Intraseasonal Variability in the Atmosphere-Ocean Climate System

William K. M. Lau Duane E. Waliser

Intraseasonal Variability in the Atmosphere–Ocean Climate System (Second Edition)

Intraseasonal Variability in the Atmosphere–Ocean Climate System

(Second Edition)

Published in association with **Praxis Publishing** Chichester, UK

Dr. William K. M. Lau Chief, Laboratory for Atmospheres NASA/Goddard Space Flight Center Greenbelt Maryland U.S.A. Dr. Duane E. Waliser Chief Scientist Earth Science and Technology Directorate Jet Propulsion Laboratory California Institute of Technology Pasadena California U.S.A.

About the cover

Madden–Julian Oscillation index phase plot [see Wheeler and Hendon (2004) and Chapter 5 for more information and the reference] for an example forecast from the U.S. National Oceanographic and Atmospheric Administration's (NOAA's) National Weather Service (NWS) Global Ensemble Forecast System (GEFS). The RMM1 (x-axis) and RMM2 (y-axis) values for the most recent 40 days prior to the forecast are given along with the forecast values for the subsequent 15 days. The green line is the mean of the 21-member ensemble forecast (forecast days 1–7: thick line, forecast days 8–15: thin line) along with all 21 individual ensemble forecast members (yellow lines). The light gray shading represents the area in which 90% of forecast members reside and the dark gray shading represents the area in which 50% of forecast members reside.

Courtesy Jon Gottschalck—Climate Prediction Center/NWS/NOAA (see also Gottschalck et al. 2010 reference in Chapter 12)

SPRINGER-PRAXIS BOOKS IN ENVIRONMENTAL SCIENCES

ISBN 978-3-642-13913-0 e-ISBN 978-3-642-13914-7 DOI 10.1007/978-3-642-13914-7

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922055

© Springer-Verlag Berlin Heidelberg 2012 First Edition published 2005

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Jim Wilkie Project management: OPS Ltd., Gt Yarmouth, Norfolk, U.K.

Printed on acid-free paper

Springer is part of Springer Science + Business Media (www.springer.com)

Contents

Pre	eface.			xiii
Pre	eface to	o the Fi	rst Edition	XV
Lis	t of fig	gures		xix
Ab	breviat	ions		xxix
1	Histo	rical per	rspective (Roland A. Madden and Paul R. Julian)	1
	1.1	Introdu	uction	1
	1.2	The int	raseasonal, tropospheric oscillation	3
	1.3	The ele	mentary 4-D structure	6
	1.4	Other e	early studies of the oscillation	8
	1.5	The os	cillation in 1979	9
	1.6	Comple	exity of cloud movement and structure	10
	1.7	Seasona	al variations in the oscillation	12
	1.8	The os	cillation in the zonal average	12
	1.9	Other e	effects of the oscillation	14
	1.10	Summa	ıry	16
	1.11	Referen	ices	16
2	South	n Asian 1	monsoon (B. N. Goswami)	21
	2.1	Introdu	uction	21
		2.1.1	South Asian summer monsoon and active/break cycles.	21
		2.1.2	Amplitude and temporal and spatial scales	25
		2.1.3	Regional propagation characteristics	37
		2.1.4	Relationship between poleward-propagating ISOs and	- /
			monsoon onset.	38
		2.1.5	Relationship with the MJO	41

	2.2	Mechanism for temporal-scale selection and propagation	42
		2.2.1 30 to 60-day mode	42
		2.2.2 10 to 20-day mode	48
	2.3	Air-sea interactions	50
	2.4	Clustering of synoptic events by ISOs	53
	2.5	Monsoon ISOs and predictability of the seasonal mean	54
	2.6	Aerosols and monsoon ISOs	58
	2.7	Predictability and prediction of monsoon ISOs	59
	2.8	Summary and discussion	60
	2.9	Acknowledgments	63
	2.10	Appendix	64
	2.11	References	64
3	Intra	seasonal variability of the atmosphere-ocean-climate system: East	
	Asia	n monsoon (Huang-Hsiung Hsu)	73
	3.1	Introduction	73
	3.2	General characteristics of EA/WNP monsoon flow	74
	3.3	Periodicity, seasonality, and regionality	77
	3.4	Intraseasonal oscillation propagation tendency	82
	3.5	Relationship with monsoon onsets and breaks	84
	3.6	The 10 to 30-day and 30 to 60-day boreal summer ISO	92
		3.6.1 The 30 to 60-day northward/northwestward-propagating	
		pattern	92
		3.6.2 The 10 to 30-day westward-propagating pattern	96
	3.7	Relationship with tropical cyclone activity	98
	3.8	Upscale effect of TC and synoptic systems	101
	3.9	Final remarks	103
		3.9.1 Close association with the EA/WNP monsoon	103
		3.9.2 The CISO vs. interannual variability	103
		3.9.3 Multiperiodicities and multiscale interaction	104
		3.9.4 Others	104
	3.10	References	104
4	Pan	America (Kingtse C. Mo, Charles Jones, and Julia Nogués Paegle)	111
	4.1	Introduction	111
	4.2	Variations in the IS band	113
	4.3	IS variability in December–March	115
		4.3.1 EOF modes	115
		4.3.2 The Madden Julian Oscillation	118
		4.3.3 The submonthly oscillation	125
	4.4	IS variability in June–September	129
		4.4.1 EOF modes	129
		4.4.2 Madden–Julian Oscillation	131
		4.4.3 Submonthly oscillation	135
	4.5	Intraseasonal modulation of hurricanes	138

	4.6	Summary	140
	4.7	References	142
5	Aust	ralasian monsoon (<i>M. C. Wheeler and J. L. McBride</i>)	147
	5.1	Introduction	147
	5.2	Seasonal cycle of background flow	149
	5.3	Broadband intraseasonal behavior: Bursts and breaks	152
	5.4	Broadband intraseasonal behavior: Spectral analysis	157
	5 5	Meteorology of the bursts and breaks	159
	5.6	Characteristics and influence of the MIO	164
	57	1983/1984 and 1987/1988 case studies	171
	5.8	MIO influence on monsoon onset	175
	59	Other modes and sources of ISV	177
	5 10	Modulation of tropical cyclones	183
	5 11	Extratropical_tropical_interaction	185
	5.12	Prediction	187
	5 13	Conclusions	189
	5 14	References	190
	5.14		170
6	The	oceans (<i>William S. Kessler</i>)	199
	6.1	Introduction	199
	6.2	Heat fluxes	200
		6.2.1 Salinity and the barrier layer	200
		6.2.2 A 1-D heat balance?	203
		6.2.3 The role of advection	205
	6.3	Vertical structure under westerly winds	205
	6.4	Remote signatures of wind-forced Kelvin waves	210
	6.5	El Niño and rectification of ISV	213
	6.6	ISV in the Indian Ocean	220
		6.6.1 Differences between the Indian and Pacific Ocean warm	
		pools and their consequences	221
		6.6.2 Oscillations lasting about 60 days in the western	
		equatorial Indian Ocean	226
		6.6.3 Recent models of wind-forced ISV in the Indian Ocean .	226
	6.7	Other intrinsic oceanic ISV	228
		6.7.1 Global ISV	228
		6.7.2 Non-TISO-forced ISV in the tropical Indo-Pacific	228
		6.7.3 ISV outside the equatorial Indo-Pacific	232
	6.8	Conclusion	235
	6.9	References	236
-			0.47
1	Alr-9	Sea Interaction (Harry Hendon)	247
	/.1		24/
	7.2	Air–sea fluxes for the eastward MJO	248

1.3	
	Indian summer monsoon
7.4	SST variability
7.5	Mechanisms of SST variability
7.6	SST-atmosphere feedback
7.7	Impact of slow SST variations on MJO activity
7.8	Concluding remarks
7.9	Acknowledgments
7.10	References
Mass Davi	s, momentum, and geodynamics (<i>Benjamin F. Chao and</i>
Mass <i>Davi</i> 8.1 8.2	s, momentum, and geodynamics (Benjamin F. Chao and d A. Salstein) Introduction Angular momentum variations and Earth rotation 8.2.1 Length-of-day variation and axial angular momentum 8.2.2 Polar motion excitation angular
Mass <i>Davi</i> 8.1 8.2	 s, momentum, and geodynamics (<i>Benjamin F. Chao and</i> d A. Salstein)
Mass Davi 8.1 8.2	 s, momentum, and geodynamics (<i>Benjamin F. Chao and</i> d A. Salstein)
Mass Davi 8.1 8.2 8.3	 s, momentum, and geodynamics (<i>Benjamin F. Chao and</i> d A. Salstein) Introduction Angular momentum variations and Earth rotation 8.2.1 Length-of-day variation and axial angular momentum 8.2.2 Polar motion excitation and equatorial angular momentum 8.2.3 Angular momentum and torques Time-variable gravity
Mass Davi 8.1 8.2 8.3 8.4	 s, momentum, and geodynamics (<i>Benjamin F. Chao and</i> d A. Salstein) Introduction Angular momentum variations and Earth rotation 8.2.1 Length-of-day variation and axial angular momentum 8.2.2 Polar motion excitation and equatorial angular momentum 8.2.3 Angular momentum and torques Time-variable gravity Geocenter motion
Mass Davi 8.1 8.2 8.3 8.4 8.5	 s, momentum, and geodynamics (<i>Benjamin F. Chao and d A. Salstein</i>). Introduction. Angular momentum variations and Earth rotation. 8.2.1 Length-of-day variation and axial angular momentum . 8.2.2 Polar motion excitation and equatorial angular momentum 8.2.3 Angular momentum and torques Time-variable gravity Geocenter motion Conclusions
Mass Davi 8.1 8.2 8.3 8.4 8.5 8.6	 s, momentum, and geodynamics (<i>Benjamin F. Chao and d A. Salstein</i>). Introduction. Angular momentum variations and Earth rotation. 8.2.1 Length-of-day variation and axial angular momentum . 8.2.2 Polar motion excitation and equatorial angular momentum 8.2.3 Angular momentum and torques Time-variable gravity Geocenter motion Conclusions Acknowledgments

9	El N	iño Southern Oscillation connection (<i>William K. M. Lau</i>)	297
	9.1	Introduction	297
	9.2	A historical perspective.	298
	9.3	Phase 1: The embryonic stage	300
		9.3.1 OLR time-longitude sections	300
		9.3.2 Seasonality	302
		9.3.3 Supercloud clusters	303
		9.3.4 Early modeling framework	304
	9.4	Phase 2: The exploratory stage.	306
		9.4.1 MJO and ENSO interactions	307
		9.4.2 WWEs	309
	9.5	Phase 3: ENSO case studies.	310
		9.5.1 El Niño of 1997/1998	312
		9.5.2 Stochastic forcings	314
	9.6	Phase-4: Recent development	315
		9.6.1 A new ISO index	316
		9.6.2 Composite events	321
		9.6.3 The ISV–ENSO biennial rhythm	324
	9.7	TISV and predictability	325

	9.8	Acknow	wledgments	328
	9.9	Referen	nces	328
10	Theo	ries (<i>Bin</i>	n Wang)	335
	10.1	Introdu	action	335
	10.2	Review	of ISO theories.	336
		10.2.1	Wave CISK	337
		10.2.2	Wind-evaporation feedback or WISHE	338
		10.2.3	Frictional convergence instability (FCI)	339
		10.2.4	Cloud-radiation feedback	340
		10.2.5	Convection-water vapor feedback and the moisture mode	341
		10.2.6	Multiscale interaction theory	343
		10.2.7	Mechanisms of the boreal summer intraseasonal	
			oscillation	344
		10.2.8	Atmosphere–ocean interaction	346
	10.3	A gene	ral theoretical framework	348
		10.3.1	Fundamental physical processes	348
		10.3.2	Governing equations	350
		10.3.3	Boundary layer dynamics near the equator	351
		10.3.4	The 1.5-layer model for the MJO	353
		10.3.5	The 2.5-layer model including the effects of basic flows .	356
	10.4	Dynam	uics of the MJO	357
		10.4.1	Low-frequency equatorial waves and the associated	
			Ekman pumping	357
		10.4.2	Frictional convergence instability (FCI)	359
		10.4.3	FCI mode under nonlinear heating	362
		10.4.4	The role of multiscale interaction (MSI) in MJO dynamics	365
	10.5	Dynam	ics of boreal summer ISO	371
		10.5.1	Effects of mean flows on the ISO	371
		10.5.2	Mechanism of northward propagation	375
	10.6	Role pl	layed by atmospheric-ocean interaction	378
	10.7	Summa	iry and discussion.	382
		10.7.1	Understanding gained from the FCI theory	382
		10.7.2	Model limitations	385
	10.0	10.7.3	Outstanding issues.	385
	10.8	Acknow	wledgments	388
	10.9	Referer	1ces	388
11	Mod	eling int	raseasonal variability (K. R. Sperber J. M. Slingo and	
	P. M	I. Inness)	399
	11.1	Introdu	iction	399
	11.2	Modeli	ng the MJO in boreal winter	401
		11.2.1	Interannual and decadal variability of the MJO	401
		11.2.2	Sensitivity to formulation of the atmospheric model	402

		11.2.3 Modeling the MJO as a coupled ocean-atmosphere	
		phenomenon	408
	11.3	Boreal summer intraseasonal variability	412
		11.3.1 GCM simulations	415
		11.3.2 Air-sea interaction and boreal summer intraseasonal	
		variability	416
		11.3.3 Modeling studies of the links between boreal summer	
		intraseasonal and interannual variability	417
	11.4	The impact of vertical resolution in the upper ocean	420
	11.5	Concluding remarks	421
	11.6	Acknowledgments	423
	11.7	References	423
12	Predi	ictability and forecasting (Duane Waliser)	433
	12.1	Introduction	433
	12.2	Empirical models.	435
	12.3	Dynamical forecast models	446
	12.4	Predictability	454
	12.5	Real time forecasts	458
	12.6	Discussion	464
	12.7	Appendix	467
	12.8	Acknowledgments	468
	12.9	References	468
	1		
13	Afric	a and West Asia (Mathew Barlow)	477
	13.1	Overview	477
	13.2	Summary of Africa research	479
		13.2.1 West Africa	479
		13.2.2 Eastern Africa	480
		13.2.3 Southern Africa	481
	13.3	Summary of West Asia research	481
	13.4	Station data analysis	483
		13.4.1 Methodology and data	483
		13.4.2 Nairobi	484
		13.4.3 Riyadh	487
	13.5	Relevance of Gill-Matsuno dynamics and the role of mean wind	489
	13.6	Summary and discussion	493
	13.7	References	493
14	Trop	ical-extratropical interactions (<i>Paul E. Roundy</i>)	497
	14.1	Introduction	497
	14.2	A boreal winter composite of the global flow associated with the	
		MJO	499
	14.3	Response of the global atmosphere to heating in tropical	
		convection	501

	14.4	Influence of extratropical waves on tropical convection	503
	14.5	Two-way interactions between the tropics and extratropics	504
	14.6	MJO influence on the predictability of the global flow	506
	14.7	Discussion	507
	14.8	References	508
15	Ocea	ans and air–sea interaction (<i>Jean Philippe Duvel</i>)	513
	15.1	Introduction	513
	15.2	The source of SST intraseasonal perturbations	514
		15.2.1 Observed ISV of the SST	514
		15.2.2 Source of the ISV of SST	518
		15.2.3 SST perturbations over the SCTR	520
	15.3	Air-sea processes for the simulation and predictability of ISV.	522
		15.3.1 Passive response of the atmosphere to the ISV of SST	522
		15.3.2 Coupled simulations, air-sea fluxes, and SST feedback	524
	15.4	Air-sea processes and scale interaction	526
	10.1	15.4.1 The diurnal cycle	526
		15.4.2 Interannual variability and the Indian Ocean Dipole	527
	15 5	Discussion	528
	15.6	Acknowledgments	530
	15.0	References	530
	10.7		550
17	T 7	(Clil 71)	527
10	vert	Later leasting	537
	16.1	Demote consing and lusts	53/
	16.2	Remote-sensing products	538
	10.3	References	340
17	Mult	iscale theories for the MJO (Andrew J. Majda and	
	Sami	uel N. Stechmann)	549
	17.1	Introduction	549
	17.2	The MJO skeleton	550
	17.3	Multicloud and multiscale effects	555
		17.3.1 Kinematic models for the MJO	555
		17.3.2 Dynamic models for waves in the MJO	557
	17.4	Implications for global circulation models	560
	17.5	Summary	563
	17.6	References	564
18	Chen	nical and biological impacts (Baijun Tian and Duane E. Waliser)	569
	18.1	Introduction	569
	18.2	Ozone	571
	18.3	Aerosols	574
	18.4	Carbon monoxide	576
	18.5	Ocean chlorophyll	579
			21)

xii Contents

Inde	ex		587
	18.8	References	581
	18.7	Acknowledgments	580
	18.6	Looking ahead	579

Preface to the Second Edition

In the Preface to the First Edition of this book, we wrote about the goal to provide a one-stop reference text on intraseasonal variability (10–90 days) to bridge the gap between weather forecasts (a few days to a week), and climate predictions (seasonal, yearly, and longer timescales). We seek to further this goal in the Second Edition. The years since the publication of the First Edition have seen significant advances in our understanding of the physical processes, multiscale interactions, and predictability associated with intraseasonal variability in the tropical ocean–atmosphere system. These advances have been achieved by the scientific community at large through (a) increased capabilities in high-resolution global modeling and data assimilation, (b) in-depth theoretical studies, and (c) improved diagnostics mostly from new global satellite observations and improved reanalysis products.

At present, a realistic simulation of the Madden and Julian Oscillation (MJO) is considered a prerequisite for climate models to produce reliable predictions of interannual variability and longer term projections of regional impacts and extreme events from climate change. Common metrics for MJO prediction and diagnostics have been developed and adopted by the scientific community so that model validations and empirical forecasts of the MJO can be compared and evaluated. Operational forecast centers such as the U.S. National Oceanic and Atmospheric Administration Climate Prediction Center, the U.K. Meteorological Office, and the European Center for Medium-range Weather Forecasts, among many others, are producing routine forecasts of the MJO. Predictions of onsets and breaks in major monsoon regions around the world are now focused on the propagation and evolution of regional intraseasonal oscillations (ISOs). International and national organizations such as the World Climate Research Programme and the World Weather Research Programme have joined to sponsor working groups and task forces to organize international projects and workshops to facilitate and coordinate research on the MJO and ISOs. The science community has now coined the term "seamless prediction" to address the continuum of temporal and spatial scales linking weather and climate. Indeed, the MJO and associated regional ISOs represent critical linkages between global weather forecasts and regional climate

predictions. Another critical factor spurring the recent rapid advance in our understanding of the MJO and ISO phenomena was the advent of a series of NASA Earthobserving satellites launched between the early 2000s and the present. As a result, the scientific community has access to unprecedented information regarding propagation, horizontal and vertical structures of rainfall, clouds, moisture, and temperature. Such information is essential to define the characteristics of the MJO and associated regional ISOs and their far-field impacts. Other derived quantities such as latent heating profiles and cloud microphysics derived from satellite data and field campaigns are setting the stage for the next level of understanding and improved model fidelity associated with the MJO and ISOs. Studies documenting the influence of the MJO on ozone, aerosols, and carbon dioxide fluctuations in the atmosphere and in ocean productivity are emerging, further demonstrating the far-reaching importance of the MJO and ISOs not only in the physical domain but also in the biogeochemical component of the climate system. Given these momentous recent developments, the Second Edition of the book seems opportune.

The organization of the Second Edition is as follows. The first 12 chapters are either original chapters (Chapters 1, 8, 9), or original chapters with updates (Chapters 2, 3, 4, 5, 6, 7, 10, 11, 12). Chapters 13-18 are new shorter chapters that cover new topics or significant recent advances. In some cases, the latter can also serve as updates or complements to the original chapters. Specifically, the new chapters are: Chapter 13 on "Africa and West Asia" by M. Barlow; Chapter 14 on "Tropical and extratropical interactions" by P. Roundy; Chapter 15 on "Oceans and air–sea interaction" by J.-P. Duvel; Chapter 16 on "Vertical structure from recent observations" by C. Zhang; Chapter 17 on "Multiscale theories" by A. Majda and S. Stechmann; and Chapter 18 on "Chemical and biological impacts" by B. Tian and D. Waliser.

The Second Edition of this book would not have been possible without the support and dedicated efforts of the contribution authors, both old and new. Special thanks are due to Xiouhua Fu, George Kiladis, Tim Li, Jiaylin Lin, Adrian Matthews, Mitch Moncrieff, Benjamin Pohl, David Strauss, Chung-Hsiung Sui, Mike Wallace, Sun Wong, and Klaus Weickmann who have provided constructive comments in reviewing the new chapters. The co-Chief Editors also thank the Earth Science Division of the National Aeronautics and Space Administration, the Office of Global Programs of the National Oceanic and Atmospheric Administration, the Large-scale Dynamics Programs of the Atmospheric Science Division of the National Science Foundation, and the Atmospheric Radiation Measurement and Climate Research Program of the Department of Energy for providing support for years of research of observations and modeling of the MJO and related phenomena. We would also like to express our thanks to the World Climate Research Programme and the World Weather Research Programme for their programmatic sponsorship of a number of panels, working groups, and task forces that have greatly facilitated research on intraseasonal variability and its transition to operational utility.

> William K. M. Lau and Duane E. Waliser June, 2011.

Preface to the First Edition

On the subject of extended range weather forecasts, one of the pioneers of numerical weather forecasts, John von Neumann (1955) wrote:

"The approach is to try first short-range forecasts, then long-range forecasts of those properties of the circulation that can perpetuate themselves over arbitrarily long periods of time ... and only *finally* to attempt forecast for medium–long time periods which are too long to treat by simple hydrodynamic theory and too short to treat by the general principle of equilibrium theory."

In modern phraseology, von Neuman's short-range forecasts would mean weather forecasts extending out to about 5 days, long-range forecasts would be equivalent to climate predictions extending out to a season or longer, and medium to long-range forecast would refer to intraseasonal predictions having lead times of the order of 2 to 8 weeks. Numerical weather forecasting has seen tremendous improvement since its inception in the 1950s. Today, human activities are often so dependent on skillful short-term weather forecasts, that many have come to the unrealistic hope, and even expectation, that weather forecasts should be accurate all the time. However, any basic textbook on weather forecasts of about 2 weeks, which is strongly dependent on initial conditions and atmospheric flow regimes.

Recently, the public has been made aware of high-impact climate phenomena such as El Niño and La Niña, which can affect weather patterns all over the world. Thanks in large part to the international climate research program, Tropical Ocean Global Atmosphere (TOGA), scientists now have the observational resources, the knowledge, and the models to make useful (deterministic) predictions of El Niño and La Niña with lead times up to 9–12 months. These predictions in turn have been helpful in making *probabilistic* seasonal-to-interannual forecasts of weather patterns (not deterministic forecasts of individual weather events) more skillful over certain

spacetime domains (e.g., wintertime temperature over North America and summer rainfall over the Asian monsoon region and South America). Because the lead time for climate prediction is typically a season or longer—a time long enough for the atmosphere to lose memory of its initial state—the skill of prediction is no longer dependent on the initial conditions of the atmosphere. In contrast to weather forecasts, seasonal-to-interannual climate predictions owe their skill to a dependence on slowly changing boundary conditions at the Earth's surface, such as sea surface temperature, snow cover, and soil moisture, and the considerable impact these boundary conditions have on determining the statistics of observed weather patterns. In the forecasting community, it is often said that weather forecasting is an initial value problem and climate prediction is more akin to a boundary value problem. What about the timescales in between (e.g., lead times between about 2 weeks and 2 months)? Are there atmosphere-ocean phenomena with these timescales that are predictable, and how do these phenomena and their predictability respond to the changing boundary conditions at the Earth's surface? These are among some of the issues to be addressed in this book.

Given the progress in weather forecasting and seasonal-to-interannual climate prediction, it is apparent that we are ready to more formally and thoroughly address forecasting of, in von Neuman's words, the "medium–long time periods". Improving extended range (i.e., intraseasonal) forecasts requires fundamental knowledge built on sound research, realistic models of the atmosphere, ocean, and land components of the climate system, and the training of a new generation of scientists and forecasters. Today, we have many textbooks and research reference books on weather and climate variability, and prediction, but there has been none focused specifically on intraseasonal variability (ISV). There has been a large body of scientific studies showing that ISV is far from a simple interpolation between weather and climate scales/processes, and is not just a red-noise extension of weather variability. Indeed, there are specific and unique modes of ISV that are ubiquitous and can be found in the atmosphere, the ocean, and the solid Earth, as well as in the tropics and the extratropics.

To improve prediction in the intermediary timescale (2 weeks to less than a season) of the atmosphere–ocean, it is vital to improve our understanding of the phenomena that are inherently intraseasonal and the manner in which they interact with both shorter (weather) and longer (climate) timescales. Thus one of the overarching goals of this book is to summarize our current understanding of IV and its interactions with other weather and climate processes. However, in developing the framework for this book, we found that including all aspects of ISV would require too much material for one book. Thus, in order to limit the scope of this book, we have chosen to focus primarily on ISV in the tropical ocean and atmosphere, including its interactions with the extratropics whenever appropriate. Using this guideline, topics directly related to midlatitude atmospheric blocking or extratropic annular modes, for example, will not be treated in their own right in this book, but rather discussed in the context of their interaction with tropical ISV (TISV).

Central to TISV is the Madden–Julian Oscillation (MJO) phenomenon, known also as the 40 to 50-day or 30 to 60-day oscillation. However, TISV in general refers to a broad spectrum of phenomena: some quasi-periodic, some non-periodic, some with global reach, and others with regional manifestations. To avoid possible confusion in this book with the various terminologies used in the literature, we refer throughout this book to all variability longer than synoptic timescales (~ 2 weeks) and shorter than a season (90 days) as ISV. The MJO is specifically referred to as the atmosphere–ocean entity that exhibits a coherent eastward propagation along the equator with quasi-periodicity of 30 to 60 days. In the general case, when a quasi-periodic oscillation can be identified, the term intraseasonal oscillation (ISO) will be used. When specially referring to ISV or ISO in the tropics, the acronyms TISV or TISO will be used as appropriate. In this nomenclature, MJO is a special case of a TISO.

This book is intended to be a one-stop reference book for researchers interested in ISV as well as a textbook for senior undergraduate and graduate students in Earth science disciplines. The book contains 12 chapters, each with a comprehensive bibliography. Chapter 1 provides a historical account of the detection of the MJO by R. Madden and P. Julian, who discovered the phenomena. The regional characteristics of TISV on South Asia, East Asia, the Americas, and Australia/ Indonesia are covered in Chapters 2-5, respectively. Air-sea interactions and oceanic ISV are discussed in Chapters 6 and 7. Chapter 8 discusses atmospheric and solid Earth angular momentum and Earth rotation associated with ISV. Chapter 9 is on El Niño Southern Oscillation (ENSO) connections to ISV. Chapters 10, 11, and 12 are devoted to the theory, numerical modeling, and predictability of ISV, respectively. The chapters are written with self-contained material and frequent cross-referencing to other chapters, so that they need not be read in sequence. Readers are encouraged to jump to their chapters of interest if they so desire. However, we strongly recommend everyone to read the Preface and Chapter 1 first to obtain the proper perspective of the subject matter and objectives of the book.

This book could not have been possible without the support and the dedicated efforts of the contributing authors, who provided excellent write-ups for the chapters in a timely manner. Everyone we contacted regarding this book was very enthusiastic and supportive. In addition, we thank Drs. H. Annamalai, Charles Jones, Huug van den Dool, T. C. (Mike) Chen, Klaus Weickmann, Chidong Zhang, Ragu Murtugudde, William Stern, George Kiladis, and Steve Marcus, and one anonymous reviewer for providing very constructive comments in reviewing various chapters of this book. The co-chief editors will also like to thank the Earth Science Enterprise of the National Aeronautics and Space Administration, the Office of Global Programs of the National Oceanographic and Atmospheric Administration, and the Climate Dynamics and Large-Scale Dynamic Meteorology Programs of the Atmospheric Sciences Division of the National Science Foundation for providing support over the years for research on ISV.

REFERENCE

von Neumann, J. (1955) Some remarks on the problem of forecasting climate fluctuations. Dynamics of Climate: The Proceedings of a Conference on the Application of Numerical Integration Techniques to the Problem of the General Circulation. Pergamon Press, p. 137.

> William K. M. Lau and Duane E. Waliser Goddard Space Flight Center, Greenbelt, Maryland October, 2004

Figures

1.1	Co-spectrum and coherence-squared statistics for variables measured at	
	Kanton Island	5
1.2	Approximate structure of the oscillation in the equatorial plane	7
1.3	Time series of precipitable water from the surface to 700 hPa over the Arabian	
	Sea from TIROS-N, and precipitation along the west coast of India during	
	MONEX	10
1.4	Details of large-scale eastward-propagating cloud complexes and smaller westward-moving cloud clusters	11
1.5	Observed relative atmospheric angular momentum during MONEX and the amplitude of a corresponding 0.1 ms change in length of day	13
2.1	Climatological mean precipitation and winds at 850 hPa and 200 hPa during boreal winter and boreal summer	20
2.2	Daily rainfall over Central India with respect to daily climatological mean	22
	during boreal summer for three years	24
2.3	Amplitudes of instraseasonal variability, interannual variability, and seasonal	
	cycle in rainfall	26
2.4	Normalized monsoon ISO index between June 1 and September 30 for 11 years (1997–2007)	27
2.5	Horizontal and vertical structure of the dominant mode of ISV for active and	
	break phases	28
2.6	Power spectra of rainfall over central India, zonal winds over west central Arabian Sea and central Bay of Bengal, and meridional winds over central	
	equatorial Indian Ocean.	29
2.7	Percentage of daily zonal wind variance at 850 hPa during summer explained by	
	the 10 to 20-day mode and the 30 to 60-day mode	30
2.8	Spatial structure of the 10 to 20-day mode, OLR, zonal winds at 850 hPa and	
	200 hPa, and corresponding amplitudes	31
2.9	Coupling between convection and low-level winds	32
2.10	Same as Figure 2.8 but for the 30 to 60-day mode	33

2.11	East-west and north-south wavenumber frequency spectra for rainfall and zonal winds at 850 hPa.	35
2.12	Evolution of convection and relative vorticity at 850 hPa over a cycle of the 30 to 60-day mode	36
2.13	Northward and eastward propagation of the 30 to 60-day mode from regressed 30 to 60-day filtered 850 hPa relative vorticity	37
2.14	Same as Figure 2.13 but for the 10 to 20-day mode	38
2.15	Relationship between the northward propagation of monsoon ISOs and monsoon onset over Kerala	40
2.16	Relationship between convection and vorticity at 850 hPa and between divergence at 925 hPa and vorticity at 850 hPa	45
2.17	Schematic representation of the evolution and northward propagation of meridional circulation of the 30 to 60-day mode	47
2.18	Simultaneous evolution of ocean and atmosphere fields indicating air-sea interaction associated with the 30 to 60-day mode	51
2.19	Clustering of low-pressure systems by monsoon ISOs during active and break phases	54
2.20	First EOF of intraseasonal and interannual 850 hPa winds	57
2.21	(a) Composite AI index for BFA cases; (b) composite AI index for BNFA cases; (c) difference between BFA and BNFA composite AI index; (d) same as (a) but for 850 hPa winds; (e) same as (b) but for 850 hPa winds; (f) Difference of OLR	
	$(W m^{-2})$ composites between BFA and BNFA cases $(BFA - BNFA)$	59
3.1	Climatological mean precipitation and 850 hPa winds during May to September, May to mid-July, and August to September	76
3.2	Precipitation variance for the 30 to 60-day and 10 to 30-day perturbations during May to mid-July and August to September	78
3.3	850 hPa vorticity variance for the 30 to 60-day and 10 to 30-day perturbations during May to mid-July and August to September	79
3.4	Hovmöller diagrams of running variance for the 10 to 30-day and 30 to 60-day precipitation perturbations averaged over 10°N–25°N.	81
3.5	Propagation tendency vectors derived from the 5-day and 2-day lagged correlation maps for the 30 to 60-day and 10 to 30-day 850 hPa vorticity	
3.6	Differences between the composite streamline and equivalent blackbody temperature anomaly during the active and break phases of the westerly	84
	anomaly in the South China Sea for the 30 to 60-day and 12 to 24-day mode	86
3.7	Time-longitude section of 10-day mean rainfall over East China ($110^{\circ}E-115^{\circ}E$)	87
3.8	Hovmoller diagrams of OLR CISO averaged over 122.5°N–132.5°N and 12.5°N–22.5°N	89
3.9	Precipitation CISO variance, ratio of precipitation ISO variance to total variance, and ratio of precipitation CISO variance to ISO variance	91
3.10	Evolution of the 30 to 60-day OLR and low-level circulation patterns in the Western North Pacific	93
3.11	The spatial distribution of composite OLR and (a) 850 hPa and (b) 200 hPa winds and streamfunction anomalies in the 10 to 25-day band when convection is strongest in the South China Sea	07
3.12	The 850 hPa perturbation vorticity variance in the 2.5 to 12-day band averaged during June–August ISO westerly events and ISO easterly events	97 100
	caring sune ringuot, 100 westerry events, and 100 easterry events	100

3.13	The TC submonthly wave pattern in the westerly and easterly phase of the WNP ISO	102
4.1	Schematic description of the impact of the TIS	112
4.2	Five-day running mean of California rainfall and averaged power spectra of OLR for selected locations over South America	114
4.3	Standard deviations for lowpass-filtered, 10 to 90-day filtered, and 10 to 30-day filtered OLRA for boreal winter	116
4.4	Four leading EOFs for DJFM	119
4.5	OLRA composites from day –20 to day 15 every 5 days apart based on PC 1 for DJFM	122
4.6	Time–longitude plots of OLRA, 200 hPa eddy streamfunction and precipitation over the United States and Mexico based on PC 1 for DJFM	124
4.7	OLRA and streamfunction composites from day -6 to day 4 every 4 days apart based on PC 4 for DJFM	126
4.8	Time-longitude plots of OLRA and precipitation based on PC 3 and PC 4 for	
	submonthly oscillation	127
4.9	Same as Figure 4.4 but for JJAS	130
4.10	Same as Figure 4.5 but for JJAS	132
4.11	Composites of 200 hPa streamfunction and precipitation for JJAS based on	
	PC 1	134
4.12	Plots for PSA 1 and PSA 2	136
4.13	OLRA and 200 hPa eddy streamfunction composites for JJAS based on PC 4	137
4.14	Composite evolution of 200 hPa velocity potential anomalies together with the origin of tropical storms	139
5.1	Monthly climatology of NOAA satellite-observed OLR and NCEP/NCAR	
	reanalysis 850 hPa level winds	150
5.2	Three-day running mean time series of NOAA satellite-observed OLR,	
	averaged for the box 15°S to 5°S and 120°E to 140°E, and Australian "Top	
	End" rainfall, averaged for all available Australian Northern Territory stations north of 15° S	154
5.3	Time-height sections of station zonal wind at Darwin when composited for 35-	
	vear mean seasonal cycle, and relative to the 35 different onset dates of	
	Drosdowsky (1996)	156
5.4	(a) Power spectrum of daily OLR anomalies averaged for the box 15°S to 5°S	
	and 120°E to 140°E, using October to April data for all available seasons. (b) As	
	in (a), except using area-weighted station rainfall data from all available	
	stations in the "Top End" region of northern Australia	158
5.5	(a) Coherence-squared and phase between multiyear time series (using all days)	
	of OLR and 850 hPa zonal wind both averaged for the box 15°S to 5°S and	
	120°E to 140°E. (b) As in (a), except between "Top End" averaged rainfall and	
	850 hPa zonal wind averaged over the box 15°S to 10°S and 130°E to 135°E	160
5.6	A schematic overview of the Australian-Indonesian monsoon region showing	
	the nature of the variations in the lapse rate of virtual potential temperature for active versus break regions	162
5.7	Structure of EOFs designed to isolate the signal of the MIO example series of	102
2.,	RMM1 (PC 1) and RMM2 (PC 2), and (RMM1 RMM2) phase space for	
	January 22. 1988 to April 27. 1988	167
5.8	Composited OLR and 850 hPa wind anomalies for eight phases of the MJO	
	during December–January–February (DJF)	168

5.9	As in Figure 5.2, except showing OLR series only, and showing a solid bar when the phase of the MJO is in either phase 4, phase 5, or phase 6. Also given is the square of the multiple correlation coefficient between the OLR anomaly time series and the RMM1 and RMM2 values calculated for the November through April months.	170
5.10	Time-longitude plot of 3-day running mean total 850 hPa wind and OLR, averaged from 15°S to the equator, for the monsoon season of 1983/1984.	170
5.11	As in Figure 5.10, except for 1987/1988	173
5.12	Daily precipitation averaged for the "Top End" region (northern Australia) and for the island of Bali (approximately 115–116°E, 8–9°S) for the 1983/1984 and 1987/1988 wet seasons.	174
5.13	(RMM1,RMM2) phase space points for the days on which the monsoon was defined to onset, based on the daily deep-layer mean zonal wind, at Darwin, Australia	176
5.14	Typical horizontal structure of a convectively coupled $n = 1$ equatorial Rossby (ER) wave over a sequence spanning 21 days, as computed using lagged regression based on a two standard deviation anomaly in the ER wave filtered OLR series at 10°S 150°E.	179
5.15	(a) Time-longitude plot of 3-day running mean total OLR (shading) and $n = 1$ ER wave filtered OLR (contours) averaged from 15°S to 15°N for a 2-month period in 1984. (b) As in (a), except showing shading for the antisymmetric component of the 10 to 90-day bandpass-filtered 850 hPa meridional wind	100
5.16	$[(V_{north} - V_{south})/2]$ As in Figure 5.14, except for the convectively coupled Kelvin wave, and showing contours of 200 hPa geopotential height and 200 hPa wind vector anomalies, and using the Kelvin wave filtered OLR series at 0°S 90°E.	180
5.17	(a) As in Figure 5.2, except for OLR averaged over the box from 10° S to 5° N and 120° E to 140° E, and the monsoon period in 1997/1998. Also shown are crosses marking extreme days of the Kelvin wave filtered OLR. (b) As in Figure 5.15a, except for a period in 1998, an average from 10° S to 5° N, and showing contours of Kelvin wave filtered OLR. (c) As in (b), except showing the 10 to 90-day bandpass-filtered 850-hPa zonal wind, and vectors for the 10 to 90-day	101
	filtered 850 hPa total wind	182
5.18	Tropical cyclone (TC) tracks stratified according to the phase of the MJO as described by the daily (RMM1,RMM2) value	184
0.1 6 2	Zonal wind 10 m zonal current zonal current and temperature at 0° 165°E	201
0.4	during 1989–1990 and at 0°, 156°E during 1992	202
6.3	Zonal wind and SST anomalies along the equator, based on data from TAO	
6 1	moorings	204
0.4	between a frictional surface eastward current and the eastward EUC at 200 m	206
6.5	Lagged correlation between local zonal wind stress and zonal current, local zonal current acceleration, and zonal pressure gradient force as a function of doubt at 0° , 156°E	208
6.6	Anomalous depth of the 20°C isotherm along the equator and temperature at	208
6.7	0°, 140°W.	211
	the 1-year running standard deviation of intraseasonally bandpassed OLR.	215

6.8	Variance-preserving spectra of OLR at 165°E, zonal wind at 165°E, 20°C depth	220
()	at 140° w, and EUC speed at 140° w, 120 m deptn, all at the equator	220
6.9	Mean zonal wind stress and upper-ocean temperature along the equator	222
0.10	Seasonal cycle of Indian Ocean surface currents from historical ship drift data	223
6.11	A regulatory model of the annual cycle of the Indian Ocean monsoon system	225
(10	depicted for summer (June–September) and winter (December–February)	225
6.12	RMS of bandpassed (35 to 85-day half-power) sea level from the TOPEX/	
	Poseidon satellite altimeter, for data during January 1992–July 2003	227
6.13	Example of the sea surface topography and temperature observed by satellite	
	during January 2000, illustrating the signatures of Central American eddies and	
	tropical instability waves	229
7.1	Schematic of surface fluxes produced by MJO	249
7.2	Schematic of air-sea interaction associated with northward-propagating	
	intraseasonal oscillation in the Indian summer monsoon	252
7.3	Ratio of intraseasonal to total SST variance	253
7.4	Time series of surface fluxes and SST from the IMET mooring in TOGA-	
	COARE	256
7.5	Simulated temperature profile in the western Pacific associated with passage of	
	MJO during TOGA–COARE	257
7.6	Simulated diurnal cycle of upper ocean temperature during the suppressed	
	phase of MJO	258
7.7	Simulated SST at the IMET site in TOGA-COARE with and without the	
	diurnal cycle	260
7.8	Simulated surface currents in the western Pacific after passage of the MJO.	261
7.9	Year-to-year variation of MJO activity and Niño34 SST	265
8.1	Axial angular momentum of the atmosphere and length of day for a 2-year	
	period, showing close relationship and presence of ISV	278
8.2	Time-frequency wavelet spectrum of length of day and atmospheric angular	
	momentum for a multiyear period	280
8.3	Atmospheric excitation of polar motion, and the excitations for the observed	
	polar motion for a three-year period	282
8.4	Power spectrum of polar motion from observations	284
8.5	Mountain and friction torques between the atmosphere and solid Earth, with	
	the former showing strong ISV	286
8.6	Mass anomaly in gravity up to degree 60, order 60, from GRACE satellite data	289
9.1	Time–longitude section of 5-day mean OLR averaged between 5°S and 5°N, for	
	1974–1984 and 1990–1999	301
9.2	Spatial distribution of variance of 20 to 70-day bandpassed OLR for the four	
	seasons	303
9.3	Schematic showing the structure of two unstable coupled ocean-atmosphere	
	modes: advective mode and upwelling mode	306
9.4	Spatial patterns of dominant EOFs of pentad OLR for normal state, La Niña	
	state, and El Niño state for the period 1979–1999	308
9.5	Same as in Figure 9.4, except for the spatial distribution of EOF 1 of pentad	
_	OLR, showing the mixed MJO–ENSO mode	309
9.6	Composites of SSTA and changes in SSTA from day -20 for a WWE in the	
	western Central Pacific under normal conditions	311
9.7	Spacetime evolution of oceanic-atmospheric variables associated with the onset	
	and termination of El Niño in 1997/1998	312

9.8	Depth-longitude cross-sections showing the evolution of water temperature during the operat and termination phases of El Niño in 1007/1008	212
9.9	Spacetime structure of the first dominant EEOF mode of the 20 to 70-day	313
	bandpassed 850 mb streamfunction, representing the eastward-propagating component of the ISO	317
9.10	Same as Figure 9.9, except for the third EEOF mode, which represents the quasi-stationary component of the ISO signal	318
9 11	A comparison of time series of MIO indices	319
9.12	EPM activity index	320
9.13	Same as Figure 9.12 except for OSM	321
9.14	Composite of Niño 3 SST superimposed on windowed variance of EPM and	021
	OSM, normalized by standard deviation	322
9.15	Time-longitude section across the Indo-Pacific Ocean along the equator of	
	lagged covariance with reference to EPM activity	323
9.16	Same as Figure 9.15 except for the QSM	323
9.17	A schematic time-longitude section showing the interaction of EPM, QSM, and	
	WWEs in setting up a biennial oscillation in the tropical ocean-atmosphere	
	system along the equator	324
9.18	Time-longitude section along the equator, showing the evolution of SST in	
	response to a westerly wind burst	327
10.1	Essential physical processes involved in theoretical modeling of the ISO	348
10.2	The vertical structures of the vertical pressure velocity for the first four internal	
10.2	modes in an isothermal atmosphere	354
10.5	Schematic vertical structure of the 2.5-layer model of the ISO	300
10.4	Horizontal structures of the equatorial Kelvin wave and the most trapped	250
10.5	Behavior of the frictional convergence instability mode associated with the	338
	model MJO	360
10.6	Sequential maps of the precipitation rate and lower-tropospheric geopotential	2(2
10 7	perturbation and winds for the frictional Kelvin–Rossby wave packet	363
10.7	Growth rates and phase speeds of three upstable modes arising from frictional	303
10.0	convergence instability, addy momentum transfer, and multiscale interaction	368
10.9	Horizontal structures and equatorial movements of three unstable modes	500
10.7	arising from frictional convergence instability, eddy momentum transfer.	
	and multiscale interaction	370
10.10	Climatological July mean winds at 200 hPa and 850 hPa and July mean specific	
	humidity at 1,000 hPa	372
10.11	Sequential maps of the lower-tropospheric winds and precipitation rate for the	
	frictional Kelvin-Rossby wave packet in the July mean basic state	374
10.12	Time-longitude cross-sections of the precipitation rate along (a) 90°E and	
	(b) 110°E for the experimental results shown in Figure 10.11	376
10.13	Schematic diagram showing how monsoon easterly vertical shear generates	
	northward propagation of ISO	377
10.14	The equatorial vertical structure of the MJO observed in TOGA/COARE and	a = -
10.15	the most unstable coupled mode obtained from the theoretical model	379
10.15	The wavelength, growth rate, and phase speed of the most unstable coupled	20.1
10.17	mode as functions of cloud–SS1 and wind–SS1 coupling strengths	381
10.10	Schematic structure of frictional convergence instability mode	383

11.1	Interannual variability in the activity of the MJO, and the sea surface temperature anomaly in the Niño-3 region	401		
11.2	Influence of changing the vertical resolution in an atmospheric GCM on the simulated strength of the MJO			
11.3	Lag correlations between observed outgoing longwave radiation and surface fields			
11.4	Lag correlations between precipitation and an index of MJO activity at 90°E, from coupled and atmosphere-only versions of a GCM	412		
11.5	Simulated BSISV convective anomalies relative to the observed day 10 pattern	414		
11.6	The dominant modes of BSISV in the 850 hPa winds from the NCEP-NCARreanalysis4			
11.7	Impact of coupling frequency and resolution of the uppermost ocean on the diurnal and intraseasonal variations in SST from TOGA–COARE using a mixed layer ocean model	421		
12.1	Measures of forecast skill for POP-based forecasting scheme developed by von Storch and Xu (1990)	437		
12.2	Singular value decomposition based MJO forecasting scheme developed by Waliser <i>et al.</i> (1999a)	438		
12.3	Time–longitude plot of near-equatorial total OLR anomalies and filtered OLR anomalies during late 2005 to early 2006	441		
12.4	ISO "signal" and "noise" for monsoon onsets and breaks based on observa- tions from Goswami and Xavier (2003)	442		
12.5	Pattern correlation of OLR over global tropics between predicted and observed patterns	443		
12.6	Temporal correlation and time–longitude plots of predicted and observed OLR patterns	444		
12.7	Comparisons of MJO forecast skill for various statistical models	445		
12.8	Observed and forecast equatorial time–longitude diagram of 200 hPa velocity potential anomalies	447		
12.9 12.10	Tropical and extratropical anomaly correlations between DERF forecasts, as functions of lead time, and verification of the 200 hPa streamfunction	449		
12.10	systems,	450		
12.11	Time–longitude plots of OLR from December 29, 1992 to February 15, 1993 as analyzed by ERA-40 and from daily forecasts with ECMWF IFS cycles Cy28r3 to Cy32r3	451		
12.12	A y-t diagram of the monsoonal low-frequency ridge line at 850 hPa and an $x-t$			
	diagram of the position of the 200 hPa divergent center	452		
12.13	Correlation measures of ECMWF IFS hindcast skill when considering various interactive ocean components	453		
12.14	Predictability versus lead time for VP200 and rainfall from the NASA/GLA model for strong MJO, weak MJO, and weather	456		
12.15	Predictability results for boreal summer ISO events from ECHAM5 AGCM	457		
12.16	Anomaly correlations between forecast and verification of column-integrated diabatic heating using the LIM forecast model and a research version of the	4.00		
12 17	NUER WIRF MODEL	460		
1401/	Ganges Valley	461		

12.18	Wheeler-Hendon MJO phase space plots for five different ensemble forecasting	
	systems for December 2008 and January 2009	463
12.19	MJO forecast skill measures for ECMWF IFS, POAMA, and NCEP CFS.	465
13.1	Areas and primary seasonality of MJO influence in Africa and Western Asia as	170
13.2	Estimated strength of MIO influence on convection for December-February	4/0
13.2	March-May June-August and Sentember-November	479
13.3	OLR-based November-April estimate of MIO influence, and contribution of	175
1010	November–April precipitation to annual total	482
13.4	Nairobi daily precipitation, 1979–2003, composited by MJO phase for March–	
	May and October–December	485
13.5	Nairobi precipitation for March-May of each year, 1979-2003, during MJO-	
	enhanced and MJO-suppressed phases.	486
13.6	Nairobi precipitation for October-December of each year, 1979-2003, during	
	MJO-enhanced and MJO-suppressed phases	486
13.7	Correlation between October–December SSTs and the difference between	
	Nairobi precipitation in the MJO-enhanced and MJO-suppressed phases	487
13.8	Riyadh daily precipitation, 1985–1998, composited by MJO phase for	40.0
12.0	November-April	488
13.9	MIQ enhanced and MIQ suppressed phases	100
13 10	Convection and upper-level streamfunction anomalies for peak strength of the	400
13.10	MIO from observations and in the Gill-Matsuno model with idealized forcing	491
13.10	(<i>cont.</i>) Convection and upper-level streamfunction MJO anomalies in the Gill–	171
	Matsuno model with observed forcing, and with the inclusion of mean wind	
14.1	Composite northern winter OLR anomalies and 300 hPa geopotential height	
	anomalies during RMM phases 1–8	500
14.2	Vertical profile of a model response of zonal winds to heating on the equator	
	during northern winter	502
14.3	Streamfunction on the 0.24 sigma surface corresponding to the vertical cross-	
1.1.4	section shown in Figure 14.2	502
14.4	Schematic MJO and associated high-latitude patterns as active convection	505
15 1	Observed SST field and its intraseasonal anomaly for August 1, 1008	515
15.1	ISV of the SST at small scale for January-March April-June July-Sentember	515
13.2	and October–December	516
15.3	ISV of the SST at large scale obtained for January–March, April–June, July–	510
	September, and October–December.	517
15.4	Time-latitude diagrams of the forcing (wind stress and net surface flux) and of	
	an OGCM response (mixed layer temperature and depth) over the Indian Ocean	
	$(80^{\circ}\text{E}-90^{\circ}\text{E})$	521
16.1	The joint probability distribution function of satellite-observed brightness	
	temperature and satellite radar echo-top height over the equatorial western	
1()	Pacific	542
16.2	Schematic of the hydrological cycle associated with the MJU	543
10.3	Composite of anomalous fatent nearing from MEKKA for eight phases of the MIO and TRMM rainfall	515
171	Δ large-scale envelope with fluctuations embedded within it	550
1/01		550

17.2 MJO skeleton model: Phase speed and oscillation frequency as functions		
	wavenumber k for the low-frequency linear modes	553
17.3	MJO skeleton model: Horizontal structure of the MJO mode	554
17.4	Kinematic model for the MJO: Contours of zonal velocity <i>u</i> as a function of	
	latitude x and height z	556
17.5	Dynamic model for waves in the MJO: Demonstration of CCW-mean flow	
	interactions on intraseasonal timescales	561
18.1	Composite maps of TCO anomalies and 150 hPa geopotential height anomalies	
	associated with the MJO	572
18.2	Composite maps of MODIS AOT anomalies and 850 hPa NCEP/NCAR	
	reanalysis vector wind anomalies in two different phases of the MJO	577
18.3	Longitude-altitude distribution of the equatorial mean MLS CO anomalies	
	associated with the MJO	578
18.4	Composite northern hemisphere summer rainfall anomalies and ocean surface	
	chlorophyll anomalies associated with the MJO	580

Abbreviations

AAM	Atmospheric Angular Momentum
ACC	Antarctic Circumpolar Current
ADCP	Acoustic Doppler Current Profiler
AGCM	Atmospheric General Circulation Model
AI	Aerosol Index
AMIP	Atmospheric Model Intercomparison Project
AMY	Asian Monsoon Year
ARGO	Array for Real-time Geostrophic Oceanography
AS	Arabian Sea
AVHRR	Advanced Very High Resolution Radiometer
BAC	Bivariate Anomaly Correlation
BFA	Break Followed by Active
BISO	Boreal IntraSeasonal Oscillation
BLEP	Boundary Layer Ekman Pumping
BNFA	Break Not Followed by Active
BoB	Bay of Bengal
BOBMEX	Bay Of Bengal Monsoon EXperiment
BSISO	Boreal Summer ISO
BSISV	Boreal Summer IntraSeasonal Variability
CAM	Community Atmospheric Model
CAPE	Convective Available Potential Energy
CCA	Canonical Correlation Analysis
CCM	Community Climate Model
CCW	Convectively Coupled Wave
CFS	Coupled Forecast System
CG	Chatterjee and Goswami
CGCM	Coupled GCM
CID	Convective Interaction with Dynamics