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Introduction

Most practitioners of pseudo-differential analysis and of analytic number theory
would probably regard the two fields as being as far apart as conceivable. How-
ever, we wish here to convey the idea that, if deepened in its appropriate as-
pects, pseudo-differential analysis (mostly, but not only, one-dimensional pseudo-
differential analysis in this book) may find a place in the bag of tools of modular
form theory. To our PDE colleagues, we shall simply offer the apology that doing
some export cannot hurt: more seriously, we have written this book under the
assumption that some readers with very little, or no previous knowledge of auto-
morphic function theory, might wish to find a reason to approach this fascinating
domain, in which exact formulas of much aesthetic appeal are often the reward of
spectral-theoretic questions. Analysts may also find, in the first chapter, aspects
of pseudo-differential analysis unknown to them.

Few things in mathematics are duller than a linear form, such as the action
of testing a distribution on functions. However, if you can make an operator from
your distribution, you may then test it against pairs of functions, endowing it
as a result with a more interesting hermitian structure. If you are lucky, you
will obtain an explicit sum of squares: examples will occur in Chapter 7. How
to make in a useful way, from a distribution in R2, an operator on functions on
the real line, say from Schwartz’s space S(R) to S ′(R), is the starting point of
pseudo-differential analysis. The simplest, and most successful way to do so, is
the so-called Weyl calculus, or symbolic calculus, of operators: the symbol of an
operator is the distribution it is built from.

This will lead to one first reason to let pseudo-differential analysis enter
modular form theory which, or so we hope, number theorists may find compelling.
When considering eigenfunctions, possibly generalized (Eisenstein series or Maass
forms), of the modular Laplacian ∆, it is always the pair of arguments ±ν (pure

imaginary numbers in the second case), rather than the eigenvalue 1−ν2

4 , that

enters functions on the spectrum. Of course, functions of 1−ν2

4 are just the same
as even functions of ν, but the fact remains that, more often than not, one has
to deal with products of a function of ν by the same function taken at −ν. This
is especially clear when dealing with such composite objects as functions of type
L(s, f × g) [4, p. 72].

1     A. Unterberger, Pseudodifferential Analysis, Automorphic Distributions in the Plane and Modular Forms,
     Pseudo-Differential Operators , DOI 10.1007/978-3-0348-0166-9_ , © Springer Basel AG 20110 8



2 Introduction

Now, there is a very natural transformation S 7→ f0 (Theorem 1.1.3) from
distributions on R2 to functions in the hyperbolic half-plane Π = SL(2,R)/SO(2)
for which the operator ∆ − 1

4 appears as the image of the square of a first-order
differential operator, to wit the Euler operator in R2. Such a transformation is
best defined in terms of pseudo-differential analysis, since it is none other than
the result of testing the operator with Weyl symbol S on a diagonal pair of (Gaus-
sian) functions on the line canonically parametrized by z ∈ Π. There is another
way to let this transformation, or associates of it, enter the picture: one can link
it to the so-called dual Radon transformation from one homogeneous space of
G = SL(2,R) (the space G/MN with the standard notation for the Iwasawa
decomposition G = NAK, and M = {±I}) to the homogeneous space G/K.
Needless to say, the Weyl calculus benefits from all desirable so-called covariance
properties, so that the transformation under examination does not destroy auto-
morphy properties relative to any arithmetic group (we here limit ourselves to the
case of Γ = SL(2,Z)) one may have in mind. Automorphic objects in Π = G/K are
automorphic functions of the usual kind, i.e., functions invariant under the group
of fractional-linear transformations (in the complex coordinate) of the hyperbolic
half-plane associated to matrices in Γ, while automorphic distributions in R2 are
by definition distributions invariant under the linear changes of real coordinates
associated to the same group of matrices.

Automorphic pseudo-differential analysis is just pseudo-differential analysis,
in which one restricts one’s interest in symbols which are automorphic distribu-
tions. Using Weil’s metaplectic representation [66], it amounts to the same to say
that one considers only operators from S(R) to S ′(R) which commute with all
operators from the metaplectic representation lying above elements of Γ: to make
this explicit, it means that they commute with the operator of multiplication of
a function of x by eiπx

2

, as well as with the Fourier transformation. This pseudo-
differential analysis [61] has considerable specificity: on one hand, its structure
relies on most features from the spectral theory of the modular Laplacian, includ-
ing Hecke’s theory and L-functions, sometimes of a composite kind; on the other
hand, since automorphic distributions are very singular, usual methods of pseudo-
differential analysis, for instance boundedness theorems or composition theorems
of the usual species, are not applicable. The development of composition formulas
in automorphic pseudo-differential analysis leads to an original approach towards
the analysis of bilinear operations in non-holomorphic modular form theory. We
shall not review automorphic pseudo-differential analysis in depth in the present
book — though we shall give more than a few hints — but a byproduct of this
approach, going beyond known results regarding series of Kloosterman sums, will
play a crucial role in the construction and study, in Chapter 4, of a certain class
of automorphic functions.

Pseudo-differential analysis will have an obviously central role in the last
two chapters of the book. In a greater part of the book, it will be felt, in an
indirect way, by the fact that automorphic distribution theory (on R2) will have
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the upper hand in comparison to automorphic function theory (in Π): this will
have considerable advantages, for instance, in Chapter 5. In each of the chapters 4
to 7 (which contain the main results of possible arithmetic significance), the zeros
of the zeta and, possibly, other L-functions, or those lying on any given parallel to
the critical line, occur in some important role: we do not believe that the results
obtained constitute a new approach towards the major questions relative to these
functions. Each of these chapters would call for complements and generalisations,
or deepening: this is especially true of the adelic Chapter 7, which is yet mostly
an outlook towards future developments.

We now turn to a more detailed description of the structure of the book.
Chapter 1 provides the necessary background about the Weyl calculus. It differs
in an essential way from other introductions to pseudo-differential analysis, and it
is tailored not for the needs in PDE, but for those in number theory. On one hand,
there is much emphasis on representation-theoretic properties; on the other hand,
the popular (Moyal-type) rule of composition of symbols bears no relation to the
one useful here. Theorem 1.1.3 gives the main properties of the map S 7→ f0 from
distributions in R2 to functions on Π alluded to before. With more detail, this map
is defined by the equation f0(z) = (φ0

z|Op(S)φ0
z), where Op(S) is the operator

with symbol S, and φ0
− 1
z

is a normalized version of the function x 7→ e−iπz̄x
2

. The

map S 7→ f0 intertwines the two actions of SL(2,R) in both spaces of distributions
or functions, by linear or fractional-linear changes of coordinates: this makes it
possible to restrict it to automorphic distributions, getting automorphic functions
as a result. The other fundamental property of this map is that it transfers the
operator π2E2 in the plane, where 2iπE = x ∂

∂x + ξ ∂∂ξ + 1, to the operator ∆− 1
4 =

(z − z̄)2 ∂2

∂z∂z̄ −
1
4 . We consider only even distributions here (i.e., distributions

invariant under the map (x, ξ) 7→ (−x,−ξ)). Such a distribution S, automorphic or
not, is not characterized by its image f0: what is needed to this effect is to complete
f0 into a pair ΘS = (f0, f1), where the function f1 is defined in a comparable
way, using in place of φ0

z the next simplest (odd) function φ1
z attached to z. An

important operator acting on symbols, to be denoted as G, is defined by the fact
that, given any distribution S ∈ S ′(R2), the pseudo-differential operator with
symbol GS is the composition of the operator Op(S) with the operator u 7→ ǔ,
with ǔ(x) = u(−x). The operator G, a simple rescaling of the symplectic Fourier
transformation in R2, plays a surprisingly central role, even in p-adic pseudo-
differential analysis. A distribution S is characterized by its image f0 (rather
than by the pair (f0, f1)) if and only if it is G-invariant. From the relation between
the Euler operator 2iπE and the hyperbolic Laplacian ∆, one sees in particular
that automorphic distribution theory (in R2) is slightly subtler than automorphic
function theory (in Π), since every eigenfunction f (possibly generalized) of ∆ for

the eigenvalue 1−ν2

4 is “covered” by exactly two distributions, automorphic if f is,
homogeneous of degrees −1− ν and −1 + ν, the images of each other under G.



4 Introduction

The Weyl calculus benefits from two distinct covariance properties, in con-
nection with the Heisenberg representation and the metaplectic representation: to
each of these, one can associate a composition formula. Only the first (Moyal-type)
one is generally known — it is the one useful for applications of pseudo-differential
analysis to PDE — but it is the second one, introduced in [61, section 17], that is
more important for number-theoretic applications: both types will be considered
here. The last section of Chapter 1 deals with the totally radial Weyl calculus: this
is obtained when only operators in S(Rn) commuting with the action of rotations,
and sending every function to a radial distribution, are considered. Looking for an
efficient symbolic calculus of such operators, one is led in a natural way, again, to
using the hyperbolic half-plane, at least as a first step.

Associates of the map S 7→ f0 are obtained as a result of composing this
map by functions, in the spectral-theoretic sense, of ∆ on the left, or by functions
of 2iπE on the right: note that an operation of the second kind is identical to one
of the first kind if and only if it involves an even function of 2iπE . A standard such
associate, defined with the help of considerations of harmonic analysis only, is the
dual Radon transformation already alluded to from even functions on the plane
or, what amounts to the same, functions on the homogeneous space G/MN , to
functions on the half-plane G/K. Chapter 2 is devoted to a study of the Radon
transformation: in particular, we make the relation between the map S 7→ f0 and
the dual Radon transformation explicit, obtaining at the same time a few formulas
useful in the sequel. The latter half of this chapter is concerned with the analysis
of a certain function χρ,ν of one variable, built with the help of the hypergeometric
function. The results obtained will be applied in Chapter 4, and our reasons for
studying the function χρ,ν will be given presently with more profit.

In Chapter 3, we provide the necessary background regarding automorphic
functions, recalling such notions as Eisenstein series, Hecke eigenforms, L-functions
. . . (in the case of the full modular group only, for simplicity): the first two notions
have analogues which are automorphic distributions, the map S 7→ f0 defined
before providing the correspondence, together with an obvious terminology. We
spend some more time on Roelcke-Selberg expansions, and on matters related
to Kloosterman sums. The analytic continuation of certain series of Kloosterman
sums has been much studied, as a consequence of investigations (in particular [21])
originating with Selberg’s work [45]. It is necessary for our purposes, however, to go
beyond these results, finding when Re s and Re t are positive and |Re (s− t)| < 1
the analytic continuation of the Dirichlet series in two variables defined when
Re s > 1,Re t > 1 by the equation, in which k ∈ Z,

ζk(s, t) =
1

4

∑
m1m2 6=0

(m1,m2)=1

|m1|−s|m2|−t exp

(
2iπk

m2

m1

)
, (0.1)

with m2m2 ≡ 1 mod m1. The solution to this problem is rather lengthy: its
main features will be expounded in Section 3.6. It was obtained in some previous
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work [60], as a byproduct of the spectral analysis of the pointwise product of two
Eisenstein series, which will be detailed in Section 3.5. This latter problem was
mainly solved as a preparation towards the following basic problem of automor-
phic pseudo-differential analysis [61]: compute the symbol of the composition (the
definition of which requires some care) of two operators the symbols of which are
Eisenstein distributions. Though we shall not come back to this problem in any
detail, we shall give a short survey, in Section 3.4, of some of its features.

In Chapter 4, we analyze the properties of a new class of automorphic
functions. Such functions are formally easy to construct, quite generally, with
the help of Poincaré series, starting from a function ψ in Π, and setting f =∑
g∈Γ/Γψ

ψ ◦g−1, where Γψ is the subgroup of Γ under which ψ remains invariant:
summing over the quotient set prevents one from repeating infinitely many times
the same term, in the case when Γψ is infinite. Two examples, in which the group
Γψ is the group Γ ∩N consisting of matrices ( 1 b

0 1 ) with b ∈ Z, are well-known. In

the first one, one takes ψ(z) = (Im z)
1−ν

2 with Re ν < −1, getting as a result the

Eisenstein series f = E 1−ν
2

. In the second one, one takes ψ(z) = (Im z)
1−ν

2 e2iπkz

for some k ∈ Z, obtaining a special case of Selberg’s series [45]. In Chapter 4,
we shall start, instead of an N -invariant function ψ, from an A-invariant function

(where A is the set of matrices
(
a

1
2 0

0 a−
1
2

)
with a > 0), or more generally from a

function such that ψ(az) = a
ρ−1

2 ψ(z) for some fixed number ρ and every a > 0.
In general, Γψ then reduces to {± ( 1 0

0 1 )}, so that new convergence problems arise.
Poincaré-style series can also be built in the realm of automorphic distribution (in
the plane) theory: one such example will be given in Section 4.1, as its study will
demand proving a few geometric estimates needed in the sequel.

The function (Im z)
1−ν

2 which gives rise, under the Poincaré summation pro-
cess, to the Eisenstein series E 1−ν

2
, is the image, up to multiplication by a constant,

of the function (x, ξ) 7→ |ξ|ν−1 by the dual Radon transformation. It is therefore
tempting to generalize Eisenstein series by starting, instead of a function as simple
as |ξ|ν−1, from a function of the two variables x, ξ separately homogeneous in each,
to wit a function such as

homρ,ν(x, ξ) = |x|
ρ+ν−2

2 |ξ|
ν−ρ

2 : (0.2)

this function will also occur quite naturally from our study of composition formulas
in the Weyl calculus. The role of the two parameters ρ, ν is quite distinct. The
second one refers to the global degree of homogeneity ν − 1 of homρ,ν , i.e., to the
fact that this is an eigenfunction of 2iπE for the eigenvalue ν: the corresponding
“spectral line” is defined by Re ν = 0, since E is formally self-adjoint in L2(R2). The
parameter ρ−1 corresponds to an eigenvalue of the operator (the product of which
by i is formally self-adjoint) x ∂

∂x−ξ
∂
∂ξ , and the appropriate spectral line is defined

by Re ρ = 1: we chose ρ, rather than ρ − 1, as a parameter, to help not making
any confusion between ρ and ν; also, ρ

2 will have to move throughout the critical
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strip for the zeta function, and the spectral line Re ρ = 1 will correspond to the
critical line. If one starts from a distribution in R2 homogeneous of degree −1−ν,

or from an eigenfunction of ∆ (in Π) for the eigenvalue 1−ν2

4 , the Poincaré-type
series (in the automorphic distribution environment), assumed to be convergent,
built from such an object, will have the same property. Nothing comparable can
hold relative to the parameter ρ: but, as will be seen, something important will
remain from it after the summation has been performed.

The case when ρ = 1 is a special one on several accounts. One can verify
that the image, under the dual Radon transform, of the function hom1,ν , is a
multiple of the function ψ(z) = P ν−1

2

(
−iRe z

Im z

)
+P ν−1

2

(
iRe z

Im z

)
involving Legendre

functions. There is nothing one can do with the Poincaré series 1
2

∑
g∈Γ ψ(g.z), as

it converges for no value of ν. One can trace the reason for this as lying in the
invariance of the function ψ under the change ν 7→ −ν: to recover convergence, it
is necessary to break the function ψ into two parts, the transforms of each other
under the symmetry ν 7→ −ν.

No longer specializing the parameter ρ, but assuming that 0 < Re ρ < 2,
we define with the help of the hypergeometric function, if ν /∈ Z and ρ ± ν /∈
2Z, a certain function χρ,ν of one real variable (2.3.31) (already alluded to when
discussing Chapter 2); we consider then the function

ψρ,ν(z) = (Im z)
ρ−1

2 χeven
ρ,ν

(
Re z

Im z

)
, (0.3)

where χeven
ρ,ν is the even part of χρ,ν , and make the following observations. First,

and most important, the dual Radon transform of homρ,ν is a multiple of the sum
ψρ,ν + ψρ,−ν . From the two eigenvalue equations expressing the bihomogeneity of
homρ,ν , it follows by general properties that its dual Radon transform undergoes

a multiplication by a
ρ−1

2 under any change of variable z 7→ az with a > 0, and

that it is an eigenfunction of ∆ for the eigenvalue 1−ν2

4 . The first of these two
properties is also, obviously, satisfied by the function ψρ,ν . So far as the second
eigenvalue equation is concerned, it is still satisfied by ψρ,ν in the complement of
the hyperbolic line from 0 to i∞: however, the ∂

∂x -derivative of this function (which
is continuous in Π) has a jump at points on this line. Making this discontinuity
explicit, one obtains that, in the distribution sense, one has(

∆− 1− ν2

4

)
ψρ,ν = C(ρ, ν)(Im z)

ρ−1
2 δ(0,i∞), (0.4)

where C(ρ, ν) is an explicit constant important in the theory and δ(0,i∞) is the

measure supported in the line under consideration, coinciding with dy
y in terms of

the coordinate y = Im z. Chapter 2 ends with an intrinsic distinction, in spectral-
theoretic terms, between the functions ψρ,ν and ψρ,−ν when Re ν 6= 0.
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Chapter 4 is concerned, for the essential, with the construction and analysis
of the series

fρ,ν(z) =
1

2

∑
g∈Γ

ψρ,ν(g.z). (0.5)

It converges when Re ν < −1− |Re ρ− 1|, though this is somewhat more difficult
to establish than the corresponding convergence of Eisenstein series: indeed, there
are “more” terms since one cannot divide here the group Γ by any subgroup
larger than {± ( 1 0

0 1 )}, and geometric estimates are more involved. After having
defined fρ,ν in the initial domain Re ν < −1 − |Re ρ − 1|, we need to continue it
analytically to the domain Re ν < 1 − |Re ρ − 1|. All the difficulties concentrate
on the continuation, in this latter domain, of the function

z 7→ 1

2

∑
m∈Z×, n∈Z
m|n(n+1)

∣∣∣∣m1

m2

∣∣∣∣
1−ρ

2

|m|
1−ν

2

( |n+ 1
2 −mz|

2

|m|y

) ν−1
2

, (0.6)

where the pair m1,m2 is characterized by the conditions m = m1m2 and 1 ≤
m1|n + 1,m2|n. A Fourier expansion substitutes for this problem the equivalent
one, already mentioned, of continuing analytically the function ζk(s, t) in (0.1).

A summary of the main results regarding fρ,ν is as follows. Fixing ρ with ρ
2

in the critical strip, the function fρ,ν extends as a meromorphic function of ν for
Re ν < 1 − |Re ρ − 1|, with the following poles: the non-trivial zeros of zeta, and

the points iλp, with
1+λ2

p

4 in the even part of the discrete spectrum of ∆, to wit
the part for which there exist cusp-forms invariant under the symmetry z 7→ −z.
Next, one has the equation

fρ,ν + fρ,−ν = −C(ρ, ν)

ν

ζ∗(ρ−ν2 )ζ∗(ρ+ν2 )

ζ∗(ν)
E 1+ν

2
, (0.7)

involving the Eisenstein series E 1+ν
2

and the “full zeta function” ζ∗(s) = π−
s
2 Γ( s2 )

· ζ(s). On the other hand, the function (C(ρ, ν))−1fρ,ν is invariant under the sym-
metry ρ 7→ 2 − ρ. Finding the asymptotic expansion, as Im z → ∞, of fρ,ν(z),
makes it possible, finally, to obtain the complete (Roelcke-Selberg) spectral de-
composition of this function: it does not lie in L2(Γ\Π), but it does so after one
has subtracted from it a certain linear combination of the Eisenstein series E 1+ρ

2

and E 3−ρ
2

. An essential property, a consequence of (0.4), is the following.

Denote as Σ the one-dimensional subset of Π consisting of the (disjoint)
union of all lines congruent, under elements of Γ, to the hyperbolic line from 0

to i∞: making from the measure 1
2

[
(Im z)

ρ−1
2 + (Im z)

1−ρ
2

]
δ(0,i∞), in an obvious

way, an automorphic measure ds
(ρ)

Σ
supported in Σ, one has the identity, in the
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distribution sense, (
∆− 1− ν2

4

)
fρ,ν = 2C(ρ, ν)ds

(ρ)

Σ
. (0.8)

Making a careful (not quite standard) analysis of the resolvent of ∆, one obtains
the more precise result

(2C(ρ, ν))−1fρ,ν =

(
∆− 1− ν2

4

)−1

ds
(ρ)

Σ
if Re ν < 0, (0.9)

which makes a clear distinction between fρ,ν and fρ,−ν possible. It is just as well to
give, in place of the Roelcke-Selberg expansion of fρ,ν , that of the one-dimensional

automorphic object ds
(ρ)

Σ
, which is of course to be regarded in some appropriate

weak sense,

ds
(ρ)

Σ
=

1

2

(
E 1+ρ

2
+ E 3−ρ

2

)
+

1

16π

∫ ∞
−∞

ζ∗(ρ−iλ2 )ζ∗(ρ+iλ2 )

ζ∗(1 + iλ)
E 1−iλ

2
dλ

+
1

4

∑
p,j even

L∗(
ρ

2
,Mp,j)Mp,j : (0.10)

the functions Mp,j are Hecke eigenforms (only the ones invariant under the sym-
metry z 7→ −z̄ are to be considered here) and, again, the “full L-series” L∗(s,M)
is the L-series L(s,M) completed by the Archimedean factor (a product of two
Gamma functions) which makes its functional equation simple. In view of Dun-

ford’s integral formula, one may also consider the images of the measure ds
(ρ)

Σ
under

all operators of the kindH
(

2
√

∆− 1
4

)
where we assume thatH = H(µ) is an even

holomorphic function in some strip |Imµ| < β0, such that
∫

Imµ=β
|µ|2|H(µ)|2dµ <

∞ for every β with |β| < β0. The spectral density of every automorphic function
so defined is a C∞ function of λ: within any appropriate subspace of L2(Γ\Π)
making this extra condition valid, let us consider the closure Sρ of the linear space

of all functions H
(

2
√

∆− 1
4

)
ds

(ρ)

Σ
. It is clear that from the knowledge of Sρ, one

can determine whether Re ρ = 1 or not and, if such is the case, the value of ρ.
However, whether Sρ is independent of ρ when Re ρ 6= 1 cannot be answered at
present: the continuous part (relative to the spectral decomposition of the mod-
ular Laplacian) of this space is so if and only if the Riemann hypothesis is true
for zeta, while the discrete part is independent of ρ if and only if the Riemann
hypothesis is true for all L-functions attached to cusp-forms of even type (relative
to the symmetry z 7→ −z), and all eigenvalues of the even part of ∆ are simple.
Needless to say, even though (0.10) gives some interpretation of the zeros of zeta
lying on any given parallel to the critical line, we do not believe that this indicates
any possible line of attack on any of these deep conjectures.
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At the end of Section 4.7, we raise questions regarding possible generalizations
of the function fρ,ν , as one would come to when replacing Σ by another set of lines,
and refer to links, tenuous or strong, with previous work on quadratic extensions
of the rationals, by Hejhal [16], Zagier[69] and ourselves [60, Sec. 19–20].

Automorphic distribution theory is again crucial in Chapter 5, another cen-
tral chapter of the book. Let us denote as Eν “the” automorphic distribution which
is the analogue of the Eisenstein series E 1−ν

2
, and as Mp,j “the” analogue, in the

same spirit, of the Maass-Hecke form Mp,j . Actually, as already mentioned, au-
tomorphic distribution theory (on R2) is more precise than automorphic function
theory in the upper half-plane (this is why an automorphic distribution is charac-
terized by a pair of automorphic functions) and, as will be seen in Section 3.2, there
are two modular distributions, one the image of the other under the symplectic
Fourier transformation, corresponding to just one non-holomorphic modular form.
Given any pair h, f of functions lying in the image of Seven(R2) under the operator
2iπE(1 + 2iπE), the series

〈P, h⊗ f〉 =
∑
g∈Γ

∫
R2

(h ◦ g)(x, ξ)f(x, ξ)dxdξ (0.11)

is convergent. The main result of Chapter 5 is the identity

〈P, h̄⊗ h〉 =
1

2π

∫ ∞
−∞
|〈Eiλ, h〉|2|ζ(iλ)|−2dλ+ 2

∑
p 6=0

∑
j

∣∣Γ( iλp
2

)∣∣2∣∣〈Mp,j , h〉
∣∣2 :

(0.12)
note that it is not a priori obvious, from its definition, that the left-hand side
is non-negative. The proof of this identity is quite delicate: besides automorphic
distribution theory, it relies on the theory of series of Kloosterman sums, especially
the version, based on the automorphic Green’s operator for the modular Laplacian,
as developed by Iwaniec [21].

Another part of the book (Chapter 6) deals with arithmetic questions in-
volved in connection with the totally radial Weyl calculus. A comparison with
automorphic pseudo-differential analysis, in which non-holomorphic modular form
theory enters the structure of the symbols under study, may clarify things at this
point: here, arithmetic enters, instead, the functions, or rather discretely supported
measures, operators are applied to; besides, it is an extension of holomorphic mod-
ular form theory that is now relevant. For the main part, Chapter 6 consists in a
quotation of arithmetic results from a recent book [63] of ours: but the symbolic
calculus, or quantization process (called the “soft” calculus), which has to be used
is introduced here in a quite natural way, while in the quoted work it appeared as
a branch in a forest of assorted symbolic calculi, in which the reader had probably
no desire to venture. From an arithmetic point of view, the main features of this
chapter consist in a necessary extension of the Rankin-Selberg unfolding method,
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and in an application of puzzling results of Shimura [46] and Iwaniec [22], involving
the critical zeros of zeta, to operator theory.

The last part of the book (Chapter 7), still in a quite underdeveloped stage,
raises the question whether pseudo-differential analysis should be generalized to
an adelic setting: what we have in mind, here, is a pseudo-differential analysis
of operators acting on complex-valued functions on adeles. Our main point, in
this direction, is the following. Starting from a certain problem in automorphic
distribution theory, one is led to asking for a version of pseudo-differential analysis
in which Planck’s constant would depend on the prime p under consideration. This
is not possible while staying within Archimedean analysis: at this point, calling
for an adelic substitute seems to be required.

Let us stress that we certainly do not consider the present chapter (half
of which deals with Archimedean analysis anyway) as an introduction to adelic
pseudo-differential analysis: this, on the number-theoretic side of the question,
would require another author. We have been satisfied, here, with recalling some
concepts of p-adic analysis, and making a few calculations, in this context, specif-
ically related to the problem in automorphic distribution theory we started with.
Even though the modification demanded, for each p, by the change of Planck’s
constant, has been addressed, it is unclear, to us, how the various p-adic pseudo-
differential analyses so defined should be pieced together: the usual restricted direct
product machinery does not seem to provide the right answer. On the other hand,
which may be some justification for this chapter or so we hope, the Archimedean
developments which precede in this book — the Weyl calculus, the Radon trans-
formation, elements of representation theory — may be helpful in providing some
guidelines for a future possible adelic theory: but one should certainly not limit
oneself to adeles of the field Q, and one reason not to do so has been indicated in
Remark 7.2.b.(iv).

The chapter starts with the construction of a certain automorphic distribu-
tion (in the Archimedean sense) T∞ − GM∞, where T∞ and M∞ have a purely
arithmetic character in that their definition involves series with arithmetic coeffi-
cients but no analytic factor such as a Gamma function: the essential property of
this distribution is that it coincides with a certain series of Eisenstein distributions
E−µ and, possibly, some of their d

dµ -derivatives, taken over the set of non-trivial
zeros µ of zeta. If one agrees with the point of view regarding pseudo-differential
analysis expounded in the very beginning of this introduction, one is led to the
conviction that part of the deeper structure of the automorphic distribution T∞
may be hidden in that of the operator of which it is a symbol. While the operator
with symbol GM∞ can be perfectly understood in a classical distribution setting
(7.1.40), and turns out to have an interesting structure, truly understanding the
operator Op (T∞) seems to be a quite difficult task. The distribution T∞ is the
limit, as the integer N goes to ∞ while absorbing all primes, of a sequence (TN )
with the following property. If not the operator with symbol TN , that with the



Introduction 11

rescaled symbol N iπETN has a completely clear structure: it is a finite-rank opera-
tor from S(R) to S ′(R) associated to a finite family, depending on N , of discretely
supported measures dρ on the line (here, ρ ∈ (Z/NZ)× has nothing to do with the
number ρ from Chapters 1 and 2), with interesting properties. As a consequence of
this, the first component f0 of the Θ-transform (cf. supra) of TN can be expressed
as a nice sum of squares with, however, one crucial minus sign (Theorem 7.2.1).

The necessity to rescale the symbol TN with the help of the operation N iπE

prevents one from finding a good interpretation of the operator with such a sym-
bol, even more so of the operator with symbol T∞. This takes us to the question
we started the current discussion with, of making Planck’s constant depend on
p. The adelic point of view, even when insufficiently developed, might have good
heuristic value in the search for fundamentally new useful Hilbert space structures
on appropriate spaces of automorphic distributions: this may, or not, help under-
standing the automorphic distribution, a series of Eisenstein distributions, which
was the starting point of this last chapter.

We dedicate this book to the memory of Paul Malliavin. It is thanks to
him that, almost half a century ago, we had our first contact both with singular
integral operators (which were soon to become pseudo-differential operators) and
with (holomorphic) modular form theory. We have never ceased, in the intervening
decades, marveling at his mathematical accomplishments.



Chapter 1

The Weyl calculus

We start with a description of the basic features of the Weyl pseudo-differential
analysis, to be used throughout the book: the emphasis is on group-theoretic
properties, which is what is needed in the sequel. In the first section of the chapter,
we shall show in which way the analysis of operators from the Weyl calculus by
means of their diagonal matrix elements against appropriate families, parametrized
by points of the hyperbolic half-plane Π, of functions of Gaussian type, establishes
a link between function theory on the plane and on the hyperbolic half-plane. This
Θ-transformation will appear in most parts of the book. Later, in Chapter 3, it will
specialize as a correspondence from automorphic distribution theory in the plane
to automorphic function theory in Π. In Section 1.2, we discuss two quite different
composition formulas, meaning by this two analyses of the (partially defined)
bilinear map # such that the composition Op(h1)Op(h2) of the operators with
symbols h1 and h2 should agree with the operator Op(h1#h2): most practitioners
of pseudo-differential analysis will only be familiar with the first one. In Section
1.3, we derive from a restriction of the n-dimensional Weyl calculus an efficient
symbolic calculus of totally radial operators in Rn: remarkably, this demands that
the appropriate species of symbols should live, again, on Π.

1.1 An introduction to the usual Weyl calculus

A symbolic calculus of operators is a linear one-to-one way of associating operators,
say on L2(Rn), to functions of 2n variables: with the exception of the totally radial
calculus, we shall be mostly concerned, in this book, with the one-dimensional case.
One of the best-known ways of doing this, that which consists in associating with
an operator its integral kernel, fails on two major accounts. The first one has to
do with the fact that, under such a correspondence, the composition of operators
has nothing to do whatever, even on an approximate level, with the pointwise
multiplication of integral kernels; the second one is that this correspondence does

     A. Unterberger, Pseudodifferential Analysis, Automorphic Distributions in the Plane and Modular Forms,
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not benefit from a large group of visible symmetries, in a sense to be made clear
shortly.

The function h on R2n associated to some operator A under a given sym-
bolic calculus is called the symbol of A while, in the reverse direction, one gen-
erally writes A = Op(h). Since operators on L2(Rn) very seldom commute, the
composition of operators can never correspond, under any symbolic calculus, to
the pointwise multiplication of functions, which is a commutative operation. Still,
considering for instance two differential operators A1 and A2 of orders m1 and
m2 respectively, the top-order part of A1A2, which can be defined as the equiva-
lence class of the product when differential operators of order ≤ m1 +m2 − 1 are
neglected, is the same as the top-order part of A2A1. Pseudo-differential analysis
was developed, towards the needs of partial differential equations, as a symbolic
calculus (several possibilities have been considered), in which the two bilinear oper-
ations under consideration, to wit the composition of operators and the pointwise
multiplication of symbols, would roughly correspond to each other, modulo error
terms of “lower order”. We shall not, here, approach this domain of applications,
in which hundreds of papers and a few major books [56, 53, 30, 19, 47, 35] have
been written. So as to prevent misunderstanding, let us make it clear, however,
that PDE people are certainly not interested in symbolic calculi of differential
operators: the point is that good symbolic calculi (e.g. Weyl’s) make it possible
to construct auxiliary operators needed for the solution of PDE problems; the
simplest instance concerns the construction of parametrices, i.e., approximate in-
verses, of elliptic operators.

Possibly the most obvious pair of non-commuting bounded operators on
L2(R) is the pair τy,0, τ0,η, defined by the equations

(τy,0u)(x) = u(x− y) and (τ0,ηu)(x) = u(x)e2iπηx. (1.1.1)

One can combine these two operations into an operation τy,η (almost a product
of the two): coming back to the n-dimensional case, we assume that y and η lie in
Rn and set

(τy,ηu)(x) = u(x− y)e2iπ<x− y2 ,η>. (1.1.2)

If one introduces an extra real parameter t, one notes the identity

1

2iπ

d

dt
(τty,tηu) (x)

=

[
− 1

2iπ

∑
yju
′
j(x− ty) + 〈x− ty, η〉u(x− ty)

]
e2iπ〈x− ty2 ,tη〉

=

(∑
ηjxj −

1

2iπ
yk

∂

∂xk

)
(τty,tηu) (x). (1.1.3)

It is thus natural to think of the operator τty,tη as being the exponen-
tial exp(2iπtD), where D is the differential operator (on functions of x) D =∑(

ηjxj − 1
2iπyk

∂
∂xk

)
. Setting
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(Qju)(x) = xju(x), (Pju)(x) =
1

2iπ

∂u

∂xj
, (1.1.4)

we shall write, assuming without loss of generality that t = 1,

τy,η = exp(2iπ(〈η,Q〉 − 〈y, P 〉)). (1.1.5)

To give this equation a more than formal meaning, we must refer to Stone’s theo-
rem on one-parameter groups of unitary operators, to be found in many places, for
instance [42]. On many occasions, we shall be dealing with explicit one-parameter
groups (Ut)t∈R of unitary operators in some Hilbert space H, and we shall only
need the easy part of Stone’s theorem, to wit that such a group has a well-defined
self-adjoint generator

D =
1

2iπ

d

dt

∣∣∣∣
t=0

Ut : (1.1.6)

recall that the operator D is not, generally, a bounded operator in H, and that
the notion of self-adjoint operator has a precise meaning, which demands defining
its domain; in this case, it is just the set of vectors u in H such that t−1(Utu− u)
has a limit in H as t→ 0.

Given two pairs (y, η) and (y′, η′), one has the formula, of immediate verifi-
cation,

τy,ητy′,η′ = eiπ[(y,η),(y′,η′)]τy+y′,η+η′ (1.1.7)

if one introduces the symplectic form [, ] on Rn×Rn, by definition the (alternate)
bilinear form such that

[(y, η), (y′, η′)] = −〈y, η′〉+ 〈y′, η〉. (1.1.8)

We assume that the reader is familiar with the basic language of representation
theory. From (1.1.7), it is easy to define with the help of the symplectic form a
group structure on the set-theoretic product Rn × Rn × R, then a unitary repre-
sentation π of the group obtained in H = L2(Rn), such that π(y, η; 0) = τyη. The
group and representation so defined are called the Heisenberg group and Heisen-
berg representation. Alternatively, one can weaken the notion of representation to
that of projective representation, which consists, given a topological group G and
a Hilbert space H, in defining, for every g ∈ G, the operator π(g) only up to mul-
tiplication by an indeterminate constant ω(g) ∈ C of absolute value 1 (such an in-
determinate factor will be called, generally, a phase factor), weakening of necessity
the basic property of a representation to the relation π(g)π(g′) = ω(g, g′)π(gg′).
Then, (1.1.7) shows that the map (y, η) 7→ τy,η is a projective representation of
the additive group Rn × Rn in L2(Rn).

Of course, all concepts or proofs based on infinitesimal elements will disap-
pear from the more arithmetic parts of the book, in particular the sections devoted
to extending the Weyl calculus to a p-adic setting. Coming back to our present
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environment, the symplectic form on Rn × Rn gives rise to the symplectic group
Sp(n,R), by definition the group of linear automorphisms g of Rn×Rn preserving
the symplectic form: this means, given any two vectors Y = (y, η) and Y ′ = (y′, η′),
that one has the identity

[gY, gY ] = [Y, Y ′]. (1.1.9)

When n = 1 (the case that will occur most frequently here), the symplectic group
coincides with SL(2,R). There is a notion of symplectic Fourier transformation
F symp on L2(Rn × Rn) (no such notion exists on odd-dimensional spaces, and in
the one-dimensional case F will denote the usual Fourier transform, normalized
in the way comparable to (1.1.11) below), defined by the equation

(F symph)(y, η) =

∫
Rn×Rn

h(x, ξ)e2iπ(〈y,ξ〉−〈x,η〉)dxdξ : (1.1.10)

it may look not very different from the usual Euclidean Fourier transformation

(Feuch)(y, η) =

∫
Rn×Rn

h(x, ξ)e−2iπ(〈x,y〉+〈ξ,η〉)dxdξ, (1.1.11)

but it has the fundamental property (the verification of which is trivial) that it
commutes with all transformations h 7→ h ◦ g−1 with g ∈ Sp(n,R), whereas the
Euclidean Fourier transformation commutes with such transformations for g in
the orthogonal group of R2n: these two groups cannot be compared generally, but
when n = 1, the group SO(2) is a proper subgroup of SL(2,R). Since (Feuc)2 is
the operator which transforms a symbol h into the symbol (x, ξ) 7→ h(−x,−ξ),
the symplectic Fourier transformation is an involution, i.e., (F symp)2 = I.

One of several (equivalent) ways of introducing the Weyl calculus Op is based
on this property, and leads to the definition

Op(h) =

∫
Rn×Rn

(F symph)(y, η) exp (2iπ(〈η,Q〉 − 〈y, P 〉)) dydη (1.1.12)

if h ∈ S(Rn × Rn), the Schwartz space of C∞ functions on R2n rapidly decreas-
ing at infinity: in this way, it is immediate that, for any function h̃ ∈ S(R2n),
the operator with symbol (x, ξ) 7→

∫
h̃(y, η)e2iπ(〈η,x〉−〈y,ξ〉)dydη is the operator∫

h̃(y, η) exp (2iπ(〈η,Q〉 − 〈y, P 〉)) dydη. Thus, in one sense, the Weyl symbolic cal-
culus is the correspondence obtained when substituting the pair of (vector-valued)
operators (Q,P ) to the pair of Rn-valued functions (x, ξ): but this (which could
not make sense for arbitrary functions of (x, ξ) for reasons of non-commutativity)
is only true after the symbol has been expanded as a superposition of exponentials
with linear exponents.

From (1.1.5) and (1.1.2), the integral kernel of the operator exp(2iπ(〈η,Q〉−
〈y, P 〉)) is the function (x1, y1) 7→ δ(y1−x1 +y)e2iπ〈x1− y2 ,η〉, from which it follows
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that the integral kernel k of the operator Op(h) is the function

k(x, y) =
(
F−1

2 h
)(x+ y

2
, x− y

)
, (1.1.13)

where F−1
2 h denotes the inverse Fourier transform of h with respect to the sec-

ond variable in Rn, i.e., the function defined by the equation (F−1
2 h)(x, z) =∫

h(x, ξ)e2iπ〈z,ξ〉dξ. From this equation, it follows that, just as the map which as-
sociates an operator to its integral kernel, the map Op extends as an isometry from
L2(R2n) onto the Hilbert space of all Hilbert-Schmidt endomorphisms of L2(Rn).
Equation (1.1.13) leads to the more traditional way of defining the Weyl calculus,
by means of the equation

(Op(h)u) (x) =

∫
Rn×Rn

h

(
x+ y

2
, η

)
e2iπ〈x−y,η〉u(y)dydη. (1.1.14)

We now come to the all-important concept of Wigner function. Given a pair
(u, v) of functions in L2(Rn), their Wigner function W (v, u) is the function on
Rn × Rn which makes the identity

(v|Op(h)u) =

∫
Rn×Rn

h(x, ξ)W (v, u)(x, ξ)dxdξ (1.1.15)

valid for every symbol h ∈ L2(R2n): note that we define the scalar product (|) on
L2(Rn) by the equation

(v|u) =

∫
Rn
v̄(x)u(x)dx, (1.1.16)

as an object antilinear with respect to the variable on the left side. The function
W (v, u) can be obtained for instance by a computation of the transpose of the
map h 7→ k in (1.1.13), applying the result to the function u⊗ v̄: we obtain

W (v, u)(x, ξ) = 2n
∫
Rn
v̄(x+ t)u(x− t)e4iπ〈t,ξ〉dt. (1.1.17)

It is immediate, with the help of an integration by parts in order to treat extra
powers of ξ, that this function lies in S(Rn × Rn) if both u and v lie in S(Rn).
A consequence, using (1.1.15), is that the operator Op(h) still makes sense as a
linear operator from S(Rn) to its dual space S ′(Rn) as soon as h ∈ S ′(R2n). On
the other hand, if h ∈ S(R2n), the operator Op(h) extends as a linear operator
from the whole of S ′(Rn) to S(Rn): the simplest way to see this is to observe
that, in view of (1.1.13), the integral kernel of Op(h) also lies in S(R2n) in this
case. Spaces resembling the spaces S or S ′, on the line or on R2, will play an
important role everywhere: the consideration of singular species of symbols, or the
application of operators with smooth symbols to rather general measures on the
line, is essential in applications of pseudo-differential analysis to arithmetic.
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The Wigner function has another, dual, role: given φ, ψ in L2(Rn), the Wigner
function W (ψ, φ) is the Weyl symbol of the rank-one operator u 7→ (ψ|u)φ. This
could be seen immediately from (1.1.13), since the integral kernel of the operator
under consideration is the function k(x, y) = ψ̄(y)φ(x). However, we prefer, since
this is a general phenomenon, to remark that the fact that the same concept
of Wigner function plays the two roles under consideration is a consequence of
the isometry property (from L2(R2n) to the space of Hilbert-Schmidt operators)
of the Weyl calculus: it suffices indeed to apply to two rank-one operators Aj =
Op(hj) the polarized version Tr(A∗1A2) =

∫
R2n h̄1(x, ξ)h2(x, ξ)dxdξ of the isometry

property of the calculus, concluding with the help of the fact that a total subspace
of the space of Hilbert-Schmidt operators consists of all rank-one operators.

The Weyl symbolic calculus benefits from two species of symmetries, or more
precisely covariance properties. The first one is expressed in the formula

τy,ηOp(h)τ−1
y,η = Op((x, ξ) 7→ h(x− y, ξ − η)), (y, η) ∈ Rn × Rn : (1.1.18)

it is valid whenever h ∈ S ′(R2n), after it has been observed, of course, that the
operators τy,η preserve both the space S(Rn) and the space S ′(Rn). The proof is
immediate, with the help of (1.1.14) and (1.1.7), together with (1.1.5).

This formula is of constant use, even though, for applications to modular
form theory, the second covariance property, associated to the metaplectic rep-
resentation, is more fundamental. This representation, defined in full generality
(including the p-adic and adelic situations) in [66], is in the present Archimedean
environment a genuine (as opposed to projective only) unitary representation Met
in L2(Rn) of the metaplectic group, by definition the twofold cover of Sp(n,R) (a
connected group, the fundamental group of which is Z). It is linked (loc.cit.) to
the Heisenberg representation by the formula

Met(g̃) exp(2iπ(〈η,Q〉 − 〈y, P 〉))Met(g̃)−1 = exp(2iπ(〈η′, Q〉 − 〈y′, P 〉)), (1.1.19)

in which g̃ is an arbitrary element of the metaplectic group, the canonical image

of which in Sp(n,R) is g (one then says that g̃ lies above g), and the vectors
(
y′

η′

)
and ( yη ) are linked by the relation

(
y′

η′

)
= g ( yη ). Using this equation together

with the definition (1.1.14) of the operator Op(h), it is immediate that one has,
for every h ∈ S ′(R2n), the covariance formula

Met(g̃)Op(h)Met(g̃)−1) = Op(h ◦ g−1) : (1.1.20)

the symbol h ◦ g−1 is of course the one obtained from h after one has applied it
the linear change of coordinates on R2n associated with g−1. Again, the left-hand
side of (1.1.20) only makes sense after it has been observed, as was done in [66],
that operators in the image of the metaplectic representation preserve the space
S(Rn) and extend as automorphisms of the dual space S ′(Rn).
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For our present purposes, it will be sufficient to make the metaplectic repre-
sentation explicit up to an indeterminacy factor ±1 (in particular, this will make
it well-defined as a projective representation): it then becomes possible to regard
it as defined on the group Sp(n,R), rather than on the twofold cover of that
group. In this sense, one can list the unitary transformations Met(g) for g lying in
an appropriate set of generators of Sp(n,R), as follows: (i) if g =

(
A 0
0 A′−1

)
with

A ∈ GL+(n,R) and A′ denoting the transpose of A, Met(g) is (plus or minus) the

transform u 7→ v with v(x) = (detA)−
1
2u(A−1x); (ii) if g = ( I 0

C I ), where C is a
symmetric (n× n)-matrix, the same holds with v(x) = u(x)eiπ〈Cx,x〉; (iii) finally,

if g =
(

0 I
−I 0

)
, the same holds with v = e−

iπn
4 Feuc.

Note that the covariance equation (1.1.20) makes sense even if Met(g̃) is
only defined up to an arbitrary phase factor. From its (almost) explicit definition
on generators, the metaplectic representation is not irreducible, but acts within
L2

even(Rn) and L2
odd(Rn) separately: the two terms can then be shown to be acted

upon in an irreducible way. This puts forward the role of the involution ch on
S ′(Rn) such that

(chu)(x) = ǔ(x) = u(−x), x ∈ Rn, (1.1.21)

and of the two operations on symbols which correspond to composing an operator
on both sides, or on one side only, with the operator ch. The first identity, to wit

ch Op(h)ch = Op((x, ξ) 7→ h(−x,−ξ)), (1.1.22)

though trivial to verify in a direct way, can also be regarded as a consequence
of item (iii) in the presentation above of the metaplectic representation: using

the relation (Feuc)
2

= ch, so that the operator ±e− iπn2 ch is an element of the

metaplectic representation lying above the matrix
(

0 1
−1 0

)2
=
(−1 0

0 −1

)
, one can

derive (1.1.22) from (1.1.20). This equation implies, in particular, that only even
symbols must be used if one is interested only in operators on S(Rn) preserving
the parity of functions. The second identity, not a covariance equation, demands
that we should compute the operation G on symbols making the identity

Op(h)ch = Op(Gh), (1.1.23)

or Op(Gh)u = Op(h)ǔ, valid. It is of course easy to make this computation, for
instance by using the link (1.1.13) between the Weyl symbol h and the integral
kernel k of the same operator, together with the fact that if k is the integral kernel
of an operator A, that of A ch is the function (x, y) 7→ k(x,−y). One obtains the
formula, valid in any dimension,

(Gh)(x, ξ) = 2n
∫
R2n

h(y, η)e4iπ(〈x,η〉−〈y,ξ〉)dydη. (1.1.24)

Note that G is just a rescaled version (by a factor 2) of the symplectic Fourier
transformation (1.1.10): when we have defined the Euler operator 2iπE (1.1.39),
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we can connect the two transformations by the equation G = 22iπEF symp (cf.
(7.1.1)). The operator G and its p-adic variants will play an important role in
applications of pseudo-differential analysis to number theory. In particular, we
shall often use the fact that the symbol of the operator u 7→ ǔ is 2−nδ, where δ is
the unit mass at 0 ∈ R2n.

One can break the space of operators in L2(Rn) into four parts (even-even,
even-odd, odd-even and odd-odd), a self-explaining notion after we have made it
clear that even-odd operators, for instance, are those which send even functions to
odd ones and kill odd functions. The corresponding symbols are characterized as
those being even and G-invariant, odd and G-invariant, odd and G-anti-invariant,
finally even and G-anti-invariant. A remark pertinent to quantization theory as
well as to applications of pseudo-differential analysis to modular form theory is
that the Weyl calculus has a much nicer behaviour than any of its four parts. For
instance, the Weyl symbol of an operator on the line as simple as the multiplication
by x2 is just, as will be seen shortly, the function h(x, ξ) = x2, while that of the
even-even part of this operator is the complicated distribution

1

2
(h+ Gh)(x, ξ) =

1

2
[x2 − 1

16π2
δ(x)δ′′(ξ)]. (1.1.25)

Facing this situation will have consequences throughout the book: in partic-
ular, it will explain why, from a certain point of view, it is better to let symbols
live on the homogeneous space G/N ∼ R2\{0} of G = SL(2,R) (with N = {( 1 b

0 1 ),
b ∈ R}) than on the space G/K (with K = {

(
cos θ sin θ
− sin θ cos θ

)
, θmod 2π}), a model of

which is the hyperbolic half-space, or Poincaré half-space Π = {z ∈ C : Im z > 0}.
It will also explain why dealing with appropriate pairs of non-holomorphic mod-
ular forms, rather than individual ones, in a way connected to the Lax-Phillips
scattering theory for the automorphic wave equation [34], has important advan-
tages.

Specializing from now on in this section in the one-dimensional case, let us
explain our last comment, relying for this on the notion of family of coherent
states. Forgetting the reason, having to do with Physics, which gave this notion
its name, we only retain the representation-theoretic part of it: given a topological
group G and a unitary representation π of G in some Hilbert space H, a related
family of coherent states will be just a family of elements of H making up a total
subset, permuted with one another, up to phase factors, under any operator π(g),
g ∈ G.

In order to build useful families of coherent states for each of the two irre-
ducible parts of the metaplectic representation, we start — number theorists will
remember at this point the usual Poincaré construction of modular forms — from
a function already invariant, up to phase factors, under all operators Met(g̃) for g̃
above any element of some “large” subgroup of SL(2,R), in the present case the
subgroup K = SO(2). We first show that the pair of (normalized) functions

φ0
i (x) = 2

1
4 e−πx

2

, φ1
i (x) = 2

3
4π

1
2xe−πx

2

(1.1.26)
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satisfies the required invariance property (note that the superscript 0 or 1 refers
to parity, and that, as will be apparent when generalized later, the subscript i de-
notes the base-point of Π). This demands considering the all-important harmonic
oscillator

L = π(Q2 + P 2) = πx2 − 1

4π

d2

dx2
. (1.1.27)

This operator is consistently treated in elementary Physics textbooks, with the
help of the so-called creation and annihilation operators: we shall not give re-
minders here, and a full set of eigenfunctions of L will only be needed in Section
7.2. Let us just recall that L has a purely discrete spectrum without multiplicity,
which implies that its full spectral resolution is caught in the list of its square-
integrable eigenfunctions: the spectrum is the set 1

2 + N = { 1
2 ,

3
2 , . . . }, and the

eigenfunctions corresponding to the two lowest eigenvalues 1
2 and 3

2 are the func-
tions φ0

i and φ1
i . One does not even need Stone’s theorem in order to define the

unitary group t 7→ exp(−itL): one has in particular

exp(−itL)φ0
i = e−

it
2 φ0

i , exp(−itL)φ1
i = e−

3it
2 φ1

i . (1.1.28)

Now, it was found by Mehler (the complete reference seems, unfortunately, to have
disappeared from the contemporary literature; we shall give, in a moment, a proof
of the formula based on the Weyl calculus) that the operator exp(−itL) has, for
0 < t < π, an explicit integral kernel kt, given as

kt(x, y) = e−
iπ
4 (sin t)−

1
2 exp

(
iπ

sin t
[(x2 + y2) cos t− 2xy]

)
: (1.1.29)

looking at kπ
2

, one obtains the equation exp(− iπ2 L) = e−
iπ
4 F , from which the

way to extend the map t 7→ kt as a group homomorphism follows. Using the
list of metaplectic unitaries given between (1.1.20) and (1.1.21), one sees after
a change of variable y 7→ y sin t that the operator with integral kernel (x, y) 7→
e−

iπ
4 (sin t)−

1
2 exp

(
− 2iπxy

sin t

)
is one of the two metaplectic operators (one the nega-

tive of the other) lying above the matrix
(

0 1
−1 0

) ( 1
sin t 0
0 sin t

)
=
(

0 sin t
− 1

sin t 0

)
; using

again the case (ii) of the same list, one obtains that the operator exp(−itL) is
(up to multiplication by ±1 again) a metaplectic operator lying above the matrix(

1 0
1

tan t 1

)(
0 sin t

− 1
sin t 0

)(
1 0
1

tan t 1

)
=
(

cos t sin t
− sin t cos t

)
. Since such a family of matrices,

taken for 0 < t < π, generates the group K = SO(2), it follows that the functions
φ0
i and φ1

i are indeed invariant, up to phase factors, under all metaplectic unitary
transformations above SO(2).

We have considered, on several occasions, the linear action ( xξ ) 7→ g ( xξ ) of
g ∈ SL(2,R) on R2: we consider now the action of g =

(
a b
c d

)
on Π, to be denoted

as z 7→ g.z, by means of fractional-linear transformations, defined in the usual
way as z 7→ az+b

cz+d . It follows from what precedes that, up to multiplication by

phase factors, the function Met(g̃)φji (with j = 0, 1) only depends, if g̃ lies above
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g ∈ SL(2,R), on the class gK: as is well-known and immediate, the knowledge
of this class is equivalent to that of the point z = g.i. To make the computation
simple, we choose g =

(
a 0
c a−1

)
), with a > 0, if z = ai

ci+a−1 , in other words if

−z−1 = a−2i − ca−1: then, the list of metaplectic unitaries between (1.1.20) and
(1.1.21) gives

(Met(g̃)φji )(x) = 2
iπcx2

a a−
1
2φji (a

−1x), (1.1.30)

hence

(Met(g̃)φ0
i )(x) = a−

1
2 e

iπcx2

a φ0
i (a
−1x)

= 2
1
4

(
Im (−z−1)

) 1
4 exp

iπx2

z̄
. (1.1.31)

Doing the same, starting this time from the function φ1
i , we are led to introducing

the pair of functions which occur in the following theorem.

Theorem 1.1.1. Given z ∈ Π, set

φ0
z(x) = 2

1
4

(
Im (−z−1)

) 1
4 exp

iπx2

z̄
,

φ1
z(x) = 2

3
4π

1
2

(
Im (−z−1)

) 3
4 x exp

iπx2

z̄
. (1.1.32)

Given g =
(
a b
c d

)
∈ SL(2,R) and any g̃ lying above g in the metaplectic group, one

has for some phase factors ω0, ω1 depending on z, g the equations

Met(g̃)φ0
z = ω0φ

0
az+b
cz+d

, Met(g̃)φ1
z = ω1φ

1
az+b
cz+d

. (1.1.33)

The set {φ0
z : z ∈ Π} (resp. {φ1

z : z ∈ Π}) is total in L2
even(R) (resp. L2

odd(R)). Any
even distribution h ∈ S ′(R2) is characterized by the pair of functions

f0(z) = (φ0
z|Op(h)φ0

z), f1(z) = (φ1
z|Op(h)φ1

z) : (1.1.34)

the pair (f0, f1) will be called the Θ-transform of h.

Proof. Equations (1.1.33) follow from the definition of φjz as the image of φji under
Met(g̃) for some g̃ with g.i = z. The density claims are then a consequence of
Schur’s lemma and of the irreducibility of the two components of the representation
Met. Actually, for the odd case only, one has a more precise result, to wit the
formula, the proof of which is straightforward (a simplification will occur from the
measure-preserving change z 7→ −z−1 on the left-hand side)

(8π)−1

∫
Π

|(φ1
z|u)|2dm(z) = ‖u‖2, u ∈ L2

odd(R), (1.1.35)

in which dm(z) = (Im z)−2 dRe z dIm z is the usual measure on Π invariant under
all transformations z 7→ g.z. Approximating functions in S(R) with the appropri-
ate parity by linear combinations of functions φjz with j = 0, 1 and z ∈ Π, one sees,


