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Preface

This book is developed from lecture notes of graduate courses taught over the years
by the authors at the Pennsylvania State University, Purdue University, Hong Kong
Baptist University and Nanyang Technological University of Singapore.

The aim of the book is to provide

• A detailed presentation of basic spectral algorithms
• A systematical presentation of basic convergence theory and error analysis for

spectral methods
• Some illustrative applications of spectral methods

For many basic algorithms presented in the book, we provide Matlab codes (which
will be made available online) which contain additional programming details be-
yond the mathematical formulas, so that the readers can easily use or modify these
codes to suite their need. We believe that these Matlab codes will help the read-
ers to have a better understanding of these spectral algorithms and provide a useful
starting point for developing their own application codes.

There are already quite a few monographs/books on spectral methods. The classi-
cal books by Gottlieb and Orszag (1977) and by Canuto et al. (1987)1 were intended
for researchers and advanced graduate students, and they are excellent references
for the historical aspects of spectral methods as well as in depth presentations of
various techniques and applications in computational fluid dynamics. The book by
Boyd (2001) focused on the Fourier and Chebyshev methods with emphasis on im-
plementations and applications. The book by Trefethen (2000) gave an excellent
exposition on the spectral-collocation methods through a set of elegant Matlab rou-
tines. The books by Deville et al. (2002) and by Karniadakis and Sherwin (2005)
concentrated on the spectral-element methods with details on parallel implementa-
tions and applications in fluid dynamics, while the more recent book by Hesthaven
and Warburton (2008) focused on the discontinuous Galerkin methods with a nodal
spectral-element approach. On the other hand, Hesthaven et al. (2007) focused on

1 An updated and expanded version of Canuto et al. (1987) is recently published. This new version
Canuto et al. (2006, 2007) incorporated many new developments made in the last 20 years and
provided a more systematical treatment for spectral methods.
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vi Preface

the spectral methods for time-dependent problems with a particular emphasis on
hyperbolic equations and problems with non-smooth solutions. The book length ar-
ticle by Bernardi and Maday (1997) and their monograph in French Bernardi and
Maday (1992a) provided an excellent exposition on the basic approximation theory
of spectral methods with a particular emphasis on Stokes equations, while the mono-
graph (Shen and Tang 2006) presented a basic introduction in a lecture note style
to the implementation and analysis of spectral methods. The emphasis of the book
by Guo (1998b), on the other hand, was on numerical analysis of spectral meth-
ods for nonlinear evolution problems. Finally, spectral methods have been playing a
very significant role in dealing with stochastic differential equations and uncertainty
quantifications, and we refer to the recent books by Le Maı̂tre and Knio (2010) and
by Xiu (2010) on these emerging topics.

The current book attempts to provide a self-contained presentation for the con-
struction, implementation and analysis of efficient spectral algorithms for some
model equations, of elliptic, dispersive and parabolic type, which have wide ap-
plications in science and engineering. It strives to provide a systematical approach
based on variational formulations for both algorithm development and numerical
analysis. Some of the unique features of the current book are

• Our analysis is based on the non-uniformly weighted Sobolev spaces which lead
to simplified analysis and more precise estimates, particularly for problems with
corner singularities. We also advocate the use of the generalized Jacobi polyno-
mials which are particularly useful for dealing with boundary value problems.

• We develop efficient spectral algorithms and present their error analysis for
Volterra integral equations, higher-order differential equations, problems in un-
bounded domains and in high-dimensional domains. These topics have rarely
been covered in detail in the existing books on spectral methods.

• We provide online a set of well structured Matlab codes which can be easily
modified and expanded or rewritten in other programming languages.

The Matlab codes as well as corrections/updates to the book will be available
at http://www.math.purdue.edu/∼shen/STWbook. In case this site becomes unavail-
able due to unforeseen circumstances in the future, the readers are advised to check
the Springer Web site for the updated Web link on the book.

We do not attempt to provide in this book an exhaustive account on the wide
range of topics that spectral methods have had impact on. In particular, we do not
include some important topics such as spectral methods for hyperbolic equations
and spectral-element methods, partly because these topics do not fit well in our
uniform framework, and mostly because there are already some excellent books
mentioned above on these topics. As such, no attempt is made to provide a compre-
hensive list of references on the spectral methods. The cited references reflect the
topics covered in the book, but inevitably, the authors’ bias. While we strive for cor-
rectness, it is most likely that errors still exist. We welcome comments, suggestions
and corrections.

The book can be used as a textbook for graduate students in both mathematics and
other science/engineering. Mathematical analysis and applications are organized

http://www.math.purdue.edu/~shen/STWbook


Preface vii

mostly at the end of each chapter and presented in such a way that they can be
skipped without affecting the understanding of algorithms in the following chapters.
The first four chapters and Sects. 8.1–8.4 provide the basic ingredients on Fourier
and polynomial approximations and essential strategies for developing efficient
spectral-Galerkin and spectral-collocation algorithms. Section 8.5 deals with sparse
spectral methods for high-dimensional problems. The topics in Chaps. 5, 6 and 7
are independent of each other so the readers can choose according to their need.
Applications covered in Chap. 9, except for a slight dependence on Sects. 9.4–9.5,
are also independent of each other. For the readers’ convenience, we provide in the
Appendices some essential mathematical concepts, basic iterative algorithms and
commonly used time discretization schemes.

The book is also intended as a reference for active practitioners and researchers of
spectral methods. The prerequisite for the book includes standard entry-level grad-
uate courses in Numerical Analysis, Functional Analysis and Partial Differential
Equations (PDEs). Some knowledge on numerical approximations of PDEs will be
helpful in understanding the convergence theory and error analysis but hardly nec-
essary for understanding the numerical algorithms presented in this book.

The authors would like to thank all the people and organizations who have pro-
vided support for this endeavor. In particular, the authors acknowledge the general
support over the years by NSF and AFOSR of USA, Purdue University; Hong Kong
Research Grants Council, the National Natural Science Foundation of China, Hong
Kong Baptist University; Singapore Ministry of Education and Nanyang Technolog-
ical University. We are grateful to Mrs. Thanh-Ha Le Thi of Springer for her support
and for tolerating our multiple delays, and to Ms. Xiaodan Zhao of Nanyang Tech-
nological University for carefully checking the manuscript. Last but not the least,
we would like to thanks our wives and children for their love and support.

Indiana, USA Jie Shen
Hong Kong, China Tao Tang
Singapore Li-Lian Wang
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Chapter 1
Introduction

Numerical methods for partial differential equations can be classified into the local
and global categories. The finite-difference and finite-element methods are based
on local arguments, whereas the spectral method is global in character. In practice,
finite-element methods are particularly well suited to problems in complex geome-
tries, whereas spectral methods can provide superior accuracy, at the expense of
domain flexibility. We emphasize that there are many numerical approaches, such
as hp finite-elements and spectral-elements, which combine advantages of both the
global and local methods. However in this book, we shall restrict our attentions to
the global spectral methods.

Spectral methods, in the context of numerical schemes for differential equations,
belong to the family of weighted residual methods (WRMs), which are tradition-
ally regarded as the foundation of many numerical methods such as finite element,
spectral, finite volume, boundary element (cf. Finlayson (1972)). WRMs represent
a particular group of approximation techniques, in which the residuals (or errors)
are minimized in a certain way and thereby leading to specific methods including
Galerkin, Petrov-Galerkin, collocation and tau formulations.

The objective of this introductory chapter is to formulate spectral methods in a
general way by using the notion of residual. Several important tools, such as discrete
transform and spectral differentiation, will be introduced. These are basic ingredi-
ents for developing efficient spectral algorithms.

1.1 Weighted Residual Methods

Prior to introducing spectral methods, we first give a brief introduction to the WRM.
Consider the general problem:

∂t u(x,t)−L u(x,t) = N (u)(x,t), t > 0, x ∈Ω , (1.1)

J. Shen et al., Spectral Methods: Algorithms, Analysis and Applications, 1
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2 1 Introduction

where L is a leading spatial derivative operator, and N is a lower-order linear or
nonlinear operator involving only spatial derivatives. Here, Ω denotes a bounded
domain of Rd , d = 1,2 or 3. Equation (1.1) is to be supplemented with an initial
condition and suitable boundary conditions.

We shall only consider the WRM for the spatial discretization, and assume that
the time derivative is discretized with a suitable time-stepping scheme. Among var-
ious time-stepping methods (cf. Appendix D), semi-implicit schemes or linearly-
implicit schemes, in which the principal linear operators are treated implicitly to
reduce the associated stability constraint, while the nonlinear terms are treated ex-
plicitly to avoid the expensive process of solving nonlinear equations at each time
step, are most frequently used in the context of spectral methods.

Let τ be the time step size, and uk(·) be an approximation of u(·,kτ). As an
example, we consider the Crank-Nicolson leap-frog scheme for (1.1):

un+1−un−1

2τ
−L

(un+1 + un−1

2

)

= N (un), n≥ 1. (1.2)

We can rewrite (1.2) as

Lu(x) := αu(x)−L u(x) = f (x), x ∈Ω , (1.3)

where, with a slight abuse of notation, u = un+1+un−1

2 , α = τ−1 and f = αun−1 +
N (un). Hence, at each time step, we need to solve a steady-state problem of the
form (1.3).

At this point, it is important to emphasize that the construction of efficient numer-
ical solvers for some important equations in the form of (1.3), such as Poisson-type
equations and advection-diffusion equations, is an essential step in solving general
nonlinear PDEs. With this in mind, a particular emphasis of this book is to design
and analyze efficient spectral algorithms for equations of the form (1.3) where L is
a linear elliptic operator.

The starting point of the WRM is to approximate the solution u of (1.3) by a
finite sum

u(x)≈ uN(x) =
N

∑
k=0

akφk(x), (1.4)

where {φk} are the trial (or basis) functions, and the expansion coefficients {ak} are
to be determined. Substituting uN for u in (1.3) leads to the residual:

RN(x) = LuN(x)− f (x) �= 0, x ∈Ω . (1.5)

The notion of the WRM is to force the residual to zero by requiring

(RN ,ψ j)ω :=
∫

Ω
RN(x)ψ j(x)ω(x)dx = 0, 0≤ j ≤ N, (1.6)

where {ψ j} are the test functions, and ω is a positive weight function; or
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〈RN ,ψ j〉N,ω :=
N

∑
k=0

RN(xk)ψ j(xk)ωk = 0, 0≤ j ≤ N, (1.7)

where {xk}N
k=0 are a set of preselected collocation points, and {ωk}N

k=0 are the
weights of a numerical quadrature formula.

The choice of trial/test functions is one of the main features that distinguishes
spectral methods from finite-element and finite-difference methods. In the latter two
methods, the trial/test functions are local in character with finite regularities. In con-
trast, spectral methods employ globally smooth functions as trial/test functions. The
most commonly used trial/test functions are trigonometric functions or orthogonal
polynomials (typically, the eigenfunctions of singular Sturm-Liouville problems),
which include

• φk(x) = eikx (Fourier spectral method)
• φk(x) = Tk(x) (Chebyshev spectral method)
• φk(x) = Lk(x) (Legendre spectral method)
• φk(x) = Lk(x) (Laguerre spectral method)
• φk(x) = Hk(x) (Hermite spectral method)

Here, Tk,Lk,Lk and Hk are the Chebyshev, Legendre, Laguerre and Hermite poly-
nomials of degree k, respectively.

The choice of test functions distinguishes the following formulations:

• Galerkin. The test functions are the same as the trial ones (i.e., φk = ψk in (1.6)
or (1.7)), assuming the boundary conditions are periodic or homogeneous.

• Petrov-Galerkin. The test functions are different from the trial ones.
• Collocation. The test functions {ψk} in (1.7) are the Lagrange basis polynomials

such that ψk(x j) = δ jk, where {x j} are preassigned collocation points. Hence,
the residual is forced to zero at {x j}, i.e., RN(x j) = 0.

Remark 1.1. In the literature, the term of pseudo-spectral method is often used to
describe any spectral method where some operations involve a collocation approach
or a numerical quadrature which produces aliasing errors (cf. Gottlieb and Orszag
(1977)). In this sense, almost all practical spectral methods are pseudo-spectral. In
this book, we shall not classify a method as pseudo-spectral or spectral. Instead, it
will be classified as Galerkin type or collocation type.

Remark 1.2. The so-called tau method is a particular class of Petrov-Galerkin
method. While the tau method offers some advantages in certain situations, for most
problems, it is usually better to use a well-designed Galerkin or Petrov-Galerkin
method. So in this book, we shall not touch on this topic, and refer to El-Daou and
Ortiz (1998), Canuto et al. (2006) and the references therein for a thorough discus-
sion of this approach.

In the forthcoming sections, we shall demonstrate how to construct spectral meth-
ods for solving differential equations by examining several spectral schemes based
on Galerkin, Petrov-Galerkin and collocation formulations in a general manner. We
shall revisit these illustrative examples in a more rigorous fashion in the main body
of the book.
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1.2 Spectral-Collocation Method

To fix the idea, we consider the following linear problem:

Lu(x) =−u′′(x)+ p(x)u′(x)+ q(x)u(x) = f (x), x ∈ (−1,1),
B±u(±1) = g±,

(1.8)

where B± are linear operators corresponding to Dirichlet, Neumann or Robin
boundary conditions (see Sect. 4.1), and the data p,q, f and g± are given such that
the above problem is well-posed.

As mentioned earlier, the collocation method forces the residual to vanish point-
wisely at a set of preassigned points. More precisely, let {x j}N

j=0 (with x0 =−1 and
xN = 1) be a set of Gauss-Lobatto points (see Chap. 3), and let PN be the set of all
real algebraic polynomials of degree≤N. The spectral-collocation method for (1.8)
amounts to finding uN ∈ PN such that (a) the residual RN(x) = LuN(x)− f (x) equals
to zero at the interior collocation points, namely,

RN(xk) = LuN(xk)− f (xk) = 0, 1≤ k ≤ N−1, (1.9)

(b) uN satisfies exactly the boundary conditions, i.e.,

B−uN(x0) = g−, B+uN(xN) = g+. (1.10)

The spectral-collocation method is usually implemented in the physical space by
seeking approximate solution in the form

uN(x) =
N

∑
j=0

uN(x j)h j(x), (1.11)

where {h j} are the Lagrange basis polynomials (also referred to as nodal basis
functions), i.e., h j ∈ PN and h j(xk) = δk j. Hence, inserting (1.11) into (1.9)-(1.10)
leads to the linear system

N

∑
j=0

[

Lh j(xk)
]

uN(x j) = f (xk), 1≤ k ≤ N−1,

N

∑
j=0

[

B−h j(x0)
]

uN(x j) = g−,
N

∑
j=0

[

B+h j(xN)
]

uN(x j) = g+.

(1.12)

The above system contains N + 1 equations and N + 1 unknowns, so we can
rewrite it in a matrix form. To fix the idea, we consider (1.8) with Dirichlet boundary
conditions: u(±1) = g±. In this case, setting uN(x0) = g− and uN(xN) = g+ in the
first equation of (1.12), we find that the system (1.12) reduces to
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N−1

∑
j=1

[

Lh j(xk)
]

uN(x j) = f (xk)−
{[

Lh0(xk)
]

g−+
[

LhN(xk)
]

g+
}

, (1.13)

for 1≤ k ≤ N−1. Differentiating (1.11) m times leads to

u(m)
N (xk) =

N

∑
j=0

d(m)
k j uN(x j) where d(m)

k j = h(m)
j (xk). (1.14)

The matrix D(m) =
(

d(m)
k j

)

k, j=0,...,N is called the differentiation matrix of order m

relative to {x j}N
j=0. If we denote by u(m) the vector whose components are the values

of u(m)
N at the collocation points, it follows from (1.14) that

u(m) = D(m)u(0), m≥ 1. (1.15)

Hence, we have

Lh j(xk) =−d(2)
k j + p(xk)d

(1)
k j + q(xk)δk j . (1.16)

Denote by f the vector with N−1 components given by the right-hand side of (1.13).
Setting

˜Dm =
(

d(m)
k j

)

k, j=1,...,N−1, m = 1,2,

P = diag
(

p(x1), . . . , p(xN−1)
)

, Q = diag
(

q(x1), . . . ,q(xN−1)
)

,
(1.17)

the system (1.13) reduces to
(− ˜D2 + P˜D1 + Q

)

u(0) = f. (1.18)

Observe that the collocation method is easy to implement, once the differentia-
tion matrices are precomputed. Moreover, it is very convenient for solving problems
with variable coefficients and/or nonlinear problems, since we work in the physical
space and derivatives can be evaluated by (1.14) directly. As a result, the colloca-
tion method has been extensively used in practice. However, three important issues
should be considered in the implementation and analysis of a collocation method:

• The coefficient matrix of the collocation system is always full with a condition
number behaving like O(N2m) (m is the order of the differential equation).

• The choice of collocation points is crucial in terms of stability, accuracy and
ease of dealing with boundary conditions. In general, they are chosen as nodes
(typically, zeros of orthogonal polynomials) of Gauss-type quadrature formulas.

• The aforementioned collocation scheme is formulated in a strong form. In terms
of error analysis, it is more convenient to reformulate it as a (but not always
equivalent) weak form, see Sect. 1.3.3 and Chap. 4.
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1.3 Spectral Methods of Galerkin Type

The collocation method described in the previous section is implemented in the
physical space. In this section, we shall describe Galerkin-type spectral methods
in the frequency space, and present the basic principles of the spectral-Galerkin
method, spectral-Petrov-Galerkin method, and spectral-Galerkin method with nu-
merical integration.

1.3.1 Galerkin Method

Without loss of generality, we consider (1.8) with g± = 0. The non-homogeneous
boundary conditions can be easily handled by considering v = u − ũ, where
ũ is a “simple” function satisfying the non-homogeneous boundary conditions
(cf. Chap. 4).

Define the finite-dimensional approximation space:

XN =
{

φ ∈ PN : B±φ(±1) = 0
} ⇒ dim(XN) = N−1.

Let {φk}N−2
k=0 be a set of basis functions of XN . We expand the approximate solu-

tion as

uN(x) =
N−2

∑
k=0

ûkφk(x) ∈ XN . (1.19)

Then, the expansion coefficients {ûk}N−2
k=0 can be determined by the residual equa-

tion (1.6) with {ψ j = φ j} :

∫ 1

−1

(

LuN(x)− f (x)
)

φ j(x)ω(x)dx = 0, 0≤ j ≤ N−2, (1.20)

which is equivalent to
{

Find uN ∈ XN such that
(

LuN ,vN
)

ω =
(

f ,vN
)

ω , ∀vN ∈ XN .
(1.21)

Here, (·, ·)ω is the inner product of L2
ω(−1,1) (cf. Appendix B).

The linear system of the above scheme is obtained by substituting (1.19) into
(1.20). More precisely, setting

u =
(

û0, û1, . . . , ûN−2
)T

; f j = ( f ,φ j)ω , f =
(

f0, f1, . . . , fN−2
)T

;

s jk =
(

Lφk,φ j
)

ω , S = (s jk) j,k=0,...,N−2,

the system (1.20) reduces to
Su = f. (1.22)
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Therefore, it is crucial to choose basis functions {φ j} such that:

• The right-hand side ( f ,φ j)ω can be computed efficiently.
• The linear system (1.22) can be solved efficiently.

The key idea is to use compact combinations of orthogonal polynomials or orthogo-
nal functions to construct basis functions. To demonstrate the basic principle, we
consider the Legendre spectral approximation (i.e., ω ≡ 1 in (1.20)-(1.22)). Let
Lk(x) be the Legendre polynomial of degree k, and set

φk(x) = Lk(x)+αkLk+1(x)+βkLk+2(x), k ≥ 0, (1.23)

where the constants αk and βk are uniquely determined by the boundary conditions:
B±φk(±1) = 0 (cf. Sect. 4.1). We shall refer to such basis functions as modal basis
functions. Therefore, we have

XN = span
{

φ0,φ1, . . . ,φN−2
}

. (1.24)

Using the properties of Legendre polynomials (cf. Sect. 3.3), one verifies easily
that, if p(x) and q(x) are constants, the coefficient matrix S is sparse so the linear
system (1.22) can be solved efficiently. However, for more general p(x) and q(x),
the coefficient matrix S is full and one needs to resort to an iterative method (cf.
Sect. 4.4).

In the above, we just considered the Legendre case. In fact, the construc-
tion of such a basis is also feasible for the Chebyshev, Laguerre and Hermite
cases (see Chaps. 4–7). The notion of using compact combinations of orthogonal
polynomials/functions to develop efficient spectral solvers will be repeatedly em-
phasized in this book.

We now consider the evaluation of ( f ,φ j)ω . In general, this term can not
be computed exactly and is usually approximated by (IN f ,φ j)ω , where IN is an
interpolation operator upon PN relative to the Gauss-Lobatto points. Thus, we can
write

(IN f )(x) =
N

∑
k=0

f̃kϕk(x), (1.25)

where {ϕk} is an orthonormal polynomial basis of PN (orthogonal with respect to
ω , i.e., (ϕk,ϕ j)ω = δ jk). Thanks to the orthogonality, the discrete transforms be-
tween the physical values { f (x j)}N

j=0 and the expansion coefficients { f̃k}N
k=0 can

be computed efficiently. In particular, the computational complexity of the Fourier
and Chebyshev discrete transforms can be reduced to O(N log2 N) by using the fast
Fourier transform (FFT). An approach for implementing discrete transforms relative
to general orthogonal polynomials is given in Sect. 3.1.5.

It is important to point out that in solving time-dependent nonlinear problems, f
usually contains nonlinear terms involving derivatives of the numerical solution uN

at previous time steps (cf. (1.3)). Hence, numerical differentiations in the frequency
space and/or in the physical space are required. Differentiation techniques relative
to general orthogonal polynomials are addressed in Sects. 3.1.6 and 3.1.7.
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1.3.2 Petrov-Galerkin Method

As pointed out in Sect. 1.1, the use of different test and trial functions distinguishes
the Petrov-Galerkin method from the Galerkin method. Thanks to this flexibility,
the Petrov-Galerkin method can be very useful for some non-self-adjoint problems
such as odd-order equations.

As an illustrative example, we consider the following third-order equation:

Lu(x) := u′′′(x)+ u(x) = f (x), x ∈ (−1,1),
u(±1) = u′(1) = 0.

(1.26)

As with the Galerkin case, we enforce the boundary conditions on the approximate
solution. So we set

XN =
{

φ ∈ PN : φ(±1) = φ ′(1) = 0
} ⇒ dim(XN) = N−2.

Assuming that {φk}N−3
k=0 is a basis of XN , we expand the approximate solution as

uN(x) =
N−3

∑
k=0

ûkφk(x) ∈ XN .

The expansion coefficients {ûk}N−3
k=0 are determined by the residual equation (1.6)

(with ω = 1):

∫ 1

−1

(

LuN(x)− f (x)
)

ψ j(x)dx = 0, 0≤ j ≤ N−3. (1.27)

Since the leading third-order operator is not self-adjoint, it is natural to use a Petrov-
Galerkin method with the test function space:

X∗
N =

{

ψ ∈ PN : ψ(±1) = ψ ′(−1) = 0
} ⇒ dim(X∗

N) = N−2.

Assume that {ψk}N−3
k=0 is a basis of X∗

N . Then, (1.27) is equivalent to the variational
formulation:

{

Find uN ∈ XN such that
(

LuN ,vN
)

=
(

f ,vN
)

, ∀vN ∈ X∗
N ,

(1.28)

where (·, ·) is the inner product of the usual L2-space.
The theoretical aspects of the above scheme will be examined in Chap. 6. We

now consider its implementation. Setting

u =
(

û0, û1, . . . , ûN−3
)T

; f j = ( f ,ψ j), f =
(

f0, f1, . . . , fN−3
)T

;

s jk = (φ ′k,ψ
′′
j ), S =

(

s jk
)

j,k=0,...,N−3;

m jk = (φk,ψ j), M =
(

m jk
)

j,k=0,...,N−3,
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the linear system (1.28) becomes
(

S + M
)

u = f. (1.29)

As described in the previous section, we wish to construct basis functions for XN

and X∗
N , so that the linear system (1.29) can be inverted efficiently. Once again, this

goal can be achieved by using compact combinations of orthogonal polynomials. It
can be checked that for 0≤ k ≤ N−3,

φk = Lk− 2k + 3
2k + 5

Lk+1−Lk+2 +
2k + 3
2k + 5

Lk+3 ∈ XN ;

ψk = Lk +
2k + 3
2k + 5

Lk+1−Lk+2− 2k + 3
2k + 5

Lk+3 ∈ X∗
N ,

(1.30)

where Ln is the Legendre polynomial of degree n (cf. Sect. 3.3). Hence, {φk}N−3
k=0

(resp. {ψ j}N−3
j=0 ) forms a basis of XN (resp. X∗

N). Moreover, using the properties of
the Legendre polynomials, one verifies easily that the matrix M is seven-diagonal,
i.e., m jk = 0 for all | j− k|> 3. More importantly, the matrix S is diagonal.

1.3.3 Galerkin Method with Numerical Integration

We considered previously Galerkin-type methods in the frequency space, which are
well suited for linear problems with constant (or polynomial) coefficients. However,
their implementations are not convenient for problems with general variable coef-
ficients. On the other hand, the collocation method is easy to implement, but it can
not always be reformulated as a suitable variational formulation (most convenient
for error analysis). A combination of these two approaches leads to the so-called
Galerkin method with numerical integration, or sometimes called the collocation
method in the weak form.

The key idea of this approach is to replace the continuous inner products in the
Galerkin formulation by the discrete ones. As an example, we consider again (1.8)
with g± = 0. The spectral-Galerkin method with numerical integration is

{

Find uN ∈ XN := {φ ∈ PN : B±φ(±1) = 0} such that

aN(uN ,vN) := 〈LuN ,vN〉N = 〈 f ,vN〉N , ∀vN ∈ XN ,
(1.31)

where the discrete inner product is defined by

〈u,v〉N =
N

∑
j=0

u(x j)v(x j)ω j,

with {x j,ω j}N
j=0 being the set of Legendre-Gauss-Lobatto quadrature nodes and

weights (cf. Theorem 3.29).
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For problems with variable coefficients, the above method is easier to implement,
thanks to the discrete inner product, than the spectral-Galerkin method (1.21). It is
also more convenient for error analysis, thanks to the weak formulation, than the
spectral-collocation method (1.12).

We note that in the particular case of homogeneous Dirichlet boundary condi-
tions, i.e., B±u(±1) = u(±1) = 0, by taking vN = h j, 1 ≤ j ≤ N− 1 in (1.31) and
using the exactness of Legendre-Gauss-Lobatto quadrature, i.e.,

〈u,v〉N = (u,v), ∀u · v∈ P2N−1, (1.32)

we find that the formulation (1.31) is equivalent to the collocation formulation
(1.12). However, this is not true for general boundary conditions (see Chap. 4).

1.4 Fundamental Tools for Error Analysis

In the previous sections, we briefly described several families of spatial discretiza-
tion schemes using the notion of weighted residual methods. In this section, we
present some fundamental apparatuses for stability and convergence analysis of nu-
merical schemes based on weak (or variational) formulations.

We consider the linear boundary value problem (1.3):

Lu = f , in Ω ; Bu = 0, on ∂Ω , (1.33)

where L and B are linear operators, and f is a given function on Ω .
As shown before, the starting point is to reformulate (1.33) in a weak formulation:

{

Find u ∈ X such that

a(u,v) = F(v), ∀v ∈ Y,
(1.34)

where X is the space of trial functions, Y is the space of test functions, and F is a
linear functional on Y. The expression a(u,v) defines a bilinear form on X ×Y. It is
conventional to assume that X and Y are Hilbert spaces. We refer to Appendix B for
basic functional analysis settings.

Now, we consider what conditions should be placed on (1.34) to guarantee its
well-posedness in the sense that:

• Existence-uniqueness: There exists exactly one solution of the problem.
• Stability: The solution must be stable which means that it depends on the data

continuously. In other words, a small change of the given data produces a small
change of the solution correspondingly.

The first fundamental result concerning the existence-uniqueness and stability is
known as the Lax-Milgram lemma (see Theorem B.1) related to the abstract problem
(1.34) with X = Y, i.e.,
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{

Find u ∈ X such that

a(u,v) = F(v), ∀v ∈ X .
(1.35)

More precisely, if the bilinear form a(·, ·) : X ×X →R satisfies

• Continuity:
∃C > 0 such that |a(u,v)| ≤C‖u‖X‖v‖X , (1.36)

• Coercivity:
∃α > 0 such that a(u,u)≥ α‖u‖2

X , (1.37)

then for any F ∈ X ′ (the dual space of X as defined in Appendix B), the problem
(1.35) admits a unique solution u ∈ X , satisfying

‖u‖X ≤ 1
α
‖F‖X ′ . (1.38)

Remark 1.3. The constant

α = inf
0 �=u∈X

|a(u,u)|
‖u‖2

X

(1.39)

is referred to as the ellipticity constant of (1.35).

The above result can only be applied to the problem (1.34) with Y = X . We now
present a generalization of the Lax-Milgram lemma for the case X �= Y (see, e.g.,
Babuška and Aziz (1972)).

Theorem 1.1. Let X and Y be two real Hilbert spaces, equipped with norms ‖ · ‖X

and ‖ ·‖Y , respectively. Assume that a(·, ·) : X×Y →R is a bilinear form and F(·) :
Y →R is a linear continuous functional, i.e., F ∈Y ′ (the dual space of Y ) satisfying

‖F‖Y ′ = sup
0 �=v∈Y

|F(v)|
‖v‖Y

< ∞. (1.40)

Further, assume that a(·, ·) satisfies

• Continuity:
∃C > 0 such that |a(u,v)| ≤C‖u‖X‖v‖Y , (1.41)

• Inf-sup condition:

∃β > 0 such that sup
0 �=v∈Y

|a(u,v)|
‖u‖X‖v‖Y

≥ β , ∀0 �= u ∈ X , (1.42)

• “Transposed” inf-sup condition:

sup
0 �=u∈X

|a(u,v)|> 0, ∀0 �= v ∈ Y. (1.43)

Then, for any F ∈ Y ′, the problem (1.34) admits a unique solution u ∈ X , which
satisfies
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‖u‖X ≤ 1
β
‖F‖Y ′ . (1.44)

Remark 1.4. The condition (1.42) is also known as the Babuška-Brezzi inf-sup con-
dition (cf. Babuška (1973), Brezzi (1974)), and the real number

β = inf
0 �=u∈X

sup
0 �=v∈Y

|a(u,v)|
‖u‖X‖v‖Y

(1.45)

is called the inf-sup constant.

Remark 1.5. Theorem 1.1 with X = Y is not equivalent to the Lax-Milgram lemma.
In fact, one can verify readily the relation between the ellipticity and inf-sup con-
stants: α ≤ β . Indeed, by (1.37),

α‖u‖X ≤ |a(u,u)|
‖u‖X

≤ sup
0 �=v∈X

|a(u,v)|
‖v‖X

, ∀0 �= u ∈ X ,

which implies

α ≤ inf
0 �=u∈X

sup
0 �=v∈X

|a(u,v)|
‖u‖X‖v‖X

= β .

This means that one can have α = 0 but β > 0. In other words, the bilinear form is
not coercive, but satisfies the inf-sup condition.

We review below the fundamental theory on convergence analysis of numerical
approximations to (1.34).

We first consider the case X = Y . Assume that XN ⊆ X and

∀v ∈ X , inf
vN∈XN

‖v− vN‖X → 0 as N → ∞. (1.46)

The Galerkin approximation to (1.35) is
{

Find uN ∈ XN such that

a(uN ,vN) = F(vN), ∀vN ∈ XN .
(1.47)

The stability and convergence of this scheme can be established by using the fol-
lowing lemma (cf. Céa (1964)):

Theorem 1.2. (Céa Lemma). Under the assumptions of the Lax-Milgram lemma
(see Theorem B.1), the problem (1.47) admits a unique solution uN ∈ XN such that

‖uN‖X ≤ 1
α
‖F‖X ′ . (1.48)

Moreover, if u is the solution of (1.35), we have

‖u−uN‖X ≤ C
α

inf
vN∈XN

‖u− vN‖X . (1.49)

Here, the constants C and α are given in (1.36) and (1.37), respectively.
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Proof. Since XN is a subspace of X , applying the Lax-Milgram lemma to (1.47)
leads to the existence-uniqueness of uN and the stability result (1.48). Now, taking
v = vN in (1.35), and subtracting (1.47) from the resulting equation, we obtain the
error equation

a(u−uN,vN) = 0, ∀vN ∈ XN , (1.50)

which, together with (1.36)-(1.37), implies

α‖u−uN‖2
X ≤ a(u−uN,u−uN) = a(u−uN,u− vN)
≤C‖u−uN‖X‖u− vN‖X , ∀vN ∈ XN ,

from which (1.49) follows. ��
Remark 1.6. If, in addition, the bilinear form is symmetric, i.e., a(u,v) = a(v,u),
the Galerkin method is referred to as the Ritz method. In this case, the constant in
the upper bound of (1.49) can be improved to

√
Cα−1.

Remark 1.7. In performing error analysis of spectral methods, we usually take vN

in (1.49) to be a suitable orthogonal projection of u upon XN , denoted by πNu, which
leads to

‖u−uN‖X ≤ C
α
‖u−πNu‖X . (1.51)

Hence, the error estimate follows from the approximation result on ‖u− πNu‖X ,
which takes a typical form:

‖u−πNu‖X ≤ cN−σ(m)‖u‖Hm , (1.52)

where c is a generic positive constant independent of N and any function, σ(m) > 0
is the so-called order of convergence in terms of the regularity index m, and Hm

is a suitable Sobolev space with a norm involving derivatives of u up to m-th or-
der. The establishment of such approximation results for each family of orthogonal
polynomials/functions will be another emphasis of this book.

Typically, if u is sufficiently smooth, the estimate (1.52) is valid for every m.
However, for a finite-element method, the order of convergence is restricted by the
order of local basis functions. The explicit dependence of the estimates of (1.52)
type on the regularity index m will also be explored in this book.

Observe that the bilinear form and the functional F in the discrete problem (1.47)
are the same as those in the continuous problem (1.35). However, it is often conve-
nient to use suitable approximate bilinear forms and/or functionals (see, for exam-
ple, (1.31)). Hence, it is necessary to consider the following approximation to (1.35):

{

Find uN ∈ XN such that

aN(uN ,vN) = FN(vN), ∀vN ∈ XN ,
(1.53)

where XN still satisfies (1.46), and aN(·, ·) and FN(·) are suitable approximations
to a(·, ·) and F(·), respectively. In general, although XN is a subspace of X , the
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properties of the discrete bilinear form can not carry over from those of the
continuous one. Hence, they have to be derived separately.

The result below, known as the first Strang lemma (see, e.g., Strang and Fix
(1973), Ciarlet (1978)), is a generalization of Theorem 1.2.

Theorem 1.3. (First Strang lemma). Under the assumptions of the Lax-Milgram
lemma, suppose further that the discrete forms FN(·) and aN(·, ·) satisfy the same
properties in the subspace XN ⊂ X, and ∃α∗ > 0, independent of N, such that

aN(v,v)≥ α∗‖v‖2
X , ∀v ∈ XN . (1.54)

Then, the problem (1.53) admits a unique solution uN ∈ XN , satisfying

‖uN‖X ≤ 1
α∗

sup
0 �=vN∈XN

|FN(vN)|
‖vN‖X

. (1.55)

Moreover, if u is the solution of (1.35), we have

‖u−uN‖X ≤ inf
wN∈XN

{

(

1 +
C
α∗

)

‖u−wN‖X

+
1
α∗

sup
0 �=vN∈XN

|a(wN ,vN)−aN(wN ,vN)|
‖vN‖X

}

+
1
α∗

sup
0 �=vN∈XN

|F(vN)−FN(vN)|
‖vN‖X

.

(1.56)

Here, the constant C is given in (1.36).

Proof. The existence-uniqueness and stability of (1.55) follow from the Lax-
Milgram lemma. The proof of (1.56) is slightly different from that of (1.49). For
any wN ∈ XN , let eN = uN −wN . Using (1.54), (1.35) and (1.53) leads to

α∗‖eN‖2
X ≤ aN(eN ,eN) = a(u−wN,eN)+ a(wN ,eN)

−aN(wN ,eN)+ FN(eN)−F(eN).

Since the result is trivial for eN = 0, we derive from (1.36) that for eN �= 0,

α∗‖eN‖X ≤C‖u−wN‖X +
|a(wN ,eN)−aN(wN ,eN)|

‖eN‖X

+
|F(eN)−FN(eN)|

‖eN‖X

≤C‖u−wN‖X + sup
0 �=vN∈XN

|a(wN ,vN)−aN(wN ,vN)|
‖vN‖X

+ sup
0 �=vN∈XN

|F(vN)−FN(vN)|
‖vN‖X

,
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which, together with the triangle inequality, yields

‖u−uN‖X ≤ ‖u−wN‖X +‖eN‖X .

Finally, taking the infimum over wN ∈ XN leads to the desired result. ��
The previous discussions were restricted to approximations of the abstract prob-

lem (1.35) based on Galerkin-type formulations. Similar analysis can be done for the
Petrov-Galerkin approximation of (1.34) by using Theorem 1.1. Indeed, let XN ⊆ X
and YN ⊆ Y . Consider the approximation to (1.34):

{

Find uN ∈ XN such that

a(uN ,vN) = F(vN), ∀vN ∈YN .
(1.57)

Unlike the coercivity property, the inf-sup property can not carry over from the
whole space to the subspace. Indeed, the infimum in (1.39) will not decrease if it
is taken on a subspace, whereas the supremum in the inf-sup constant (1.45), in
general, becomes smaller on a subspace. Consequently, we have to prove

• Discrete inf-sup condition:

∃β∗ > 0 such that sup
0 �=vN∈YN

|a(uN ,vN)|
‖uN‖X‖vN‖Y

≥ β∗, ∀0 �= uN ∈ XN , (1.58)

• Discrete “transposed” inf-sup condition:

sup
0 �=uN∈XN

|a(uN ,vN)|> 0, ∀0 �= vN ∈ YN . (1.59)

The following result, which is another generalization of Theorem 1.2, can be
found in Babuška and Aziz (1972).

Theorem 1.4. Under the assumptions of Theorem 1.1, assume further that (1.58)
and (1.59) hold. Then the discrete problem (1.57) admits a unique solution uN ∈ XN ,
satisfying

‖uN‖X ≤ 1
β∗
‖F‖Y ′ . (1.60)

Moreover, if u is the solution of (1.34), we have

‖u−uN‖X ≤
(

1 +
C
β∗

)

inf
vN∈XN

‖u− vN‖X , (1.61)

where the constant C is given in (1.41).

Remark 1.8. If we consider the following approximation to (1.34):
{

Find uN ∈ XN such that

aN(uN ,vN) = FN(vN), ∀vN ∈YN ,
(1.62)

then a result similar to Theorem 1.3 can be derived, provided that (1.58) and (1.59)
hold in the subspaces XN and YN.


