Nikolay Ivanov KolevMultiphaseMultiphaseFlowDynamicsDynamicsTHERMAL

econd Edition

Multiphase Flow Dynamics 5

Nikolay Ivanov Kolev

Multiphase Flow Dynamics 5

Nuclear Thermal Hydraulics

Author

Dr. Nikolay Ivanov Kolev Möhrendorferstr. 7 91074 Herzogenaurach Germany E-mail: Nikolay.Kolev@herzovision.de

ISBN 978-3-642-20600-9

e-ISBN 978-3-642-20601-6

DOI 10.1007/978-3-642-20601-6

Library of Congress Control Number: 2011935027

© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

987654321

springer.com

To my mother!

Nordsee, Oct. 2005, Nikolay Ivanov Kolev, oil on linen

Nikolay Ivanov Kolev, PhD, DrSc Born 1.8.1951, Gabrowo, Bulgaria

A Few Words about the Second Edition

After a break of about 20 years the world started again to modernize the old nuclear power plants and to build new ones. Students, engineers, and scientists need modern books in this field, reflecting the world-wide engineering experience. This explains the considerable interest in this book, which came very much in time in 2008, and now needs a second edition. Several chapters have been updated and improved. I hope it will help young scientists and engineers in their professional life of designing better facilities than those created by my generation.

Herzogenaurach December 28, 2010

The Motivation to Write This Book

Nuclear thermal hydraulics is the science that provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. Along its way to the environment the thermal energy is organized to provide useful mechanical work or useful heat. Properly arranged and controlled processes achieve this target. Improperly arranged processes or inappropriately controlled processes may lead to damage, losing the investment partially or totally. If power plants are designed so that in low-probability accidental processes only the investment is lost, we speak about safe nuclear power plants. Improperly designed power plants that contain the potential besides losing the investment to destroy the environment and human lives are not acceptable to human society. Nuclear thermal hydraulics is a substantial part of the engineering discipline called nuclear reactor safety. Nuclear reactor safety is not only a technical science. It contains the relations between society, with its mature and effective control mechanisms, and technology. Scientists and engineers alone cannot solve the problem of nuclear reactor safety. It is a technological and simultaneously a social problem, as is any problem associated with high-energy technologies. I will limit my attention in this work to the scientific part. After about 60 years research and practice we know how to build technically safe nuclear power plants. The public attitude to this subject has had its up and downs. Now the world faces the problem of dramatically increasing oil and energy prices, making nuclear energy inevitable. At the same time there is a generation change, and a large army of experienced nuclear engineers are retiring. The responsibility to transfer knowledge to the next generation is what drives me to write this book. I hope it will help young scientists and engineers in their professional life of designing better facilities than those created by my generation.

Herzogenaurach May 22, 2006

Summary

This monograph contains theory, methods, and practical experience for describing complex transient multiphase processes in arbitrary geometrical configurations. It is intended to help applied scientists and practicing engineers to understand better natural and industrial processes containing dynamic evolutions of complex multiphase flows. The book is also intended to be a useful source of information for students in the high semesters and in PhD programs.

This monograph consists of five volumes:

- Vol. 1 Fundamentals, 4th ed. (14 chapters and 2 appendices), 782 pages
- Vol. 2 Mechanical Interactions, 4th ed. (11 chapters), 364 pages
- Vol. 3 Thermal Interactions, 4th ed. (16 chapters), 678 pages
- Vol. 4 Turbulence, Gas Absorption and Release by Liquid, Diesel Fuel Properties, 2nd ed. (13 chapters), 328 pages
- Vol. 5 Nuclear Thermal Hydraulics, 2nd ed. (17 chapters), 848 pages

In Volume 1 the concept of three-fluid modeling is presented in detail "from the origin to the applications". This includes derivation of local volume- and timeaveraged equations and their working forms, development of methods for their numerical integration, and finally finding a variety of solutions for different problems of practical interest.

Special attention is paid in Volume 1 to the link between the partial differential equations and the constitutive relations called closure laws without providing any information on the closure laws.

Volumes 2 and 3 are devoted to these important constitutive relations for mathematical description of the mechanical and thermal interactions. The structure of the volumes is in fact a state-of-the-art review and selection of the best available approaches for describing interfacial transfer processes. In many cases the original contribution of the author is incorporated in the overall presentation. The most important aspects of the presentation are that they stem from the author's long years of experience developing computer codes. The emphasis is on the practical use of these relationships: either as stand-alone estimation methods or within a framework of computer codes.

Volume 4 is devoted to the turbulence in multiphase flows.

Nuclear thermal hydraulics is the science providing knowledge about the physical processes occurring during the transferring the fission heat released in structural materials due to nuclear reactions into its environment. Along its way to the environment the thermal energy is organized to provide useful mechanical work or useful heat or both. Volume 5 is devoted to nuclear thermal hydraulics. In

a way this is the most essential application of the multiphase fluid dynamics in analyzing steady and transient processes in nuclear power plants.

Volume 5 can be summarized as follows:

Chapter 1 contains introductory information about the heat release in the reactor core, the thermal power and thermal power density in the fuel, structures, and moderator, the influence of the thermal power density on the coolant temperature, and the spatial distribution of the thermal power density. Finally, some measures are introduced for equalizing the spatial distribution of the thermal power density.

Chapter 2 gives the methods for describing the steady and the transient temperature fields in the fuel elements. Some information is provided regarding influence of cladding oxidation, hydrogen diffusion, and corrosion product deposition on the temperature fields.

Didactically nuclear thermal hydraulics needs introductions at different levels of complexity, introducing step-by-step new features after the previous ones have been clearly presented. The following two chapters serve this purpose.

Chapter 3 describes mathematically the "simple" steady boiling flow in a pipe. The steady mass-, momentum-, and energy-conservation equations are solved at different levels of complexity by removing, one after the other, simplifying assumptions. First the idea of mechanical and thermodynamic equilibrium is introduced. Then the assumption of mechanical equilibrium is relaxed. Then the assumption of thermodynamic equilibrium is relaxed in addition. In all cases comparison with experimental data gives the evidence of the level of adequacy of the different level of modeling complexity. The engineering relaxation methods are considered, followed by the more sophisticated boundary layer treatment without and with variable effective bubble size. Then an introduction to the saturated flowboiling heat transfer is given and the accuracy of the methods is demonstrated by comparison with experiments. The hybrid method of combining the asymptotic method with boundary layer treatment allowing for variable effective bubble size is also presented. Finally, the idea of using separated momentum equations and bubble dynamics is introduced and again its adequacy is demonstrated by comparison with experiments.

While Chap. 3 essentially deals with the so-called two-fluid model, Chap. 3 demonstrates the real cases where a three-fluid model is mandatory. Chapter 3 is an introduction to the "simple" steady three-fluid boiling flow in a pipe. The flow regime transition from slug to churn turbulent flow is considered in addition to the already-available information from Chap. 3. The idea of the redistribution of the liquid between film and droplets is presented at two levels of complexity: the instantaneous and the transient liquid redistribution in film and droplets. The transient redistribution is in fact the introduction of the ideas of droplet entrainment and deposition. The idea for the description of the mechanical interaction of the velocity fields is again presented at two levels of complexity: by using drift flux correlations and by using separated momentum equations defining the forces among the fields. The next step of the sophistication is then introduced by using models for the dynamic evolution of the mean droplet size consisting of models for the droplet size stability limit, for droplet production rate due to fragmentation, for duration of the fragmentation, and for collision and coalescence of droplets.

Then the heat and mass transfer mechanisms in the film flow with droplet loading are introduced. Finally, comparisons with experimental data demonstrate the success of the different ideas and models.

To my view the reader will not understand the material of the following chapters if Chaps. 3 and 4 are not well understood. Chapter 5 describes the most powerful methods for describing the core thermal hydraulics these days. First an introduction of the design of the reactor pressure vessels for pressurized- and boiling-water reactors is given. Then by using a large number of experimental data sets for *steady* flows in heated bundles the accuracy of the modern methods is demonstrated. The experiments gathered for comparison are the NUPEC experiment, the SIEMENS void data for the ATRIUM 10 fuel bundle, the FRIGG experiment, and the THTF experiments: high pressure and low mass flow. Methods for prediction of the pressure drop for boiling flow in bundles are presented and compared with data. Then by using experimental data sets for *transient* flows in heated bundles the accuracy of the modern methods is demonstrated. The experiments gathered for comparison are the NUPEC transients in a channel simulating one subchannel of a pressurized-water reactor fuel assembly and the NUPEC transients in a pressurized-water reactor 5×5 fuel assembly. Actually avoiding a boiling crisis is the main target of a proper core design. That is why the methods for analyzing whether the critical heat flux is reached in the cores cooled by steadystate flows are presented in detail at different complexity levels: initial 0D guess and 3D critical heat flux analysis. Several uncertainties of the physical models are identified during this process and discussed in detail. New ideas for future progress in this field are presented: large-scale turbulence modeling in bundles, fineresolution analysis, etc. Finally, an example is given of the most complex case subject in nuclear thermal hydraulics: the analysis of the thermal processes in a core of a boiling-water reactor using the methods presented in this monograph.

The stronger the driving forces for flow processes, the more stable are the resulting phenomena and vice versa. Many of the processes in nuclear thermal hydraulics are associated with low driving forces and tend to instability. This chapter presents a nonlinear stability analysis on some prominent examples in nuclear thermal hydraulics: flow boiling and condensation stability analysis. After a stateof-the-art review the AREVA boiling stability data for the ATRIUM 10B fuel bundle are compared with state-of-the-art predictions using the methods presented in this monograph. The classical boiling instability analysis is accomplished with the seldom-presented flow condensation stability analysis in a complex system of emergency condensers consisting of a large number of 1D condensing pipes submerged into a 3D pool. Condensation at the high-pressure side leads to all flow patterns for nearly horizontal pipes with all their instabilities. It is coupled with the 3D boiling of the secondary pool side. The complex picture is very informative for what can be expected and what has to be avoided in such designs.

Chapter 7 is devoted to critical multiphase flow. It starts with the mathematical definition of the criticality condition, with the appropriate design of a numerical grid structure and numerical iteration strategy. Then the methods used in modern design are presented, starting from the simple models and gradually increasing the complexity. First the single-phase critical flow in a pipe is considered for the case with no-friction energy dissipation and constant cross-section. Then the general

case is presented for a perfect gas. Then the same ideas are extended to simple two-phase cases for pipes and nozzles: subcooled critical mass flow rate in short pipes, orifices, and nozzles; frozen homogeneous nondeveloped flow; inhomogeneous developed flow without mass exchange; equilibrium homogeneous flow; equilibrium inhomogeneous flow; inhomogeneous developing flow in short pipes and nuzzles with infinitely fast heat exchange and with limited interfacial mass transfer. Then the recent state of the knowledge for describing critical flow is presented by considering physical details like: bubble origination; bubble fragmentation; bubble coalescence; droplet origination. Examples follow for application of the theory of the critical flow in real-scale analysis: blow-down of a closed pipe and blow-down of a vessel.

Chapter 8 is devoted to the basics of designing of steam generators.

Chapter 9 is devoted to the basics of designing of moisture separation. First the importance of knowing the characteristic spectra of the moisture is underlined for proper analysis. Then some simple methods for computation of the efficiency of the separation are given for cyclone-type and vane-type separators. Different ideas based on different complexity are presented for description of the velocity field: the *Kreith* and *Sonju* solution for the decay of turbulent swirl in a pipe, the potential gas flow in vanes; description of the trajectory of particles in a known continuum field; the computational fluid dynamics (CFD) analyses of cyclones; the CFD analyses of vane separators. Then several experiments are collected from the literature for boiling-water reactor cyclones, pressurized-water reactor steamgenerator cyclones, other cyclone types, and vane dryers. In several cases the success of different methods is demonstrated by comparison with data.

The nuclear power plant consists not only of large and small components but also by a forest of interconnected pipes. Chapter 10 is devoted to the estimation of the accuracy of modeling of transient processes in pipe networks by using all the methods presented in this monograph. First some basic definitions are introduced of pipes, axes in space, knots, diameters of pipe sections, reductions, elbows, creating a library of pipes, creating a subsystem network, and discretization of pipe networks for numerical treatment. Then seven interesting experiments are simulated and a comparison with measurements is presented in order to derive conclusions about the accuracy of the methods derived in this monograph.

Not only are the main systems of interest for the practicing engineer. He or she will have to handle problems in real life in the so-called auxiliary systems. As one example of such a system the high-pressure reduction station is analyzed in Chapter 11. A single high-pressure pipe break is analyzed and the consequences of such an event are discussed. As a second example for processes in auxiliary systems an analysis of the physical and chemical processes of radiolysis gas production, air absorption, diffusion-controlled gas release, and transport in the coolant cleaning system of the research reactor FRM II is given.

The evolution of the safety philosophy in the last 30 years has led to the introduction of so-called passive safety systems. Such examples are so-called emergency condensers. Chapter 12 gives first a simple mathematical illustration of the operation of the system. Then the performance of the condenser as a function of the water level and pressure are analyzed with the methods introduced in this monograph. The important question of the condensate removal is discussed. Chapter 13 is devoted to the core degradation during so-called severe accidents.

Chapter 14 is devoted to melt-water interaction, which is an important part of modern nuclear reactor thermal hydraulics.

Chapter 15 is devoted to the coolability of layers of molten nuclear reactor material. Such physics is important for designing stabilization of spread melt in reactor compartments. After defining the problem with its boundary conditions and some simplifying assumptions the system of differential equations describing the process is presented: mass and energy conservation. The following effects are taken into account: molten steel dropped in the melt or originating inside the melt; gas release from a sublayer; the viscous layer; crust formation; buoyancy-driven convection; film boiling; heat conduction through the structures; oxide crust formation on colder heat-conducting structures. The existence of a metallic layer is also considered. Some test cases are presented to make easy the application of the presented models: oxide over metal and oxide beside metal. A simple model for gravitational flooding of a hot solid horizontal surface by water leading to a hyperbolic system is also presented.

Chapter 16 is devoted to the so-called external cooling of reactor vessels during a severe accident. It is a technology allowing the arrest of the melt inside the vessel if some initial conditions are fulfilled. First the state of the art is presented. Then a brief description of the phenomenology leading to melt in the lower head is discussed: dry core melting scenario, melt relocation, wall attack, focusing effect. A brief mathematical model description is given appropriate for a set of model assumptions. The model describes: melt pool behavior, two-dimensional heat conduction through the vessel wall, total heat flow from the pools into the vessel wall, vessel wall ablation, heat fluxes, crust formation, and buoyancy-driven convection. A solution algorithm is provided for a set of boundary conditions adequate for real situations. A summary of the state of the art regarding the critical heat flux for externally flowing lower head geometry is provided. For several practical applications different effects are demonstrated: the effect of vessel diameter, of the lower head radius, of the relocation time, of the mass of the internal structures. Varying some important parameters characterizing the process the difference between highpowered pressurized- and boiling-water reactor vessel behavior is demonstrated.

Several modern aspects of the severe accident analysis cannot be understood if the engineer does not have accurate information on the material properties for the participating structural materials in solid, in liquid, and in some cases in gaseous states. Chapter 17 contains valuable sets of thermophysical and transport properties for severe accident analysis for the following materials: uranium dioxide, zirconium dioxide, stainless steel, zirconium, aluminum, aluminum oxide, silicon dioxide, iron oxide, molybdenum, boron oxide, reactor corium, sodium, lead, bismuth, and lead–bismuth eutectic alloy. The emphasis is on the complete and consistent thermodynamic sets of analytical approximations appropriate for computational analysis.

December 29, 2010 Herzogenaurach Nikolay Ivanov Kolev

Nomenclature

Latin

Α	cross-section, m ²
Α	surface vector
а	speed of sound, m/s
a_{lw}	surface of the field <i>l</i> wetting the wall <i>w</i> per unit flow volume $\sum_{l=1}^{l_{\text{max}}} Vol_l$
	belonging to control volume <i>Vol</i> (local volume interface area density of the structure w). m ⁻¹
$a_{l\sigma}$	surface of the velocity field l contacting the neighboring fields per unit
	flow volume $\sum_{l=1}^{l_{max}} Vol_l$ belonging to control volume Vol (local volume
	interface area density of the velocity field l), m ⁻¹
a_l	total surface of the velocity field <i>l</i> per unit flow volume $\sum_{l=1}^{l_{max}} Vol_l$ belong-
	ing to control volume <i>Vol</i> (local volume interface area density of the velocity field <i>l</i>), m^{-1}
Cu_i	Courant criterion corresponding to each eigenvalue, <i>dimensionless</i>
C_{il}	mass concentration of the inert component <i>i</i> in the velocity field <i>l</i>
<i>c</i>	coefficients, dimensionless
C_m	mass concentration of the component m in the velocity field, dimen-
C_i	mass concentration of the component <i>i</i> in the velocity field, <i>dimensionless</i>
C_p	specific heat at constant pressure, J/(kgK)
c^{vm}	virtual mass force coefficient, dimensionless
c^{d}	drag force coefficient, dimensionless
c^{L}	lift force coefficient, dimensionless
D_{hy}	hydraulic diameter (four times cross-sectional area / perimeter), m
D_{3E}	diameter of the entrained droplets, m
D_{ld}	size of the bubbles produced after one nucleation cycle on the solid struc-
	ture, bubble departure diameter, m

D_{1dm}	size of bubbles produced after one nucleation cycle on the inert solid par-
	ticles of field $m = 2, 3$
D_{lch}	critical size for homogeneous nucleation, m
$D_{_{lcd}}$	critical size in presence of dissolved gases, m
D'_l	most probable particle size, m
D_l	characteristic length of the velocity field <i>l</i> , particle size in case of frag-
	mented field, m
D_{il}^l	coefficient of molecular diffusion for species i into the field l , m ² /s
D_{il}^t	coefficient of turbulent diffusion, m^2/s
D^*_{il}	total diffusion coefficient, m ² /s
DC_{il}	right-hand side of the nonconservative conservation equation for the inert
	component, $kg/(sm^3)$
D	diffusivity, m ² /s
d	total differential
E	total energy, J
e Ff(function of (
f , j (force per unit flow volume N/m^3
J f	fraction of entrained melt or water in the detonation theory
F_{hw}	surfaces separating the velocity field l from the neighboring structure
	within Vol. m ²
$F_{l\sigma}$	surfaces separating the velocity field <i>l</i> from the neighboring velocity field
	within Vol, m ²
F	surface defining the control volume Vol, m ²
f_{im}	frequency of the nuclei generated from one activated seed on the particle
	belonging to the donor velocity field m , s ⁻¹
f_{lw}	frequency of the bubble generation from one activated seed on the chan-
	nel wall, s ⁻¹
$f_{l,coal}$	coalescence frequency, s^{-1}
g	acceleration due to gravity, m/s^2
H	height, m
n h	eigenvectors corresponding to each eigenvalue
T	unit matrix dimensionless
i	unit vector along the <i>x</i> -axis
J	matrix, Jacobian
j	unit vector along the y-axis
k	unit vector along the <i>k</i> -axis
ĸ	cell number

k	kinetic energy of turbulent pulsation, m^2/s^2
k_{il}^T	coefficient of thermodiffusion, dimensionless
k_{il}^{p}	coefficient of barodiffusion, dimensionless
L	length, m
M_{i}	kg-mole mass of the species <i>i</i> , kg/mol
т	total mass, kg
$\mathbf{n}_{\Delta \mathbf{V}}$	unit vector pointing along $\Delta \mathbf{V}_{ml}$, dimensionless
n n _{le}	unit vector pointing outward from the control volume <i>Vol, dimensionless</i> unit surface vector pointing outward from the control volume <i>Vol</i>
$\mathbf{n}_{l\sigma}$	unit interface vector pointing outward from the velocity field l
n _{il}	number of the particle from species i per unit flow volume, m ⁻³
n_l	number of particles of field i per unit flow volume, particle number den-
\dot{n}_{coal}	sity of the velocity field l , m ⁻³ number of particles disappearing due to coalescence per unit time and
	unit volume, m ⁻³
$\dot{n}_{l,kin}$	particle production rate due to nucleation during evaporation or conden-
	sation, $1/(m^3s)$
n''_{lw}	number of the activated seeds on unit area of the wall, m^{-2}
\dot{n}_{lh}	number of the nuclei generated by homogeneous nucleation in the donor
	velocity field per unit time and unit volume of the flow, $1/(m^3s)$
$\dot{n}_{l,dis}$	number of the nuclei generated from dissolved gases in the donor velocity
	field per unit time and unit volume of the flow, $1/(m^3s)$
$\dot{n}_{l,sp}$	number of particles of the velocity field l arising due to hydrodynamic
	disintegration per unit time and unit volume of the flow, $1/(m^3s)$
P P	probability irreversibly dissipated power from the viscous forces due to deformation of the local volume and time-averaged velocities in space, W/kg
Per	perimeter, m
p_{li}	l = 1: partial pressure inside the velocity field l
	l = 2, 3: pressure of the velocity field l
p 	pressure, Pa thermal neuron per unit flow volume introduced into the fluid W/m^3
<i>q</i> : <i>m</i>	the final power per unit flow volume introduced into the fund, w/ in
$q_{\sigma l}$	i = 1, 2, 5. Thermal power per unit flow volume introduced from the in-
· <i>m</i>	terface into the velocity field <i>l</i> , W/m ²
$q_{w\sigma l}$	thermal power per unit now volume introduced from the structure inter-
	tace into the velocity field l , W / m ²

R	mean radius of the interface curvature, m			
$\mathbf{r}(x,y,z)$	position vector, m			
R	(with indexes) gas constant, J/(kg K)			
S	arc length vector, m			
S	total entropy, J/K			
S	specific entropy, J/(kg K)			
SC	turbulent Schmidt number, aimensionless			
Sc^m	turbulent Schmidt number for particle diffusion, dimensionless			
T	temperature, K			
T_l	temperature of the velocity field <i>l</i> , K			
Т	shear stress tensor, N/m^2			
t	unit tangent vector			
U	dependent variables vector			
Vol	control volume, m ³			
$Vol^{1/3}$	size of the control volume, m			
Vol_l	volume available for the field l inside the control volume, m^3			
$\sum_{l=1}^{l_{\max}} Vol_l$	volume available for the flow inside the control volume, m ³			
V	instantaneous fluid velocity with components, u, v, w in r, θ , and z di-			
	rection, m/s			
\mathbf{V}_{l}^{τ}	instantaneous field velocity with components, $u_i^{\vartheta}, v_i^{\tau}, w_i^{\tau}$ in r, θ , and z			
1	directions. m/s			
V.	time-averaged velocity, m/s			
\mathbf{V}'_{l}	pulsation component of the instantaneous velocity field, m/s			
$\Lambda \mathbf{V}$	$\mathbf{V} - \mathbf{V}$ velocity difference disperse phase <i>l</i> continuous phase <i>m</i> carry-			
$\Delta \mathbf{v}_{lm}$	$v_1 - v_m$, velocity difference, disperse phase <i>i</i> , continuous phase <i>m</i> early ing <i>l</i> m/s			
SUT				
$\boldsymbol{O}_i \boldsymbol{V}_l$	diffusion velocity, m/s			
$\mathbf{V}_{l\sigma}^{ au}$	interface velocity vector, m/s			
$\mathbf{V}_{l}^{\tau} \boldsymbol{\gamma}$	instantaneous vector with components, $u_l^{\vartheta} \gamma_r, v_l^{\tau} \gamma_{\theta}, w_l^{\tau} \gamma_z$ in r, θ , and z			
	directions, m/s			
v	specific volume, m ³ /kg			
x	mass fraction, dimensionless			
у	distance between the bottom of the pipe and the center of mass of the liq-			
-	uid, m			
X	vector product			

Greek

α_l	part of $\gamma_{\nu} Vol$ available to the velocity field <i>l</i> , local instantaneous volume
	fraction of the velocity field l, dimensionless
$lpha_{_{il}}$	the same as α_l in the case of gas mixtures; in the case of mixtures con-
	sisting of liquid and macroscopic solid particles, the part of $\gamma_v Vol$ avail-
	able to the inert component i of the velocity field l , local instantaneous volume fraction of the inert component i of the velocity field l , dimensionless
$lpha_{l,\max}$	≈ 0.62 , limit for the closest possible packing of particles, dimensionless
γ_{ν}	the part of <i>dVol</i> available for the flow, volumetric porosity, <i>dimensionless</i>
γ	surface permeability, dimensionless
$ec{\gamma}$	directional surface permeability with components $\gamma_r, \gamma_{\theta}, \gamma_z$, dimen-
	sionless
$\frac{\Delta}{s}$	finite difference
0	= 1 for continuous field:
o_l	= 1 for continuous field,
2	= 0 101 disperse field, <i>dimensionless</i>
ε	dissipation rate for kinetic energy from turbulent fluctuation, power irre-
	versibly dissipated by the viscous forces due to turbulent fluctuations, W/kg
η	dynamic viscosity, kg/(m s)
θ	heta -coordinate in the cylindrical or spherical coordinate systems, rad
K	= 0 for <i>Cartesian</i> coordinates;
K	= 1 for cylindrical coordinates
л К.	curvature of the surface of the velocity field l m
2	thermal conductivity W/(mK)
λ	eigenvalue
μ_{r}^{τ}	local volume-averaged mass transferred into the velocity field <i>l</i> per unit
<i>i</i> -1	time and unit mixture flow volume, local volume-averaged instantaneous
	mass source density of the velocity field <i>l</i> , $kg/(m^3s)$
μ_l	time average of μ_l^r , kg/(m ³ s)
$\mu_{\scriptscriptstyle wl}$	mass transport from exterior source into the velocity field l , kg/(m ³ s)
$\mu_{\scriptscriptstyle il}^{\scriptscriptstyle au}$	local volume-averaged inert mass from species <i>i</i> transferred into the ve-
	locity field l per unit time and unit mixture flow volume, local volume-

averaged instantaneous mass source density of the inert component *i* of the velocity field *l*, kg/(m³s)

- μ_{il} time average of μ_{il}^{τ} , kg/(m³s)
- μ_{iml}^{t} local volume-averaged instantaneous mass source density of the inert component *i* of the velocity field *l* due to mass transfer from field *m*, kg/(m³s)
- μ_{iml} time average of μ_{iml}^{τ} , kg/(m³s)
- μ_{ilm}^{τ} local volume-averaged instantaneous mass source density of the inert component *i* of the velocity field *l* due to mass transfer from field *l* into velocity field *m*, kg/(m³s)

$$\mu_{ilm}$$
 time average of μ_{ilm}^{τ} , kg/(m³s)

- v kinematic viscosity, m²/s
- V_l^t coefficient of turbulent kinematic viscosity, m²/s
- v_l^m coefficient of turbulent particle diffusion, m²/s

$$\xi$$
 angle between $\mathbf{n}_{l\sigma}$ and $\Delta \mathbf{V}_{lm}$, rad

- ρ density, kg/m³
- ρ instantaneous density, density; without indexes, mixture density, kg/m³
- ρ_l instantaneous field density, kg/m³
- ρ_{il} instantaneous inert component density of the velocity field l, kg/m³

 $\langle \rho_l \rangle^l$ intrinsic local volume-averaged phase density, kg/m³

 $(\rho w)_{23}$ entrainment mass flow rate, kg/(m²s)

- $(\rho w)_{32}$ deposition mass flow rate, kg/(m²s)
- $\left(\rho_{l}\mathbf{V}_{l}^{\tau}\right)^{le}$ local intrinsic surface mass flow rate, kg/(m²s)
- σ , $\sigma_{\scriptscriptstyle 12}$ surface tension between phases 1 and 2, N/m
- τ time, s
- φ angle giving the projection of the position of the surface point in the plane normal to ΔV_{im} , rad
- $\chi_l^{m\sigma}$ the product of the effective heat transfer coefficient and the interfacial area density, $W/(m^3K)$. The subscript *l* denotes inside the velocity field *l*. The superscript $m\sigma$ denotes location at the interface σ dividing field *m* from field *l*. The superscript is only used if the interfacial heat transfer is associated with mass transfer. If there is heat transfer only, the linearized interaction coefficient is assigned the subscript *ml* only, indicating the interface at which the heat transfer takes place.

Subscripts

С	continuous
d	disperse
lm	from <i>l</i> to <i>m</i> or <i>l</i> acting on <i>m</i>
W	region "outside of the flow"
e	entrances and exits for control volume <i>Vol</i>
<i>l</i>	velocity field <i>l</i> , intrinsic field average
ı	the field <i>l</i> , noncondensable gases in the gas field $l = 1$, or microscopic particles in water in field 2 or 3
i	corresponding to the eigenvalue λ_i in Chapter 4
М	noninert component
т	mixture of entrained coolant and entrained melt debris that is in thermal and mechanical equilibrium behind the shock front
ml	from <i>m</i> into <i>l</i>
iml	from <i>im</i> into <i>il</i>
max	maximum number of points
п	inert component
0	beginning of the time step
Ε	entrainment
coal	coalescence
sp	splitting, fragmentation
σ	interface
τ	old time level
$\tau + \Delta \tau$	new time level
*	initial
0	reference conditions
p, v, s	at constant <i>p</i> , <i>v</i> , <i>s</i> , respectively
L	left
R	right
1	vapor or in front of the shock wave
2	water or behind the shock wave
3	melt
4	entrained coolant behind the front - entrained coolant
5	microparticles after the thermal interaction - entrained melt
Supersc	ripts

/	time	fluctuati	on
	unit	mactaatt	011

- , saturated steam
- "
- saturated liquid saturated solid phase air ...
- Α
- drag d
- heterogeneous е

i	component (either gas or solid particles) of the velocity field
$i_{\rm max}$	maximum for the number of the components inside the velocity field
L	lift
l	intrinsic field average
le	intrinsic surface average
$l\sigma$	averaged over the surface of the sphere
т	component
n	normal
n	old iteration
<i>n</i> +1	new iteration
t	turbulent, tangential
vm	virtual mass
au	temporal, instantaneous
-	averaging sign

Operators

$ abla \cdot$	divergence
∇	gradient
∇_n	normal component of the gradient
∇_t	tangential component of the gradient
∇_l	surface gradient operator, 1/m
∇^2	Laplacian
$\langle \rangle$	local volume average
$\langle \rangle^l$	local intrinsic volume average
$\left\langle \right\rangle^{le}$	local intrinsic surface average

Nomenclature required for coordinate transformations

- (x, y, z) coordinates of a *Cartesian*, left-oriented coordinate system (*Euclidean* space). Another notation which is simultaneously used is x_i (i = 1, 2, 3): x_1, x_2, x_3
- (ξ, η, ζ) coordinates of the curvilinear coordinate system called transformed coordinate system. Another notation which is simultaneously used is ξ^i $(i = 1, 2, 3): \xi^1, \xi^2, \xi^3$
- \mathbf{V}_{cs} the velocity of the curvilinear coordinate system
- \sqrt{g} Jacobian determinant or Jacobian of the coordinate transformation $x = f(\xi, \eta, \zeta), \ y = g(\xi, \eta, \zeta), \ z = h(\xi, \eta, \zeta)$

- a_{ii} elements of the *Jacobian* determinant
- a^{ij} elements of the determinant transferring the partial derivatives with respect to the transformed coordinates into partial derivatives with respect to the physical coordinates. The second superscript indicates the *Cartesian* components of the contravariant vectors
- $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ covariant base vectors of the curvilinear coordinate system tangent vectors to the three curvilinear coordinate lines represented by (ξ, η, ζ)
- $(\mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3)$ contravariant base vectors, normal to a coordinate surface on which the coordinates ξ , η , and ζ are constant, respectively
- g_{ii} covariant metric tensor (symmetric)
- g^{ij} contravariant metric tensor (symmetric)
- $(\mathbf{e}^1, \mathbf{e}^2, \mathbf{e}^3)$ unit vectors normal to a coordinate surface on which the coordinates $\boldsymbol{\xi}$, $\boldsymbol{\eta}$, and $\boldsymbol{\zeta}$ are constant, respectively
- $\mathbf{V}^i = \mathbf{a}^i \cdot \mathbf{V}$, contravariant components of the vector \mathbf{V}
- $\mathbf{V}_i = \mathbf{a}_i \cdot \mathbf{V}$, covariant components of the vector \mathbf{V}
- $(\gamma_{\xi}, \gamma_{\eta}, \gamma_{\zeta})$ permeabilities of coordinate surfaces on which the coordinates ξ , η , and ζ are constant, respectively

Greek

Α,α	Alpha	Ι, ι	Iota	Σ, σ	Sigma
B, β	Beta	Κ, κ	Kappa	Τ, τ	Tau
Γ, γ	Gamma	Λ, λ	Lambda	Φ , φ	Phi
Δ . δ	Delta	Μ, μ	Mu	Χ, χ	Chi
Ε, ε	Epsilon	Ν, ν	Nu	Υ, υ	Ypsilon
Ζ, ζ	Zeta	Ξ, ξ	Xi	Ψ,ψ	Psi
Η, η	Eta	0, <i>o</i>	Omikron	Ω, ω	Omega
Θ 19	Theta	Π, π	Pi	ŕ	U
0, v	Theta	Ρ, ρ	Rho		

Table of Contents

1	Heat release in the reactor core	1
	1.1 Thermal power and thermal power density	1
	1.2 Thermal power density and fuel material	4
	1.3 Thermal power density and moderator temperature	5
	1.4 Spatial distribution of the thermal power density	6
	1.5 Equalizing of the spatial distribution of the thermal power density	8
	1.6 Nomenclature	13
	References	14
2	Temperature inside the fuel elements	15
-	2.1 Steady-state temperature field	17
	2.1 Steady-state temperature field	17 20
	2.2 Influence of the cladding oxidation hydrogen diffusion and	2)
	corrosion product denosition	36
	2.3.1. Cladding oxidation	30 36
	2.3.1 Cladding Oxidation	30 40
	2.3.2 Trydrogen diffusion	40 10
	2.5.5 Deposition	40 //1
	2.4 Nomenciature	+1 12
	Keterences	42
3	The "simple" steady boiling flow in a pipe	45
3	The "simple" steady boiling flow in a pipe3.1 Mass conservation	 45 47
3	The "simple" steady boiling flow in a pipe3.1 Mass conservation	 45 47 48
3	 The "simple" steady boiling flow in a pipe	 45 47 48 51
3	 The "simple" steady boiling flow in a pipe	 45 47 48 51 53
3	The "simple" steady boiling flow in a pipe	 45 47 48 51 53 54
3	 The "simple" steady boiling flow in a pipe	 45 47 48 51 53 54 55
3	 The "simple" steady boiling flow in a pipe	45 47 51 53 54 55 57
3	The "simple" steady boiling flow in a pipe	 45 47 51 53 54 55 57 61
3	The "simple" steady boiling flow in a pipe	45 47 48 51 53 54 55 57 61
3	 The "simple" steady boiling flow in a pipe	45 47 48 51 53 54 55 57 61
3	 The "simple" steady boiling flow in a pipe	 45 47 48 51 53 54 55 57 61 64 67
3	 The "simple" steady boiling flow in a pipe	 45 47 48 51 53 54 55 57 61 64 67
3	 The "simple" steady boiling flow in a pipe	45 47 48 51 53 54 55 57 61 64 67
3	 The "simple" steady boiling flow in a pipe	45 47 48 51 53 54 55 61 64 67 71 72
3	 The "simple" steady boiling flow in a pipe	45 47 48 51 53 54 55 57 61 64 67 71 72 79
3	 The "simple" steady boiling flow in a pipe	45 47 48 51 53 54 55 57 61 64 67 71 72 79 83

4	The	"simple" steady three-fluid boiling flow in a pipe	. 87
	4.1	Flow regime transition from slug to churn turbulent flow	. 88
	4.2	Instantaneous liquid redistribution in film and droplets	. 89
	4.3	Relaxing the assumption for instantaneous liquid redistribution in film	
		and droplets, entrainment, and deposition	. 91
	4.4	Drift flux correlations	. 94
	4.5	Separated momentum equation	. 96
	4.6	Dynamic evolution of the mean droplet size	. 99
		4.6.1 Droplet size stability limit	. 99
		4.6.2 Droplet production rate due to fragmentation	100
		4.6.3 Duration of the fragmentation	100
		4.6.4 Collision and coalescence	102
	4.7	Heat transfer	103
	4.8	Mass transfer	105
	4.9	Comparison with experiments	108
	4.10	Nomenclature	112
	Refe	erences	115
5	Cor	e thermal hydraulics	117
	5.1	Reactor pressure vessels	117
	5.2	Steady-state flow in heated rod bundles	131
		5.2.1 The NUPEC experiment	131
		5.2.2 The SIEMENS void data for the ATRIUM 10 fuel bundle	148
		5.2.3 The FRIGG experiments	149
		5.2.4 The THTF experiments: high pressure and low mass flow	154
	5.3	Pressure drop for boiling flow in bundles	156
	5.4	Transient boiling	159
		5.4.1 The NUPEC transients in a channel simulating one subchannel	
		of a PWR fuel assembly	159
		5.4.2 The NUPEC transients in PWR 5×5 fuel assembly	161
	5.5	Steady-state critical heat flux	164
		5.5.1 Initial zero-dimensional guess	165
		5.5.2 Three-dimensional CHF analysis	170
		5.5.3 Uncertainties	172
	5.6	Outlook – toward large-scale turbulence modeling in bundles	179
	5.7	Outlook – toward fine-resolution analysis	182
	5.8	Core analysis	183
	5.9	Nomenclature	185
	Refe	erences	187
	App	bendix 5.1 Some relevant constitutive relationships addressed	
		in this analysis	193
6	Flor	w hailing and condensation stability analysis	105
U	61	State of the art	195
	6.2	AREVA boiling stability data for the ATRIUM 10R fuel bundle	197
	63	Flow condensation stability	203
	Ref	rion contensation statinty	211
	1.010		

7	Crit	tical m	ultiphase flow	215
	7.1	Defini	tion of the criticality condition	215
	7.2	Grid s	tructure	218
	7.3	Iterati	on strategy	220
	7.4	Single	phase flow in pipe	220
		7.4.1	No friction energy dissipation, constant cross section	220
		7.4.2	General case, perfect gas	227
	7.5	Simple	e two phase cases for pipes and nozzles	229
		7.5.1	Subcooled critical mass flow rate in short pipes, orifices and	
		/ 10/12	nozzles	232
		7.5.1	Frozen homogeneous non-developed flow	233
		7.5.2	Non-homogeneous developed flow without mass exchange	236
		7.5.3	Equilibrium homogeneous flow	237
		7.5.4	Equilibrium non-homogeneous flow	256
		7.5.5	Inhomogeneous developing flow in short pipes and nuzzles	
			with infinitely fast heat exchange and with limited interfacial	
			mass transfer	269
	7.6	Recen	t state of the knowledge for describing critical flow	277
		7.6.1	Bubbles origination	277
		7.6.2	Bubble fragmentation	284
		7.6.3	Bubble coalescences	286
		7.6.4	Droplets origination	286
	7.7	Exam	ples for application of the theory of the critical flow	287
		7.7.1	Blow down from initially closed pipe	287
		7.7.2	Blow down from initially closed vessel	291
	7.8	Nomen	clature	293
	Refe	erences		297
_				
8	Stea	ım gen	erators	301
	8.1	Introd	uction	301
	8.2	Some	popular designs of steam generators	302
		8.2.1	U-tube type	302
		8.2.2	Once through type	311
		8.2.3	Other design types	313
	8.3	Freque	ent problems, sound design practices	313
	8.4	Analy	tical tools	320
		8.4.1	Some preliminary remarks on the physical problem	
			to be solved	320
		8.4.2	Some simple conservation principles	321
		8.4.3	Three-dimensional analysis	323
	8.5	Valida	ation examples	326
		8.5.1	Benchmark for heat exchanger design with complex	
			computer codes	326
		8.5.2	Benchmark for once through steam generator design	
			with complex computer codes	333
		8.5.3	Three-dimensional benchmarks – comparison with	
			predictions of older computer codes	334

	8.6	Primary c	circuits of PWRs up to 1976	338
	8.7	Primary c	circuits of modern PWRs	341
	Appendix 1 Some useful geometrical relations in preparing			
		g	geometrical data for U-tube steam generator analysis	344
	Refe	erences		350
9	Moi	sture sepa	aration	355
	9.1	Introducti	ion	355
	9.2	.2 Moisture characteristics		359
	9.3	3 Simple engineering methods for computation of the efficiency		
		of the separation		362
		9.3.1 Cy	clone separators	363
	0.4	9.3.2 Va	ine separators	375
	9.4	Velocity 1	field modeling in separators	383
		9.4.1 Kr	<i>eith</i> and <i>Sonju</i> solution for the decay of turbulent	204
		SW	tential and flow in vones	384
		9.4.2 P0	ciential gas flow in vanes	383
		9.4.3 IT	ajectory of particles in a known continuum field	280
		9.4.4 C0	omputational fluid dynamics analyses of cyclones	280
	05	Fyperime	mputational fluid dynamics analyses of valle separators	301
	9.5	051 RV	WR cyclones PWR steam generator cyclones	301
		952 Ot	her cyclone types	403
		953 Va	ine dryers	407
	9.6	Moisture	separation in NPP with PWRs analyzed by three-fluid	
		models		420
		9.6.1 Set	paration efficiency of the specific cyclone design	422
		9.6.2 Eff	ficiency of the specific vane separator design	424
		9.6.3 Un	niformity of the flow passing the vane separators	424
		9.6.4 Eff	ficiency of the condensate removal locally and integrally	425
	9.7	Nomencla	ature	426
	Refe	erences		430
10	Pip	pe networl	ks	433
	10.	I Some t	Dasic definitions	435
		10.1.1	Pipes	435
		10.1.2	Axis in the space	437
		10.1.3	Diameters of pipe sections	438
		10.1.4	Elbows	439
		10.1.5	Creating a library of pipes	439
		10.1.0	Sub system network	440
		10.1.7	Discretization of nines	44 0 ///1
		10.1.0	Knots	<u> ++1</u> <u>44</u> 2
	10	2 The 10	83-Interatome experiments	<u>4</u> 44
	10.	10.2 1	Experiment 1 2	445
		10.2.1	Experiment 1.2	446
		10.2.2		170

		10.2.3	Experiment 10.6	449
		10.2.4	Experiment 11.3	450
		10.2.5	Experiment 21	452
		10.2.6	Experiment 5	454
		10.2.7	Experiment 15	456
	Refe	rences	-	458
11	Some	e auvilia	rv systems	461
	11.1	High n	ressure reduction station	461
	11.2	Gas rel	ease in research reactors piping	464
		11 2 1	Solubility of O N and H under 1 bar pressure	465
		11.2.1	Some general remarks on the gas release- and absorption	102
		11.2.2	dynamics	466
		11.2.3	Gas release in the siphon safety pipe.	467
		11.2.4	Radiolysis gases: generation, absorption and release	468
		11.2.5	Mixing in the water pool	
		11.2.6	Computational analyses	
	Refe	ences	F	
12	Eme	rgency o	condensers	479
	12.1	Introdu	lction	479
	12.2	Simple	mathematical illustration of the operation of the system	480
	12.3	Perform	nance of the condenser as a function of the water level	
		and pre	essure	483
	12.4	Conder	nsate removal	483
	12.5	Air-coo	bled condenser, steam reheater	484
		12.5.1	Heat exchanger power	484
		12.5.2	Intensifying heat transfer by fins	488
		12.5.3	Heat transfer at finned tubes	489
		12.5.4	Heat conduction through finned pipe	492
	10.0	12.5.5	Condensation inside a pipe	493
	12.6	Nomen	iclature	494
	12.7	Referei	nces	496
13	Core	degrad	ation	497
	13.1	Process	ses during the core degradation depending on the	
		structu	re temperature	497
	13.2	Analyti	ical tools for estimation of the core degradation	498
14	Melt	-coolant	interaction	503
	14.1	Melt-co	polant interaction analysis for the boiling water reactor	
	11	KARE	NA	504
		14.1.1	Interaction inside the guide tubes	510
		14.1.2	Melt-relocation through the lower core grid	512
		14.1.3	Side melt-relocation through the core barrel	513
		14.1.4	Late water injection	513

	14.2	Pressure increase due to the vapor generation at the surface of the		
		melt pool	513	
	14.3	Conditions for water penetration into melt	514	
	14.4	Vessel integrity during the core relocation phase	515	
	Refe	ences	517	
15	Cool	ability of layers of molten reactor material	. 521	
	15.1	Introduction	. 523	
	15.2	Problem definition	. 523	
	15.3	System of differential equations describing the process	524	
		15.3.1 Simplifying assumptions	. 524	
		15.3.2 Mass conservation	. 525	
		15.3.3 Gas release and gas volume faction	. 527	
		15.3.4 Viscous layer	528	
		15.3.5 Crust formation	. 530	
		15.3.6 Melt energy conservation	. 532	
		15.3.7 Buoyancy driven convection	. 534	
		15.3.8 Film boiling	536	
	15.4	Heat conducting structures	. 537	
		15.4.1 Heat conduction through the structures	. 537	
		15.4.2 Boundary conditions	. 538	
		15.4.3 Oxide crust formation on colder heat conducting		
		structures	. 539	
	15.5	Metal layer	542	
	15.6	Test case	. 542	
		15.6.1 Oxide over metal	543	
		15.6.2 Oxide besides metal	546	
	15.7	Gravitational flooding of hot solid horizontal surface by water	547	
		15.7.1 Simplifying assumptions	548	
		15.7.2 Conservation of mass and momentum, scaling	550	
		15.7.3 Eigen values, eigen vectors and canonical forms	553	
		15.7.4 Steady state	557	
	15.8	Nomenclature	559	
	15.9	Nomenclature to Sect. 15.7	561	
	Refe	ences	563	
16	Exte	rnal cooling of reactor vessels during severe accident	. 565	
	16.1	Introduction	. 565	
	16.2	State of the art	566	
	16.3	Dry core melting scenario, melt relocation, wall attack, focusing		
		effect	. 568	
	16.4	Model assumptions and brief model description	. 569	
		16.4.1 Molten pool behavior	570	
		16.4.2 Two dimensional heat conduction through the vessel wall.	. 571	
		16.4.3 Boundary conditions	572	
		16.4.4 Total heat flow from the pools into the vessel wall	. 574	
		16.4.5 Vessel wall ablation	. 575	

	16.4.6 Heat fluxes and crust formation	576		
	16.4.7 Buoyancy convection			
	16.5 Critical heat flux	593		
	16.6 Application examples of the model	598		
	16.6.1 The effect of vessel diameter	599		
	16.6.2 The effect of the lower head radius	599		
	16.6.3 The effect of the relocation time			
	16.6.4 The effect of the mass of the internal structures	601		
	16.6.5 Some important parameters characterizing the proc	ess 601		
	16.7 Nomenclature	606		
	References			
	Appendix 1: Some geometrical relations			
17	Thermo-physical properties for severe accident analysis	617		
17.1	Introduction	619		
	17.1.1 Summary of the properties at the melting line			
	at atmospheric pressure	619		
	17.1.2 Approximation of the liquid state of melts			
	17.1.3 Nomenclature			
	References			
17.2	2 Uranium dioxide caloric and transport properties			
	17.2.1 Solid			
	17.2.2 Liquid	636		
	17.2.3 Vapor			
	References			
17.3	Zirconium dioxide	649		
	17.3.1 Solid	649		
	17.3.2 Liquid	654		
	References			
17.4	Stainless steel			
	17.4.1 Solid	659		
	17.4.2 Liquid			
	17.4.3 Vapor			
	References	674		
17.5	Zirconium			
	17.5.1 Solid			
	17.5.2 Liquid			
	References			
17.6	Aluminum	687		
	17.6.1 Solid			
	17.6.2 Liquid			
	Reterences	695		

17.7	Aluminum oxide, Al ₂ O ₃	697
	17.7.1 Solid	697
	17.7.2 Liquid	704
	References	707
17.8	Silicon dioxide	709
	17.8.1 Solid	709
	17.8.2 Liquid	715
	References	718
17.9	Iron oxide	721
	17.9.1 Solid	721
	17.9.2 Liquid	723
	References	728
17.10	Molybdenum	729
	17.10.1 Solid	729
	17.10.2 Liquid	733
	References	736
17.11	Boron oxide	737
	17.11.1 Solid	737
	17.11.2 Liquid	739
	References	745
17.12	Reactor corium	747
	17.12.1 Liquid	750
	17.12.2 Solid	752
	References	753
17.13	Sodium	755
	17.13.1 Some basic characteristics	756
	17.13.2 Liquid	760
	17.13.3 Vapor	778
	References	798
	Appendix 1	799
17.14	Lead, bismuth and lead-bismuth eutectic alloy	801
	References	807
Index	<	809