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Preface

This monograph gives a unified exposition of the thermodynamic formalism and
some of its main extensions, with emphasis on their relation to dimension theory
and multifractal analysis of dynamical systems. Not only are these natural play-
grounds for nontrivial applications of the thermodynamic formalism, but are also
major sources of inspiration for further developments of the theory.

In particular, we present the main results and main techniques in the inter-
play between the thermodynamic formalism, symbolic dynamics, dimension the-
ory, and multifractal analysis. We also discuss selected topics of current research
interest that until now were scattered in the literature (incidentally, more than
two thirds of the material appears here for the first time in book form). This in-
cludes the discussion of some of the most significant recent results in the area as
well as some of its open problems, in particular concerning dimension estimates
for repellers and hyperbolic sets, dimension estimates or even formulas for the
dimension of limit sets of geometric constructions, and the multifractal analysis of
entropy and dimension spectra, in particular associated to nonconformal repellers.
Undoubtedly, this selection, although quite conscious, also reflects a personal taste.

The dimension theory and the multifractal analysis of dynamical systems
have progressively developed into an independent field of research during the last
three decades. Nevertheless, despite a large number of interesting and nontrivial
developments, only the case of conformal dynamics is completely understood. In
the case of repellers this corresponds to assuming that the derivative of the map is
a multiple of an isometry at every point. This property allowed Bowen in 1979 (in
the particular case of quasi-circles) and then Ruelle in 1982 (in full generality) to
develop a fairly complete theory for the dimension of repellers of conformal maps.
Their work is strongly based on the thermodynamic formalism, earlier developed
by Ruelle in 1973 for expansive transformations, and then by Walters in 1976 in
full generality.

On the other hand, the study of the dimension of invariant sets of nonconfor-
mal maps unveiled several new phenomena, but it still lacks today a satisfactory
general approach. In particular, we are often only able to establish dimension es-
timates instead of giving formulas for the dimension of the invariant sets. Thus,
somemes the emphasis is on how to obtain sharp dimension estimates, starting
essentially with the seminal work of Douady and Oesterlé in 1980, who devised
an approach to cover an invariant set in a more optimal manner. Furthermore,
it was early recognized, notably by Pesin and Pitskel’ in 1984 (with the notion
of topological pressure for noncompact sets) and by Falconer in 1988 (with his
subadditive version of the thermodynamic formalism), that it would also be desir-
able to have an appropriate extension of the thermodynamic formalism in order
to consider more general classes of invariant sets, and in particular invariant sets
of nonconformal transformations. Most certainly, this is not foreign to the fact
that virtually all known equations used to compute or estimate dimensions are

xi



xii Preface

appropriate versions of an equation introduced by Bowen in his study of quasi-
circles that involves topological pressure, which is the most basic notion of the
thermodynamic formalism.

The exposition is organized in four parts. The first part gives an introduction
to the classical thermodynamic formalism and its relations to symbolic dynamics.
Although everything is proven, we develop the theory in a pragmatic manner, only
as much as needed for the following parts. The remaining three parts consider three
different versions of the thermodynamic formalism, namely nonadditive, subaddi-
tive, and almost additive. In each of these parts we detail generously not only the
most significant results in the area, some of them quite recent, but also some of
the most substantial applications of the corresponding thermodynamic formalism
to dimension theory and multifractal analysis of dynamical systems.

The nonadditive thermodynamic formalism, which is a considerable exten-
sion of the classical thermodynamic formalism, provides the most general setting
and has a unifying role. The subadditive and the almost additive formalisms suc-
cessively consider more special situations. As always in mathematics, when one
makes further hypotheses, one can often establish additional results. Thus, it is not
surprising that the nonadditive, subadditive, and almost additive thermodynamic
formalisms are progressively richer. On the other hand, and this is a major moti-
vation for such developments, the new hypotheses are still sufficiently general to
allow a large number of nontrivial applications. This includes dimension estimates
for nonconformal repellers, nonconformal hyperbolic sets, and limit sets of geo-
metric constructions, as well as a multifractal analysis of entropy and dimension
spectra of a large class of nonconformal repellers.

The book is directed to researchers as well as graduate students who wish to
have a global view of the main results and main techniques in the area. It can also
be used for graduate courses on the thermodynamic formalism and its extensions,
with the optional discussion of some applications to dimension theory and multi-
fractal analysis, or for graduate courses on special topics of dimension theory and
multifractal analysis, with the discussion of the strictly necessary material from
the thermodynamic formalism. We emphasize that with the exception of a few
sections of survey type, the text is self-contained and all the results are included
with detailed proofs. In particular, it can also be used for independent study.

There are no words that can adequately express my gratitude to Claudia Valls
for her help, patience, encouragement, and inspiration during the preparation of
this book. I acknowledge the support by FCT through the Center for Mathematical
Analysis, Geometry, and Dynamical Systems of Instituto Superior Técnico.

Luis Barreira
Lisbon, May 2011



Chapter 1

Introduction

This book is dedicated to the thermodynamic formalism, its extensions, and its
applications, with emphasis on the study of the relation to dimension theory and
multifractal analysis of dynamical systems. We describe briefly in this chapter the
historical origins and the principal elements of the research areas considered in the
book. We also describe its contents. Finally, we recall in a pragmatic manner all
the notions and results from dimension theory and ergodic theory that are needed
later on.

1.1 Thermodynamic formalism and dimension theory

We describe in this section the historical origins of the thermodynamic formalism
as well as of dimension theory and multifractal analysis of dynamical systems. In
particular, we illustrate the rich interplay between these areas.

1.1.1 Classical thermodynamic formalism

The (mathematical) thermodynamic formalism has its roots in thermodynamics.
For example, quoting from Gallavotti’s foreword to Ruelle’s book [166]:

“Thermodynamics is still, as it always was, at the center of physics, the
standard-bearer of successful science. As happens with many a theory,
rich in applications, its foundations have been murky from the start and
have provided a traditional challenge on which physicists and mathe-
maticians alike have tested their latest skills.”

Essentially, the thermodynamic formalism (following Ruelle’s original expression)
can be described as a rigorous study of certain mathematical structures inspired in
thermodynamics. To differentiate it from the various extensions that are described
in the book, we shall call it classical thermodynamic formalism.

1
     OI 10.1007/978-3-0348-0206-2_1, © Springer Basel AG 2011

. , L Barreira Thermodynamic Formalism and Applications to Dimension Theory,
Progress in Mathematics 294, D



2 Chapter 1. Introduction

The notion of topological pressure, which is the most basic notion of the
thermodynamic formalism, was introduced by Ruelle [164] for expansive transfor-
mations and by Walters [194] in the general case. For a continuous transformation
f : X → X of a compact metric space, the topological pressure of a continuous
function ϕ : X → R (with respect to f) is defined by

P (ϕ) = lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑
x∈E

exp

n−1∑
k=0

ϕ(fk(x)),

where the supremum is taken over all (n, ε)-separated sets E ⊂ X (see Section 2.1
for details). For example, taking ϕ = 0 we recover the notion of topological entropy.

The theory has progressively developed into a broad independent field, with
many promising directions of research. In particular, the variational principle re-
lating topological pressure to Kolmogorov–Sinai entropy was established by Ruelle
[164] for expansive transformations and by Walters [194] in the general case. It
says that

P (ϕ) = sup
μ

(
hμ(f) +

∫
X

ϕdμ

)
, (1.1)

where the supremum is taken over all f -invariant probability measures μ in X ,
and where hμ(f) is the entropy with respect to the measure μ. The theory also
includes a discussion of the existence and uniqueness of equilibrium and Gibbs
measures, with the latter having a privileged relation to the Gibbs distributions
of thermodynamics. For further developments of the thermodynamic formalism
as well as a detailed discussion of its historical origins, we refer to the books
[39, 108, 109, 149, 166, 195]. These developments also include directions of re-
search that apparently are unrelated to the original motivation stemming from
thermodynamics. We emphasize that it is entirely out of the scope of this book to
provide any comprehensive exposition of the theory.

1.1.2 Dimension theory and multifractal analysis

We emphasize that in this book we are mainly concerned with the relation of the
thermodynamic formalism and its extensions to the dimension theory of dynam-
ical systems, which includes in particular the subfield of multifractal analysis. In
other words, we do not consider topics of dimension theory that are not of a dy-
namical nature, of course independently of their importance. Roughly speaking,
the main objective of the dimension theory of dynamical systems is to measure the
complexity, from the dimensional point of view, of objects that remain invariant
under the dynamics, such as invariant sets and measures. The first monograph
that clearly took this point of view was Pesin’s book [152], which describes the
state-of-the-art up to 1997. We refer to the book [7] for a detailed description of
many of the more recent results in the area.
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The existence of a privileged relation between the thermodynamic formalism
and the dimension theory of dynamical systems is due to the following fact. The
unique solution s of the equation

P (sϕ) = 0, (1.2)

where ϕ is a certain function associated to a given invariant set, is often related
to the Hausdorff dimension of the set. This equation was introduced by Bowen
in [40] (in his study of quasi-circles) and is usually called Bowen’s equation. It is
also appropriate to call it the Bowen–Ruelle equation, taking not only into account
the fundamental role of the thermodynamic formalism developed by Ruelle, but
also his article [167] with a study of the Hausdorff dimension of the repellers of a
conformal dynamics (this corresponds to assuming that the derivative of the map
is a multiple of an isometry at every point). To a certain extent, the study of the
dimension of hyperbolic sets is analogous. Indeed, assuming that the derivatives
of the map along the stable and unstable directions are multiples of isometries,
starting with the work of McCluskey and Manning in [133] it was possible to
develop a sufficiently complete corresponding theory. However, there are nontrivial
differences between the theory for repellers and the theory for hyperbolic sets. For
example, each conformal repeller has a unique invariant measure of full dimension.
On the other hand, unless some cohomology relations hold, there are no invariant
measures of full dimension concentrated on a given conformal hyperbolic set.

Let us emphasize that virtually all known equations used to compute or to
estimate the dimension of an invariant set, either of an invertible or a noninvertible
dynamics, are particular cases of equation (1.2) or of an appropriate generalization.
Nevertheless, despite these and many other significant developments, only the
case of conformal dynamics is completely understood. In particular, many of the
developments towards a nonconformal theory depend on each particular class of
dynamics. On the other hand, this drawback of the theory is also a principal
motivation for further developments and in particular for the extensions of the
thermodynamic formalism that are presented in the book.

Now we turn to the theory of multifractal analysis. This is a subfield of the
dimension theory of dynamical systems. Briefly, multifractal analysis studies the
complexity of the level sets of any invariant local quantity obtained from a dynami-
cal system. For example, one can consider Birkhoff averages, Lyapunov exponents,
pointwise dimensions, or local entropies. These functions are usually only measur-
able and thus their level sets are rarely manifolds. Hence, in order to measure
their complexity it is appropriate to use quantities such as the topological entropy
or the Hausdorff dimension. The concept of multifractal analysis was suggested
by Halsey, Jensen, Kadanoff, Procaccia and Shraiman in [84]. The first rigorous
approach is due to Collet, Lebowitz and Porzio in [45] for a class of measures that
are invariant under one-dimensional Markov maps. In [122], Lopes considered the
measure of maximal entropy for hyperbolic Julia sets, and in [162], Rand studied
Gibbs measures for a class of repellers. We refer the reader to the books [7, 152] for
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further references and for detailed expositions of parts of the theory. We also note
that Morán [138] proposed a quite interesting approach to multifractal analysis in
terms of multifractal decompositions obtained from multiplicative set functions.

1.1.3 Attractors in infinite-dimensional spaces

We discuss briefly in this section some motivations for the study of dimension in
the context of the theory dynamical systems, mostly in connection with the theory
of attractors in infinite-dimensional spaces.

The longtime behavior of many dynamical systems, such as those coming
from delay differential equations and partial differential equations, can essentially
be described in terms of a global attractor (see [3, 83, 189]). An important question,
particularly in the context of infinite-dimensional systems, is how many degrees
of freedom are necessary to specify the dynamics on the attractor. It turns out
that a large class of attractors have finite Hausdorff dimension and even finite box
dimension. Hence, the dynamics on the attractor is essentially finite-dimensional
(see [3, 83, 189] for related discussions). In particular, Mañé [127] obtained the
following result.

Theorem 1.1.1. Let f : E → E be a C1 map of a Banach space such that for each
x ∈ E the derivative dxf is the sum of a compact map and a contraction. Then
every compact f -invariant set in E has finite upper box dimension.

An analogous statement for the Hausdorff dimension was obtained earlier by
Mallet-Paret [126] in the particular case of Hilbert spaces.

Moreover, particularly in the experimental study of attractors one often con-
siders their projection into an Euclidean space. It is also possible to give conditions
for the invertibility of the projection. In particular, the following result is also due
to Mañé [127].

Theorem 1.1.2. Let E be a Banach space and let F ⊂ E be a p-dimensional
subspace with p < ∞. For a residual set of the space of all continuous projections
of E onto F (with respect to the topology induced by the operator norm), each
projection is injective on a compact set Λ ⊂ E provided that the product Λ×Λ has
Hausdorff dimension less then p− 1.

For an arbitrary projection of a compact subset of a Banach space, Hunt and
Kaloshin [95] showed that typically (in the sense of prevalence in [96]) the projec-
tion is injective and has Hölder continuous inverse. Earlier results on the Hölder
continuity of the inverse are due to Ben-Artzi, Eden, Foias and Nikolaenko [29]
in R

n and to Foias and Olson [70] in Hilbert spaces. These results estimate how
much the dimension of the set can decrease under the projection.
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1.2 Extensions and applications

We describe in this section the main elements of the three extensions of the classical
thermodynamic formalism that are discussed in the book, namely the nonadditive,
the subadditive, and the almost additive thermodynamic formalisms. We also de-
scribe briefly some of the nontrivial applications of each extension, in particular
to the dimension of repellers and hyperbolic sets, the dimension of limit sets of
geometric constructions, and the multifractal analysis of entropy and dimension
spectra.

1.2.1 Nonadditive formalism and dimension estimates

The nonadditive thermodynamic formalism was introduced by Barreira in [5]. It is
a generalization of the classical thermodynamic formalism, in which the topologi-
cal pressure P (ϕ) of a continuous function ϕ (with respect to a given dynamics on
a compact metric space) is replaced by the topological pressure P (Φ) of a sequence
of continuous functions Φ = (ϕn)n∈N. The nonadditive thermodynamic formalism
contains as a particular case a new formulation of the subadditive thermodynamic
formalism earlier introduced by Falconer in [56]. For additive sequences and arbi-
trary sets, it recovers the notion of topological pressure introduced by Pesin and
Pitskel’ in [153], and the notions of lower and upper capacity topological pressures
introduced by Pesin in [151]. It also gives an equivalent description of the notion
of topological pressure for compact sets introduced by Ruelle in [164] in the case
of expansive maps, and by Walters in [194] in the general case.

Among the main motivations for the nonadditive thermodynamic formalism
are certain applications to a much more general class of invariant sets in the
context of the dimension theory of dynamical systems. Indeed, while the study
of the dimension of invariant sets of nonconformal maps unveiled several new
phenomena, it still lacks today a satisfactory general approach, both for repellers
and for hyperbolic sets. In particular, most authors make additional assumptions
that essentially avoid two main types of difficulties. The first difficulty is the lack of
a clear separation between different Lyapunov directions, together with a possible
small regularity of the associated distributions (or the associated holonomies).
Typically, these distributions are only Hölder continuous, which causes that in
general it is impossible to add the dimensions along various distributions. This
strongly contrasts to what happens for hyperbolic sets of a conformal dynamics, in
which case the stable and unstable holonomies are Lipschitz. The second difficulty
is the existence of number-theoretical properties that may cause a variation of the
Hausdorff dimension with respect to a certain typical value (such as that obtained
by Falconer in [55]; see Theorem 5.3.5). Other authors have obtained results not
for a specific invariant set, but instead for almost all invariant sets in a given
parameterized family. Unfortunately, sometimes it is quite difficult to determine
what happens for each specific value of the parameter, if at all possible.
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These difficulties cause that in the general case of nonconformal maps, at the
present stage of the theory we are often only able to establish dimension estimates
instead of giving formulas for the dimension of an invariant set. Thus, sometimes
the emphasis is on how to obtain sharp lower and upper dimension estimates.
There are however some notable exceptions. In particular, we have included in
the book a description of all the preeminent results concerning lower and upper
dimension estimates, both for repellers and for hyperbolic sets. The nonadditive
thermodynamic formalism plays not only a unifying role but also allows one to
consider much more general classes of invariant sets. This includes repellers and
hyperbolic sets for maps that are not differentiable.

When more complete geometric information is available, one can often obtain
sharper estimates for the dimension or even compute its value. On the other hand,
this often requires a more elaborate approach, starting essentially with the sem-
inal work of Douady and Oesterlé in [49], who devised an approach to cover the
invariant set in a more optimal manner. Incidentally, sharp lower dimension esti-
mates are in general more difficult to obtain than sharp upper dimension estimates.
Moreover, in some cases these estimates are either unknown or are only known to
occur for almost all parameters in some specific classes of invariant sets of non-
conformal maps. For completeness, we also give in the book a sufficiently broad
panorama of the existing results concerning dimension estimates for repellers of
smooth dynamical systems, with emphasis on the relation to the thermodynamic
formalism. Among other topics, we consider self-affine repellers, their nonlinear
generalizations, and repellers of nonuniformly expanding maps. In particular, Fal-
coner [55, 58] studied a class of limit sets obtained from the composition of affine
transformations that are not necessarily conformal.

1.2.2 Subadditive formalism and entropy spectra

We consider in this section the subadditive version of the thermodynamic formal-
ism. We recall that a sequence Φ = (ϕn)n∈N is said to be subadditive if there is a
constant C > 0 such that

ϕn+m ≤ C + ϕn + ϕm ◦ fn

for every n,m ∈ N. Among the main motivations for the subadditive thermody-
namic formalism is the lack of a nonadditive theory of equilibrium measures.

The nonadditive thermodynamic formalism also includes a variational prin-
ciple for the topological pressure but with a restrictive assumption on the se-
quence Φ. Namely, consider a sequence of continuous functions ϕn : X → R, and
assume that there is a continuous function ϕ : X → R such that

ϕn+1 − ϕn ◦ f → ϕ uniformly when n → ∞. (1.3)

Then the nonadditive topological pressure of the sequence Φ = (ϕn)n∈N with
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respect to the map f satisfies the variational principle

P (Φ) = sup
μ

(
hμ(f) +

∫
X

ϕdμ

)
, (1.4)

where the supremum is taken over all f -invariant probability measures μ in X . We
notice that the classical variational principle for the topological pressure in (1.1) is
a particular case of the variational principle in (1.4). Nevertheless, condition (1.3)
is a strong requirement, certainly also caused by considering arbitrary sequences.

On the other hand, it is well-known that equilibrium and Gibbs measures
play a prominent role in the dimension theory and in the multifractal analysis
of dynamical systems. These often provide natural measures sitting on the corre-
sponding invariant sets, that at the same time carry some “dynamical” information
(we note that both equilibrium and Gibbs measures depend on the dynamics). For
example, they can be measures of full dimension or measures of full entropy. It is
sometimes possible to develop the dimension theory or the multifractal analysis of
a given dynamics without a variational principle for the topological pressure, and
thus without the possibility of looking for equilibrium and Gibbs measures, but
the corresponding proofs tend to be much more technical. Moreover, the theory
tends to be less rich, although it may be applicable to more general classes of
maps and potentials. Overall, it would be desirable to continue using equilibrium
and Gibbs measures even when the classical thermodynamic formalism cannot be
used.

This justifies the interest in looking for a more general class of sequences of
functions for which it is still possible to establish a variational principle, without
further hypotheses, and to develop a corresponding theory of equilibriummeasures.
Somewhat recently, it was shown by Feng and Huang [66] that a natural class is
that of subadditive sequences. In fact, they considered the more general class of
asymptotically subadditive sequences (see Definition 7.1.1), and established the
variational principle

P (Φ) = sup
μ

(
hμ(f) + lim

n→∞

∫
X

ϕn

n
dμ

)
, (1.5)

where the supremum is taken over all f -invariant probability measures μ in X .
Identity (1.5) was obtained earlier by Cao, Feng and Huang [42] in the particular
case of subadditive sequences, and its generalization to arbitrary asymptotically
subadditive sequences follows from a minor modification of their proof. Inciden-
tally, one can show that any sequence satisfying (1.3) is asymptotically subadditive.

Feng and Huang also established the existence of equilibrium measures for
continuous transformations with upper semicontinuous entropy, without further
hypotheses on the asymptotically subadditive sequence. These are measures μ at
which the supremum in (1.5) is attained, that is, they satisfy

P (Φ) = hμ(f) + lim
n→∞

∫
X

ϕn

n
dμ.
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As an application of these results, one can obtain a detailed multifractal analy-
sis of the entropy spectra of generalized Birkhoff averages of an asymptotically
subadditive sequence. More precisely, for an asymptotically subadditive sequence
Φ = (ϕn)n∈N we consider the level sets E(α) composed of the points x such that
ϕn(x)/n → α when n → ∞. The associated entropy spectrum E is obtained from
computing the topological entropy of the level sets E(α) as a function of α, and
its multifractal analysis corresponds to describe the properties of the function E

in terms of the thermodynamic formalism.
In another direction, again taking advantage of the subadditive thermody-

namic formalism, one can also give a detailed description of the dimension of a
large class of limits sets of geometric constructions, with more explicit formulas
when the associated sequences are subadditive. Roughly speaking, a geometric
construction corresponds to the geometric structure provided by the rectangles of
any Markov partition of a repeller, although now not necessarily determined by an
underlying dynamics. More precisely, geometric constructions are defined in terms
of certain decreasing sequences of compact sets, such as the intervals of decreas-
ing size in the construction of the middle-third Cantor set. Moreover, even when
one can define naturally an induced map for which the limit set of the geometric
construction is an invariant set, this map need not be expanding.

1.2.3 Almost additive formalism and Gibbs measures

The almost additive thermodynamic formalism considers a more specific class of
sequences, for which it is possible to construct not only equilibrium measures but
also Gibbs measures. We recall that a sequence Φ = (ϕn)n∈N is said to be almost
additive if there is a constant C > 0 such that

−C + ϕn + ϕm ◦ fn ≤ ϕn+m ≤ C + ϕn + ϕm ◦ fn

for every n,m ∈ N. Clearly, any additive sequence ϕn =
∑n−1

k=0 ϕ ◦ fk is almost
additive, but there is a large class of nontrivial examples, in particular related to
the study of Lyapunov exponents of nonconformal transformations (see Chapter 11
for details).

More precisely, the main objective of the almost additive thermodynamic for-
malism developed by Barreira in [6], building on earlier work with Gelfert in [10],
is not only to establish a variational principle, but also to discuss the existence
and uniqueness of equilibrium and Gibbs measures. The notion of Gibbs mea-
sure mimics the corresponding notion in the classical thermodynamic formalism.
Among other results, the formalism establishes the uniqueness of equilibrium mea-
sures for an almost additive sequence Φ with bounded variation as well as some
regularity properties of the topological pressure. In addition, the unique equilib-
rium and Gibbs measures for a given almost additive sequence coincide and are
mixing.

The almost additive thermodynamic formalism allows one to develop a new
approach to the multifractal analysis of entropy spectra obtained from the level
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sets of the Lyapunov exponents, for a class of nonconformal repellers. The relation
can be described as follows. The Lyapunov exponents are naturally associated to
the limits of subadditive sequences, obtained from the norms of some products
of matrices. Nevertheless, for the class of nonconformal repellers satisfying a cone
condition these sequences of functions are almost additive. In particular, this in-
cludes repellers with a strongly unstable foliation and repellers with a dominated
splitting (see Chapter 11). We are thus able to apply the almost additive ther-
modynamic formalism to effect a complete multifractal analysis of the entropy
spectra. A priori one could also use the subadditive thermodynamic formalism,
but we need Gibbs measures and these are only provided by the almost additive
thermodynamic formalism.

Further applications of the almost additive thermodynamic formalism include
a conditional variational principle for the spectra of almost additive sequences, and
a complete description of the dimension spectra of the generalized Birkhoff aver-
ages of an almost additive sequence in a conformal hyperbolic set (we refer to
Chapter 12 for details and references). We emphasize that we consider simulta-
neously averages into the future and into the past. More precisely, the dimension
spectra are obtained by computing the Hausdorff dimension of the level sets of
the generalized Birkhoff averages both for positive and negative time.

1.3 Contents of the book

In this section we describe systematically the contents of the book. The exposition
is divided into four parts:

1. classical thermodynamic formalism;

2. nonadditive thermodynamic formalism, with applications to the dimension
of repellers and hyperbolic sets;

3. subadditive thermodynamic formalism, with applications to the dimension
of limits sets and the multifractal analysis of entropy spectra;

4. almost additive thermodynamic formalism, with applications to the spectra
of Lyapunov exponents and the multifractal analysis of dimension spectra.

The first part is of introductory nature and gives a pragmatic introduction
to the classical thermodynamic formalism and its relations to symbolic dynamics.
Although everything is proven, we develop the theory only as much as needed
for the following chapters. Certainly, a large part of the material is available in
other sources, but mostly mixed with other topics. In Chapter 2, we introduce the
notion of topological pressure, and after establishing its variational principle, we
show that there exist equilibrium measures for any expansive transformation. We
also present the characterization of the topological pressure as a Carathéodory
dimension, which will be very useful later on. Chapter 3 considers the particular
case of symbolic dynamics, which plays an important role in many applications
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of dynamical systems. After presenting a more explicit formula for the topological
pressure with respect to the shift map, we construct equilibrium and Gibbs mea-
sures avoiding on purpose Perron–Frobenius operators, and using instead a more
elementary approach that is sufficient and in fact convenient for our purposes.

In each of the remaining three parts, we discuss the foundations, main re-
sults, and main techniques in the interplay between the particular thermodynamic
formalism under consideration (either nonadditive, subadditive, or almost addi-
tive), and the dimension theory of dynamical systems. Namely, after an initial
chapter in which the core of each thermodynamic formalism is presented in detail,
we describe several nontrivial applications of that formalism. The following is a
systematic description of each part.

In Part II, we discuss the nonadditive thermodynamic formalism and its
applications to the dimension theory of repellers and hyperbolic sets. In Chapter 4,
after introducing the notion of nonadditive topological pressure as a Carathéodory
dimension, we establish some of its basic properties. We also present nonadditive
versions of the variational principle for the topological pressure and of Bowen’s
equation. As an application, Chapter 5 considers the dimension of repellers, which
are invariant sets of a hyperbolic noninvertible dynamics. After describing how
Markov partitions can be used to model repellers, we present several applications
of the nonadditive thermodynamic formalism to the study of their dimension.
This includes lower and upper dimension estimates for a large class of repellers, in
particular for maps that need not be differentiable. Chapter 6 is dedicated to the
dimension of hyperbolic sets, which are invariant sets of a hyperbolic invertible
dynamics. The main aim is to develop to a large extent a corresponding theory to
that for repellers in the former chapter.

Part III is dedicated to the subadditive thermodynamic formalism and its
applications both to dimension theory and multifractal analysis. We consider in
Chapter 7 the particular class of asymptotically subadditive sequences, and we
develop the theory in several directions. In particular, we present a variational
principle for the topological pressure of an arbitrary asymptotically subadditive
sequence, and we establish the existence of equilibrium measures for maps with
upper semicontinuous entropy. Chapter 8 is dedicated to the study of limits sets of
geometric constructions, from the point of view of the dimension theory of dynam-
ical systems. Our main aim is to describe how the theory for repellers developed
in Chapter 5 can be extended to this more general setting, with emphasis on the
case when the associated sequences are subadditive. In Chapter 9, for the class of
asymptotically subadditive sequences, we describe a multifractal analysis of the
entropy spectra of the corresponding generalized Birkhoff averages. We consider
the general cases when the Kolmogorov–Sinai entropy is not upper semicontinuous
and when the topological pressure is not differentiable. We also consider multidi-
mensional sequences, that is, vectors of asymptotically subadditive sequences.

In Part IV, we discuss the almost additive thermodynamic formalism and its
application to multifractal analysis. We consider in Chapter 10 the class of almost
additive sequences and we develop to a larger extent the nonadditive thermody-
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namic formalism in this setting. This includes a discussion of the existence and
uniqueness of equilibrium and Gibbs measures, both for repellers and for hyper-
bolic sets. In order to avoid unnecessary technicalities, we first develop the theory
for repellers. We then explain how the proofs of the corresponding results for
hyperbolic sets and more generally for continuous maps with upper semicontinu-
ous entropy can be obtained from the proofs for repellers. We also describe some
regularity properties of the topological pressure for continuous maps with upper
semicontinuous entropy. Chapter 11 considers a class of nonconformal repellers to
which one can apply the almost additive thermodynamic formalism developed in
the former chapter. Namely, we consider the class of repellers satisfying a cone
condition, which includes for example repellers with a strongly unstable foliation
and repellers with a dominated splitting. In particular, we describe a multifractal
analysis of the entropy spectrum of the Lyapunov exponents of a nonconformal
repeller. Further applications to multifractal analysis are described in Chapter 12.
In particular, we establish a conditional variational principle for the spectra of
an almost additive sequence and we give a complete description of the dimension
spectra of the corresponding generalized Birkhoff averages in a conformal hyper-
bolic set, considering simultaneously averages into the future and into the past.
We also consider the general case of multidimensional sequences, that is, vectors
of almost additive sequences.

1.4 Basic notions

This section collects in a pragmatic manner all the notions and results from di-
mension theory and ergodic theory that are needed in the book.

1.4.1 Dimension theory

We introduce in this section the notions of Hausdorff dimension and of lower and
upper box dimensions, both for sets and measures. We also introduce the notions of
lower and upper pointwise dimensions. We refer to the books [7, 60, 152] for details.

The diameter of a set U ⊂ Rm is defined by

diamU = sup{d(x, y) : x, y ∈ U},
where d is the distance in Rm, and the diameter of a collection U of subsets of Rm

is defined by
diamU = sup{diamU : U ∈ U}.

Given Z ⊂ Rm and α ∈ R, we define the α-dimensional Hausdorff measure of Z by

mH(Z, α) = lim
ε→0

inf
U

∑
U∈U

(diamU)α, (1.6)

where the infimum is taken over all finite or countable covers U of the set Z with
diameter diamU ≤ ε.
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Definition 1.4.1. The Hausdorff dimension of Z ⊂ Rm is defined by

dimHZ = inf
{
α ∈ R : mH(Z, α) = 0

}
.

The lower and upper box dimensions of Z ⊂ Rm are defined respectively by

dimBZ = lim inf
ε→0

logN(Z, ε)

− log ε
and dimBZ = lim sup

ε→0

logN(Z, ε)

− log ε
,

where N(Z, ε) denotes the least number of balls of radius ε that are needed to
cover the set Z.

One can show that

dimHZ ≤ dimBZ ≤ dimBZ. (1.7)

Now we introduce corresponding notions for measures. Let μ be a finite mea-
sure in X ⊂ Rm.

Definition 1.4.2. The Hausdorff dimension and the lower and upper box dimen-
sions of μ are defined respectively by

dimHμ = inf{dimHZ : μ(X \ Z) = 0},
dimBμ = lim

δ→0
inf{dimBZ : μ(Z) ≥ μ(X)− δ},

dimBμ = lim
δ→0

inf{dimBZ : μ(Z) ≥ μ(X)− δ}.

One can show that

dimHμ = lim
δ→0

inf{dimHZ : μ(Z) ≥ μ(X)− δ},

and thus, it follows from (1.7) that

dimHμ ≤ dimBμ ≤ dimBμ.

We also introduce the notions of lower and upper pointwise dimensions.

Definition 1.4.3. The lower and upper pointwise dimensions of the measure μ at
the point x ∈ X are defined by

dμ(x) = lim inf
r→0

logμ(B(x, r))

log r
and dμ(x) = lim sup

r→0

logμ(B(x, r))

log r
.

The following result relates the Hausdorff dimension with the lower pointwise
dimension.

Theorem 1.4.4. The following properties hold:

1. if dμ(x) ≥ α for μ-almost every x ∈ X, then dimHμ ≥ α;
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2. if dμ(x) ≤ α for every x ∈ Z ⊂ X, then dimHZ ≤ α;

3. we have
dimHμ = ess sup{dμ(x) : x ∈ X}.

We also recall a criterion established by Young in [199] for the coincidence
between the Hausdorff and box dimensions of a measure.

Theorem 1.4.5. If μ is a finite measure in X ⊂ Rm and there exists d ≥ 0 such
that

lim
r→0

logμ(B(x, r))

log r
= d

for μ-almost every x ∈ X, then

dimHμ = dimBμ = dimBμ = d.

For any finite measure μ invariant under a C1+ε diffeomorphism with nonzero
Lyapunov exponents almost everywhere, it was shown by Barreira, Pesin and
Schmeling in [17] that dμ(x) = dμ(x) for μ-almost every x.

1.4.2 Ergodic theory

We recall in this section a few basic notions and results from ergodic theory,
including Birkhoff’s ergodic theorem, the notion of Kolmogorov–Sinai entropy, and
the Shannon–McMillan–Breiman theorem. We refer to the books [108, 128, 195]
for details.

We first introduce the notion of invariant measure. Let X be a space with a
σ-algebra.

Definition 1.4.6. Given a measurable transformation f : X → X , a measure μ in X
is said to be f -invariant if

μ(f−1A) = μ(A)

for every measurable set A ⊂ X .

The study of the transformations with an invariant measure is the main theme
of ergodic theory. We denote by Mf the set of all f -invariant probability measures
in X . A measure μ ∈ Mf is said to be ergodic if for any f -invariant measurable
set A ⊂ X (this means that f−1A = A) either μ(A) = 0 or μ(X \A) = 0.

The following is a basic result from ergodic theory. We denote by L1(X,μ)
the space of all measurable functions ϕ : X → R with

∫
X |ϕ| dμ < ∞.

Theorem 1.4.7 (Birkhoff’s ergodic theorem [30]). Let f : X → X be a measurable
transformation. For each μ ∈ Mf and ϕ ∈ L1(X,μ) the limit

lim
n→∞

1

n

n−1∑
k=0

ϕ(fk(x))
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exists for μ-almost every x ∈ X. If in addition μ is ergodic, then

lim
n→∞

1

n

n−1∑
k=0

ϕ(fk(x)) =

∫
X

ϕdμ

for μ-almost every x ∈ X.

More generally, we have the following result.

Theorem 1.4.8 (see [128]). Let f : X → X be a measurable transformation and let
μ ∈ Mf . For each sequence (ϕn)n∈N ⊂ L1(X,μ) converging μ-almost everywhere
and in L1(X,μ) to a function ϕ ∈ L1(X,μ), the limit

lim
n→∞

1

n

n−1∑
k=0

ϕn−k ◦ fk

exists μ-almost everywhere and in L1(X,μ).

Now we recall the notion of entropy. Given μ ∈ Mf , let ξ be a measurable
partition of X , that is, a finite or countable family of measurable subsets of X
such that:

1. μ(
⋃

C∈ξ C) = 1;

2. μ(C ∩D) = 0 for every C,D ∈ ξ with C 
= D.

The entropy of the partition ξ with respect to μ is defined by

Hμ(ξ) = −
∑
C∈ξ

μ(C) log μ(C),

with the convention that 0 log 0 = 0. One can show that

Hμ(ξ) ≤ log card ξ. (1.8)

Definition 1.4.9. The Kolmogorov–Sinai entropy or metric entropy of f with re-
spect to a measure μ ∈ Mf is defined by

hμ(f) = sup
{
hμ(f, ξ) : Hμ(ξ) < ∞}

, (1.9)

where

hμ(f, ξ) = inf
n∈N

1

n
Hμ(ξn),

and where ξn =
∨n−1

k=0 f
−kξ is the measurable partition of X composed of the sets

Ci1···in =

n−1⋂
k=0

f−kCik+1

with Ci1 , . . . , Cin ∈ ξ.
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The notion of metric entropy is due to Kolmogorov [115, 116]. It was extended
to arbitrary dynamical systems by Sinai [182], in the form (1.9).

One can show that if (ξn)n∈N is a sequence of measurable partitions such
that

⋃
n∈N ξn generates the σ-algebra of X , and ξn+1 is a refinement of ξn for each

n ∈ N (this means that each element of ξn+1 is contained in some element of ξn),
then

hμ(f) = lim
n→∞ hμ(f, ξn). (1.10)

We also have
hμ(f

k) = khμ(f) for each k ∈ N. (1.11)

An alternative definition of metric entropy can be introduced as follows. We
first note that if ξ is a measurable partition of X , then for μ-almost every x ∈ X
and each n ∈ N there exists a single element ξn(x) of ξn such that x ∈ ξn(x).

Theorem 1.4.10 (Shannon–McMillan–Breiman). If f : X → X is a measurable
transformation, μ ∈ Mf , and ξ is a measurable partition of X, then the limit

hμ(f, ξ, x) := lim
n→∞− 1

n
logμ(ξn(x))

exists for μ-almost every x ∈ X. Moreover, the function x �→ hμ(f, ξ, x) is μ-
integrable and

hμ(f, ξ) =

∫
X

hμ(f, ξ, x) dμ(x).

The statement in Theorem 1.4.10 was obtained successively in more general
forms by several authors. Shannon [177] considered Markov measures, although the
statement was only derived rigorously by Khinchin [113] (see also [114]). McMillan
[134] obtained the L1 convergence, and Breiman [41] obtained the convergence
almost everywhere.

It is also convenient to introduce the notion of conditional entropy.

Definition 1.4.11. Given measurable partitions ξ and η of X , we define the condi-
tional entropy of ξ with respect to η by

Hμ(ξ|η) = −
∑

C∈ξ,D∈η
μ(C ∩D) log

μ(C ∩D)

μ(D)
.

One can show that Hμ(ξ|η) = 0 if and only if η is a refinement of ξ, that is,
if and only if for every D ∈ η there exists C ∈ ξ such that μ(D \ C) = 0.

Proposition 1.4.12. If ξ and η are measurable partitions of X, then

Hμ(ξ ∨ η) = Hμ(η) +Hμ(ξ|η) ≤ Hμ(η) +Hμ(ξ), (1.12)

and
hμ(f, ξ) = hμ(f, η) +Hμ(ξ|η). (1.13)
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It follows from (1.12) that Hμ(ξ ∨ η) ≥ Hμ(η), with equality if and only if η
is a refinement of ξ.

It is sometimes possible to compute the entropy of a measurable transforma-
tion using a single partition.

Definition 1.4.13. Let f : X → X be a measurable transformation. A measurable
partition ξ of X is said to be:

1. a one-sided generator (with respect to f) if the sets in
⋃

k∈N∪{0} f
−kξ gen-

erate the σ-algebra of X ;

2. a two-sided generator (with respect to f) if the sets in
⋃

k∈Z f
−kξ generate

the σ-algebra of X .

When there exists a generator the entropy can be computed as follows.

Theorem 1.4.14 (Kolmogorov–Sinai). Let f : X → X be a measurable transforma-
tion and let μ ∈ Mf . Then the following properties hold:

1. if ξ is a one-sided generator, then hμ(f) = hμ(f, ξ);

2. if ξ is a two-sided generator and f is invertible μ-almost everywhere, then
hμ(f) = hμ(f, ξ).
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