fields on X.

Assume now that X is a complex manifold. There is a unique real linear
endomorphism J ∈ EndRTX, called the almost complex structure operator,
which is given in any local holomorphic coordinate system z = (z1, . . . , zn)
(zj = xj + iyj) on X by

J
∂

∂xj
=
∂

∂yj
, J

∂

∂yj
= − ∂

∂xj
. (1.20)

The operator J extends to CTX by J(v ⊗ α) = J(v) ⊗ α for v ∈ TX and
α ∈ C. From J2 = −Id we infer that the eigenvalues of J are +i and −i. Hence
we have a decomposition


