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Preface to the Second Edition

In the Preface to the First Edition of this book, we wrote about the goal to provide a
one-stop reference text on intraseasonal variability (10-90 days) to bridge the gap
between weather forecasts (a few days to a week), and climate predictions (seasonal,
yearly, and longer timescales). We seek to further this goal in the Second Edition.
The years since the publication of the First Edition have seen significant advances in
our understanding of the physical processes, multiscale interactions, and predict-
ability associated with intraseasonal variability in the tropical ocean—atmosphere
system. These advances have been achieved by the scientific community at large
through (a) increased capabilities in high-resolution global modeling and data assim-
ilation, (b) in-depth theoretical studies, and (¢) improved diagnostics mostly from
new global satellite observations and improved reanalysis products.

At present, a realistic simulation of the Madden and Julian Oscillation (MJO) is
considered a prerequisite for climate models to produce reliable predictions of inter-
annual variability and longer term projections of regional impacts and extreme
events from climate change. Common metrics for MJO prediction and diagnostics
have been developed and adopted by the scientific community so that model valida-
tions and empirical forecasts of the MJO can be compared and evaluated. Opera-
tional forecast centers such as the U.S. National Oceanic and Atmospheric
Administration Climate Prediction Center, the U.K. Meteorological Office, and
the European Center for Medium-range Weather Forecasts, among many others,
are producing routine forecasts of the MJO. Predictions of onsets and breaks in
major monsoon regions around the world are now focused on the propagation
and evolution of regional intraseasonal oscillations (ISOs). International and
national organizations such as the World Climate Research Programme and the
World Weather Research Programme have joined to sponsor working groups and
task forces to organize international projects and workshops to facilitate and coor-
dinate research on the MJO and ISOs. The science community has now coined the
term ‘‘seamless prediction” to address the continuum of temporal and spatial scales
linking weather and climate. Indeed, the MJO and associated regional ISOs
represent critical linkages between global weather forecasts and regional climate
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predictions. Another critical factor spurring the recent rapid advance in our under-
standing of the MJO and ISO phenomena was the advent of a series of NASA Earth-
observing satellites launched between the early 2000s and the present. As a result, the
scientific community has access to unprecedented information regarding propaga-
tion, horizontal and vertical structures of rainfall, clouds, moisture, and tempera-
ture. Such information is essential to define the characteristics of the MJO and
associated regional ISOs and their far-field impacts. Other derived quantities such
as latent heating profiles and cloud microphysics derived from satellite data and field
campaigns are setting the stage for the next level of understanding and improved
model fidelity associated with the MJO and ISOs. Studies documenting the influence
of the MJO on ozone, aerosols, and carbon dioxide fluctuations in the atmosphere
and in ocean productivity are emerging, further demonstrating the far-reaching
importance of the MJO and ISOs not only in the physical domain but also in the
biogeochemical component of the climate system. Given these momentous recent
developments, the Second Edition of the book seems opportune.

The organization of the Second Edition is as follows. The first 12 chapters are
either original chapters (Chapters 1, 8, 9), or original chapters with updates
(Chapters 2, 3, 4, 5, 6, 7, 10, 11, 12). Chapters 13-18 are new shorter chapters that
cover new topics or significant recent advances. In some cases, the latter can also
serve as updates or complements to the original chapters. Specifically, the new
chapters are: Chapter 13 on “Africa and West Asia” by M. Barlow; Chapter 14
on “Tropical and extratropical interactions” by P. Roundy; Chapter 15 on “Oceans
and air-sea interaction” by J.-P. Duvel; Chapter 16 on “Vertical structure from
recent observations” by C. Zhang; Chapter 17 on “Multiscale theories” by A.
Majda and S. Stechmann; and Chapter 18 on “Chemical and biological impacts”
by B. Tian and D. Waliser.

The Second Edition of this book would not have been possible without the
support and dedicated efforts of the contribution authors, both old and new.
Special thanks are due to Xiouhua Fu, George Kiladis, Tim Li, Jiaylin Lin,
Adrian Matthews, Mitch Moncrieff, Benjamin Pohl, David Strauss, Chung-Hsiung
Sui, Mike Wallace, Sun Wong, and Klaus Weickmann who have provided construc-
tive comments in reviewing the new chapters. The co-Chief Editors also thank the
Earth Science Division of the National Aeronautics and Space Administration, the
Office of Global Programs of the National Oceanic and Atmospheric Administra-
tion, the Large-scale Dynamics Programs of the Atmospheric Science Division of the
National Science Foundation, and the Atmospheric Radiation Measurement and
Climate Research Program of the Department of Energy for providing support
for years of research of observations and modeling of the MJO and related
phenomena. We would also like to express our thanks to the World Climate
Research Programme and the World Weather Research Programme for their pro-
grammatic sponsorship of a number of panels, working groups, and task forces that
have greatly facilitated research on intraseasonal variability and its transition to
operational utility.

William K. M. Lau and Duane E. Waliser
June, 2011.



Preface to the First Edition

On the subject of extended range weather forecasts, one of the pioneers of numerical
weather forecasts, John von Neumann (1955) wrote:

“The approach is to try first short-range forecasts, then long-range forecasts of
those properties of the circulation that can perpetuate themselves over arbitrarily
long periods of time ... and only finally to attempt forecast for medium-long
time periods which are too long to treat by simple hydrodynamic theory and too
short to treat by the general principle of equilibrium theory.”

In modern phraseology, von Neuman’s short-range forecasts would mean weather
forecasts extending out to about 5 days, long-range forecasts would be equivalent to
climate predictions extending out to a season or longer, and medium to long-range
forecast would refer to intraseasonal predictions having lead times of the order of
2 to 8 weeks. Numerical weather forecasting has seen tremendous improvement since
its inception in the 1950s. Today, human activities are often so dependent on skillful
short-term weather forecasts, that many have come to the unrealistic hope, and even
expectation, that weather forecasts should be accurate all the time. However, any
basic textbook on weather forecasting will point out that there exists a natural limit
on deterministic weather forecasts of about 2 weeks, which is strongly dependent on
initial conditions and atmospheric flow regimes.

Recently, the public has been made aware of high-impact climate phenomena
such as El Nifio and La Nifia, which can affect weather patterns all over the world.
Thanks in large part to the international climate research program, Tropical Ocean
Global Atmosphere (TOGA), scientists now have the observational resources, the
knowledge, and the models to make useful (deterministic) predictions of El Nifio and
La Nina with lead times up to 9—12 months. These predictions in turn have been
helpful in making probabilistic seasonal-to-interannual forecasts of weather patterns
(not deterministic forecasts of individual weather events) more skillful over certain
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spacetime domains (e.g., wintertime temperature over North America and summer
rainfall over the Asian monsoon region and South America). Because the lead time
for climate prediction is typically a season or longer—a time long enough for the
atmosphere to lose memory of its initial state—the skill of prediction is no longer
dependent on the initial conditions of the atmosphere. In contrast to weather
forecasts, seasonal-to-interannual climate predictions owe their skill to a dependence
on slowly changing boundary conditions at the Earth’s surface, such as sea surface
temperature, snow cover, and soil moisture, and the considerable impact these
boundary conditions have on determining the statistics of observed weather
patterns. In the forecasting community, it is often said that weather forecasting is
an initial value problem and climate prediction is more akin to a boundary value
problem. What about the timescales in between (e.g., lead times between about
2 weeks and 2 months)? Are there atmosphere—ocean phenomena with these time-
scales that are predictable, and how do these phenomena and their predictability
respond to the changing boundary conditions at the Earth’s surface? These are
among some of the issues to be addressed in this book.

Given the progress in weather forecasting and seasonal-to-interannual climate
prediction, it is apparent that we are ready to more formally and thoroughly address
forecasting of, in von Neuman’s words, the “medium—long time periods”. Improving
extended range (i.e., intraseasonal) forecasts requires fundamental knowledge built
on sound research, realistic models of the atmosphere, ocean, and land components
of the climate system, and the training of a new generation of scientists and fore-
casters. Today, we have many textbooks and research reference books on weather
and climate variability, and prediction, but there has been none focused specifically
on intraseasonal variability (ISV). There has been a large body of scientific studies
showing that ISV is far from a simple interpolation between weather and climate
scales/processes, and is not just a red-noise extension of weather variability. Indeed,
there are specific and unique modes of ISV that are ubiquitous and can be found in
the atmosphere, the ocean, and the solid Earth, as well as in the tropics and the
extratropics.

To improve prediction in the intermediary timescale (2 weeks to less than a
season) of the atmosphere—ocean, it is vital to improve our understanding of the
phenomena that are inherently intraseasonal and the manner in which they interact
with both shorter (weather) and longer (climate) timescales. Thus one of the over-
arching goals of this book is to summarize our current understanding of IV and its
interactions with other weather and climate processes. However, in developing the
framework for this book, we found that including all aspects of ISV would require too
much material for one book. Thus, in order to limit the scope of this book, we have
chosen to focus primarily on ISV in the tropical ocean and atmosphere, including its
interactions with the extratropics whenever appropriate. Using this guideline, topics
directly related to midlatitude atmospheric blocking or extratropic annular modes, for
example, will not be treated in their own right in this book, but rather discussed in the
context of their interaction with tropical ISV (TISV).

Central to TISV is the Madden—Julian Oscillation (MJO) phenomenon, known
also as the 40 to 50-day or 30 to 60-day oscillation. However, TISV in general refers to
a broad spectrum of phenomena: some quasi-periodic, some non-periodic, some with
global reach, and others with regional manifestations. To avoid possible confusion in
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this book with the various terminologies used in the literature, we refer throughout
this book to all variability longer than synoptic timescales (~2 weeks) and shorter
than a season (90 days) as ISV. The MJO is specifically referred to as the atmosphere—
ocean entity that exhibits a coherent eastward propagation along the equator with
quasi-periodicity of 30 to 60 days. In the general case, when a quasi-periodic oscilla-
tion can be identified, the term intraseasonal oscillation (ISO) will be used. When
specially referring to ISV or ISO in the tropics, the acronyms TISV or TISO will be
used as appropriate. In this nomenclature, MJO is a special case of a TISO.

This book is intended to be a one-stop reference book for researchers interested
in ISV as well as a textbook for senior undergraduate and graduate students in Earth
science disciplines. The book contains 12 chapters, each with a comprehensive
bibliography. Chapter 1 provides a historical account of the detection of the MJO
by R. Madden and P. Julian, who discovered the phenomena. The regional
characteristics of TISV on South Asia, East Asia, the Americas, and Australia/
Indonesia are covered in Chapters 2-5, respectively. Air—sea interactions and
oceanic ISV are discussed in Chapters 6 and 7. Chapter 8 discusses atmospheric and
solid Earth angular momentum and Earth rotation associated with ISV. Chapter 9 is
on El Nino Southern Oscillation (ENSO) connections to ISV. Chapters 10, 11, and 12
are devoted to the theory, numerical modeling, and predictability of ISV, respectively.
The chapters are written with self-contained material and frequent cross-referencing
to other chapters, so that they need not be read in sequence. Readers are encouraged to
jump to their chapters of interest if they so desire. However, we strongly recommend
everyone to read the Preface and Chapter 1 first to obtain the proper perspective of
the subject matter and objectives of the book.

This book could not have been possible without the support and the dedicated
efforts of the contributing authors, who provided excellent write-ups for the chapters
in a timely manner. Everyone we contacted regarding this book was very enthusiastic
and supportive. In addition, we thank Drs. H. Annamalai, Charles Jones,
Huug van den Dool, T. C. (Mike) Chen, Klaus Weickmann, Chidong Zhang,
Ragu Murtugudde, William Stern, George Kiladis, and Steve Marcus, and one
anonymous reviewer for providing very constructive comments in reviewing
various chapters of this book. The co-chief editors will also like to thank the
Earth Science Enterprise of the National Aeronautics and Space Administration,
the Office of Global Programs of the National Oceanographic and Atmospheric
Administration, and the Climate Dynamics and Large-Scale Dynamic Meteorology
Programs of the Atmospheric Sciences Division of the National Science Foundation
for providing support over the years for research on ISV.
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