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Preface

This book began about 23 years ago, when one of the authors encountered a
formula in a PRA procedure for estimating a probability of failure on demand, p.
The formula was not the obvious ratio of number of failures to number of
demands; instead it looked like this:

~p ¼ xþ 0:5
nþ 1

Upon consulting more senior colleagues, he was told that this formula was the
result of ‘‘performing a Bayesian update of a noninformative prior.’’ Due to the
author’s ignorance of Bayesian inference, this statement was itself quite
noninformative.

And so began what has become a career-long interest in all things Bayesian.
Both authors have indulged in much self-study over the years, along with a few
graduate courses in Bayesian statistics, where they could be found. Along the way,
we have developed training courses in Bayesian parameter estimation for the U.S.
Nuclear Regulatory Commission and the National Aeronautics and Space
Administration, and we continue to teach the descendants of these courses today.
We have also developed and presented workshops in Bayesian inference for aging
models, and written a number of journal articles and conference papers on the
subject of Bayesian inference, all from the perspective of practicing risk analysts.

After having developed a Bayesian inference guidebook for NASA, a guide-
book on Bayesian inference for time-dependent problems for the European
Commission, and an update of a paper on Bayesian parameter estimation written in
the 1990s, we were approached by Springer with the idea of writing a textbook.
There is an ever-increasing number of Bayesian inference texts on the market, due
in large part to the growth in computing power and the accompanying populari-
zation of the Markov Chain Monte Carlo (MCMC) techniques we employ herein.
Many, if not most of these texts are written at the level of an advanced under-
graduate or beginning statistics graduate student. In other words, the available
references are generally beyond the level of the typical risk analyst in the field,
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who is most often an engineer, and who may have had at most a course or two in
probability and statistics along the way, typically from a frequentist perspective.

Having struggled without success to find a suitable text for our courses over the
years, we wanted to write a text that would be accessible to a majority of prac-
ticing risk analysts. We wanted to employ the modern technique of MCMC, which
can handle a wide range of what were once intractable problems. Having followed
the development of BUGS since its inception in the 1990s, we decided to write the
text around this software. There are other choices of software for this type of
analysis, many of which are also free and open-source. JAGS (Just Another
Gibbs Sampler) is one whose syntax is very similar to that of BUGS. The
R software package has a number of MCMC routines available, as well as
packages that interface with BUGS and JAGS, allowing them to be run in ‘‘batch
mode.’’ R also has packages for processing the output of BUGS and JAGS,
including convergence diagnostics and graphics. The Python language has PyMC,
which is the focus of much advanced development efforts these days. We
encourage the interested reader to explore these software packages, along with
others that will come along in the future.

BUGS has evolved into OpenBUGS, and most of the examples in this text were
solved using OpenBUGS 3.1.2. At the time this text went to press, Ver. 3.2.1 was
released. This version has significant enhancements not covered in this text, most
notably ReliaBUGS, which includes a variety of specialized distributions used in
advanced reliability analysis. It’s probably time to begin work on a second edition!

We hope to remove some of the mystery that seems to surround formulas like
the one above, and to make plain often-heard incantations such as ‘‘Bayesian
update of a noninformative prior.’’ For after all, Bayesian inference is, we feel,
much more straightforward than its frequentist alternative, especially in the
interpretation of its results. There is one formula, Bayes’ Theorem, which
underlies all that is done, and understanding the component parts of this theorem is
the key to just about everything else, including the specialized jargon that has
accumulated in Bayesian inference, as in every other field in science and
engineering.

We begin the text in Chapters 1 and 2 with the motivation for using Bayesian
inference in risk assessment, and provide a general overview before moving into
the most commonly encountered risk assessment problems in Chapter 3, those
involving a single parameter in an aleatory model.

Chapter 4 introduces the too-often overlooked subject of model checking, and
illustrates a number of checks, both qualitative graphical ones and quantitative
checks based on the posterior predictive distribution.

Chapter 5 introduces more complicated aleatory models in which there is
a monotonic trend in the parameters of the commonly used binomial and Poisson
distributions.

Chapter 6 discusses MCMC convergence from a practical point of view.
In principle, convergence to the joint posterior distribution can be problematic;
however, in risk assessment convergence is rarely an issue except in the population
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variability models discussed in Chapter 7. However, if there is more than one
parameter involved, the prudent analyst will always check for convergence.

Chapter 8 introduces more complex models for random durations, covering
inference for the Weibull, lognormal, and gamma distributions as aleatory models.
It also introduces penalized likelihood criteria that can be used to select among
candidate models, focusing on the deviance information criterion (DIC) that is
calculated by OpenBUGS.

Chapters 8 and 9 together describe time-dependent aleatory models that are
encountered when modeling the infant mortality and especially the aging portions
of the famous ‘‘bathtub curve.’’ Chapter 9 covers inference for the so-called
renewal process, where failed components are replaced with new ones, or repairs
restore the component to a good-as-new state. Chapter 8 covers the situation where
repair is same-as-old; rather than reincarnating a failed component, the failed
component is merely resuscitated. Chapter 9 also discusses some useful graphical
checks for exploratory data analysis.

Chapter 10 turns to analysis of cases where the observed data are uncertain in
some way, perhaps because of censoring, inaccurate record-keeping, or other
reasons. The Bayesian framework can handle these kinds of uncertainties in a very
straightforward extension of the case without such uncertainty.

Chapter 11 introduces regression models, in which additional information in the
form of observable quantities such as temperature can enhance the simpler alea-
tory models used in earlier chapters.

Chapter 12 describes inference at multiple levels of a system fault tree. For
example, we might have information on the overall system performance, but we
might also have subsystem and component-level information.

Chapter 13 closes the text with a selection of problems, which are generally of
a more specialized or advanced nature. These include an introduction to inference
for extreme value processes, such as might be employed to model an external
flooding hazard, an introduction to treatment of expert opinion in the Bayesian
framework, specification of a prior distribution in OpenBUGS that is not one of the
built-in choices, and Bayesian inference for the parameters of a Markov model, the
last illustrating the ability to numerically solve systems of ordinary differential
equations within OpenBUGS, while simultaneously performing Bayesian infer-
ence for the parameter values in these equations.

We apologize in advance for the errors that will inevitably be found, and hope
that they will not stand in the way of learning.

Dana Kelly
Curtis Smith
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Chapter 1
Introduction and Motivation

1.1 Introduction

The focus for applications in this book is on those related to probabilistic risk
analysis (PRA). As discussed in Siu and Kelly [1], PRA is an analysis of the
frequency and consequences of accidents in an engineered system. This type of
analysis relies on probabilistic (i.e., predictive) models and associated data.
Because of PRA’s focus on low-frequency scenarios, often involving the failure of
highly reliable equipment, empirical data are often lacking. Bayesian inference
techniques are useful in such situations because, unlike frequentist statistical
methods, Bayesian techniques are able to incorporate non-empirical information.
Furthermore, from a practical perspective, Bayesian techniques, which represent
uncertainty with probability distributions, provide a ready framework for the
propagation of uncertainties through the risk models, via Monte Carlo sampling.

There are even more advantages in adopting a Bayesian inference framework in
PRA. For example, in data collection and evaluation, we strive for the situation
where the observed data are known with certainty and completeness. Unfortu-
nately, for a variety of reasons, reality is messier in a number of ways with respect
to observed data. For example, one may not always be able to ascertain the exact
number of failures of a system or component that have occurred, perhaps because
of imprecision in the failure criterion, record keeping, or interpretation. Further,
when there are multiple failure modes to track (e.g., fails during standby versus
fails during a demand), one may not be certain for which failure mode to count a
specific instance of a failure.

Even though an estimate of a component’s failure rate or failure probability is
required for use in the PRA, a detailed analysis and data gathering effort is not
always possible for every part/assembly. Consequently, PRA must use the avail-
able data and information as efficiently as possible while providing representative
uncertainty characterizations—it is this drive to provide probability distributions
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representing what is known about elements in the risk analysis that leads us to
Bayesian inference.

The hardware modeling element of the PRA has typically relied on operational
information and data, coupled with Bayesian inference techniques, to quantify
performance. This analysis of performance uses the Bayesian approach in order to
escape some of the problems associated with frequentist estimates, including:

• If data are sparse, frequentist estimators, such as ‘‘maximum likelihood
estimates,’’ can be unrealistic (e.g., zero);

• Propagating frequentist interval estimates, such as confidence intervals, through
the PRA model is difficult;

• Frequentist methods are sometimes of an ad hoc nature;
• Frequentist methods cannot incorporate ‘‘non-data’’ information into the quan-

tification process, other than in an ad hoc manner.

The last limitation of frequentist inference listed above highlights a key
attribute of Bayesian methods, namely the ability to incorporate qualitative
information (i.e., evidence) into the parameter estimates. Unlike frequentist
inference, which focuses solely on ‘‘data,’’ the Bayesian approach to inference can
bring to bear all of what is known about a process, including empirical data.

1.2 Background for Bayesian Inference

The Bayesian (or Bayes–Laplace) method of probabilistic induction has existed
since the late 1700s [2, 3]. Laplace, starting in 1772, performed the first quantitative
Bayesian inference calculations. The application then was inferring the mass of
planets such as Jupiter and Saturn using astronomical observations, along with
simple (i.e., uniform) prior distributions, but a rather complicated stochastic model
[4]. Unfortunately, the Bayesian mathematics for Laplace’s problem was quite
complicated, primarily due to his selection of a particular stochastic model
(a double exponential, also known today as a Laplace distribution).

Later, in 1809, Gauss popularized the normal (or Gaussian) distribution.
Laplace, having been made aware of this new stochastic model, returned in 1812
to his previously intractable problem of inference about the mass of Saturn.
To perform his Bayesian calculation, he used:

• Data (orbital information on the satellite Callisto).
• A prior (the uniform distribution).
• A less complicated stochastic model (the normal distribution).

What Laplace calculated was a posterior probability distribution for the mass of
Saturn. He published his results in the Théorie Analytique des Probabilités,
representing the first successful quantitative application of Bayes’ Theorem.

Today, the Bayesian approach to inference is employed in a very wide variety
of domains for many different stochastic modeling situations. For example, two
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widely used stochastic models (both in and outside of PRA) are the Poisson and
binomial, representing different processes:

• Examples of Poisson processes.

– Counting particles, such as neutrons, in a second.
– Number of (lit) lights failing over a month.
– Arrival of customers into a store on a Monday.
– Large earthquakes in a region over a year.
– HTTP requests to a server during a day.

• Examples of Bernoulli processes.

– Tossing a coin to see if it comes up heads.
– Starting a car to see if it will start.
– Turning on a light to see if will turn on.
– Launching a rocket to see if it will reach orbit.

The basis of many traditional PRAs is event tree and fault tree models
(deterministic models), which logically relate the occurrence of low-level events to
a higher-level event (e.g., an initiating event followed by multiple safety system
failure events may lead to an undesired outcome). The occurrence of initiating
events and system failures (or just ‘‘events’’) in the fault trees and event trees are
modeled probabilistically, and the associated probabilistic models each contain
one or more parameters, whose values are known only with uncertainty. The
application of Bayesian methods to estimate these parameters, with associated
uncertainty, uses all available information, leading to informed decisions based
upon the applicable information at hand.

Most PRAs require different types of ‘‘failure models’’ to quantify the risk
portion of the analysis. These models include the following:

• Failure of a component to change state on demand.
• Failure in time of an operating component.
• Rate of aging for a passive component.
• Failure (in standby) of an active component while in a quiescent period.
• Downtime or unavailability due to testing.
• Restoration of a component following a failure.

We describe Bayesian inference for these and other models in this book, using
modern computational tools.

1.3 An Overview of the Bayesian Inference Process

In Chap. 2, we will introduce Bayes Theorem, which according to the theory of
subjective probability, is the only way in which an analyst whose probabilities
obey the axioms of probability theory can update his or her state of knowledge [5].
The general procedure for performing Bayesian inference is:

1.2 Background for Bayesian Inference 3
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1. Specify an aleatory model1 for the process being represented in the PRA
(e.g., failure of component to change state on demand).

2. Specify a prior distribution for parameter(s) in this model, quantifying
epistemic uncertainty, that is, quantifying a state of knowledge about the
possible parameter values.

3. Observe data from or related to the process being represented.
4. Update the prior to obtain the posterior distribution for the parameter(s) of

interest.
5. Check validity of the aleatory model, data, and prior.

We follow this process to make inferences, that is, to estimate the probability
that a model, parameter, or hypothesis is reasonable, conditional on all available
evidence. As part of describing the process of Bayesian inference, we used several
terms such as ‘‘data,’’ ‘‘aleatory,’’ and ‘‘epistemic.’’ In this text, we attach specific
meanings to key terms for which confusion often exists:

Data Distinct observed values of a physical process. Data may be factual
or not. For example they may be subject to uncertainties, such as
imprecision in measurement, truncation, and interpretation errors.
Examples of data include the number of failures during part
testing, the times at which a tornado has occurred within a
particular area, and the time it takes to repair a failed component. In
these examples, the observed item is bolded to emphasize that data
are observable. An aleatory model is used in PRA to model the
process that gives rise to data

Information The result of evaluating, processing, or organizing data and
information in a way that adds to knowledge. Note that information
is not necessarily observable; only the subset of information
referred to as data is observable. Examples of information include a
calculated estimate of failure probability, an expert’s estimate of the
frequency of tornados occurring within a particular area, and
the distribution of a repair rate used in an aleatory model for the
restoration time of a failed component

Knowledge What is known from gathered information

Inference The process of obtaining a conclusion based on what one knows.

To evaluate data in an inference process, we must have a ‘‘model of the world’’
(or simply ‘‘model’’) that allows us to translate observable events into information
[6, 7]. Within this framework, there are two fundamental types of model

1 Also referred to synonymously as a ‘‘stochastic model,’’ ‘‘probabilistic model,’’ or ‘‘likelihood
function.’’
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abstractions, aleatory and deterministic. The term ‘‘aleatory’’ refers to the sto-
chastic nature of the outcome of a process. For example, flipping a coin, testing a
part, predicting tornadoes, rolling a die, etc., are typically (chosen to be) modeled
as aleatory processes. In the case of flipping a coin, the observable stochastic data
are the outcomes of the coin flips (heads or tails).

Since probabilities are not observable quantities, we do not have a model of the
world directly for probabilities. Instead, we rely on aleatory models (e.g., a
Bernoulli2 model in the case of tossing a coin) to infer probabilities for observable
outcomes (e.g., two heads out of three tosses of the coin).

Aleatory Pertaining to stochastic (non-deterministic) events, the outcome
of which is described using probability. From the Latin alea
(a game of chance or a die)

Deterministic Pertaining to exactly predictable (or precise) processes, the
outcome of which is known with certainty if the inputs are known
with certainty. As the antithesis of aleatory, this is the type of
model most familiar to scientists and engineers and includes
relationships such as V = IR, E = mc2, F = ma, F = G m1 m2/r2

In PRA, we employ both aleatory and deterministic models. In these models,
even ones that are deterministic physical models, such as thermal–hydraulic
models used to derive system success criteria, many of the parameters are them-
selves imprecisely known, and therefore are treated as uncertain variables.
To describe this second type of uncertainty (with aleatory uncertainty being the
first kind), PRA employs the concept of epistemic uncertainty.

Epistemic Pertaining to the degree of knowledge about models and their
parameters. From the Greek episteme (knowledge)

Whether we use an aleatory model (e.g., Bernoulli process) or a deterministic
model (e.g., F = ma), if any parameter in the model is imprecisely known, then
there is epistemic uncertainty associated with the output of that model. It is the
goal of this book to demonstrate how to combine data and information with
applicable models and, via Bayesian inference, enhance our knowledge for PRA
applications.

2 A Bernoulli trial is an experiment whose outcomes can be assigned to one of two possible
states (e.g., success/failure, heads/tails, yes/no), and mapped to two values, such as 0 and 1.
A Bernoulli process is obtained by repeating the same Bernoulli trial, where each trial is
independent of the others. If the outcome given for the value ‘‘1’’ has probability p, it can be
shown that the summation of n Bernoulli trials is binomially distributed * binomial (p, n).
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Chapter 2
Introduction to Bayesian Inference

2.1 Introduction

As discussed in Chap. 1, Bayesian statistical inference relies upon Bayes’ Theorem
to make coherent inferences about the plausibility of a hypothesis.

Observable data is included in the inference process. In addition, other infor-
mation about the hypothesis is included in the inference. Consequently, in the
Bayesian inference approach, probability quantifies a state of knowledge and
represents the plausibility of an event, where ‘‘plausibility’’ implies apparent
validity. In other words, Bayesian inference uses probability distributions to
encode information , where the encoding metric is a probability (on an absolute
scale from 0 to 1).

Note that the use of the word ‘‘hypothesis’’ here should not be confused with
classical Neyman-Pearson hypothesis testing. Instead, the types of hypotheses that
might be evaluated when performing PRA include:

• The ability of a human to carry out an action when following a written
procedure.

• The chance for multiple redundant components to fail simultaneously.
• The frequency of damaging earthquakes to occur at a particular location.
• The chance that a component fails to start properly when demanded.

2.2 Bayes’ Theorem

Bayes’ Theorem provides the mathematical means of combining information and
data, in the context of a probabilistic model, in order to update a prior state of
knowledge. This theorem modifies a prior probability, yielding a posterior prob-
ability, via the expression:

D. Kelly and C. Smith, Bayesian Inference for Probabilistic Risk Assessment,
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-84996-187-5_2,
� Springer-Verlag London Limited 2011
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PðHjDÞ ¼ PðHÞPðDjHÞ
PðDÞ : ð2:1Þ

If we dissect Eq. 2.1, we will see there are four parts (Table 2.1) :
In the context of PRA, where we use probability distributions to represent a

state of knowledge regarding parameter values in the PRA models, Bayes’
Theorem gives the posterior distribution for the parameter (or multiple parame-
ters) of interest, in terms of the prior distribution, failure model, and the observed
data, which in the general continuous form is written as:

p1ðhjxÞ ¼
f ðxjhÞp0ðhÞR
f ðxjhÞp0ðhÞdh

¼ f ðxjhÞp0ðhÞ
f ðxÞ : ð2:2Þ

In this equation, p1(h|x) is the posterior distribution for the parameter of
interest, denoted as h (note that h can be a vector). The posterior distribution is the
basis for all inferential statements about h, and will also form the basis for model
validation approaches to be discussed later. The observed data enters via the
aleatory model, f(x| h), and p0(h) is the prior distribution of h.

Note that the denominator in Eq. 2.2 has a range of integration that is over all
possible values of h, and that it is a weighted average distribution, with the prior
distribution p0(h) acting as the weighting function.

In cases where X is a discrete random variable (e.g., number of events in some
period of time), f(x) is the probability of seeing exactly x events, unconditional
upon a value of h. If X is a continuous outcome, such as time to suppress a fire,
f(x) is a density function, giving the unconditional probability of observing values
of X in an infinitesimal interval about x. In a later context, associated with model
validation, f(x) will be referred to as the predictive distribution for X.

The likelihood function f(x|h), or just likelihood, is also known by another name
in PRA applications—it is the aleatory model describing an observed physical
process. For example, a component failure to operate may be modeled inside
a system fault tree by a Poisson process. Or, we may use an exponential distri-
bution to represent fire suppression times. In these cases, there is an inherent
modeling tie from the PRA to the data collection and evaluation process—specific
aleatory models imply specific types of data. In traditional PRA applications, the
aleatory model is most often binomial, Poisson, or exponential, giving rise to data
in the form of failures over a specified number of demands, failures over

Table 2.1 Components of Bayes’ Theorem

Term Description

P(H|D) Posterior distribution, which is conditional upon the data D that is known related to the
hypothesis H

P(H) Prior distribution, from knowledge of the hypothesis H that is independent of data D
P(D|H) Likelihood, or aleatory model, representing the process or mechanism that

provides data D
P(D) Marginal distribution, which serves as a normalization constant
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a specified period of time, and failure times, respectively. Bayesian inference for
each of these cases will be discussed in detail in Chap. 3.

The prior distribution, p0(h), represents what is known about a parameter
h independent of data generated by the aleatory model that will be collected and
evaluated. Prior distributions can be classified broadly as either informative or
noninformative. Informative priors, as the name suggests, contain substantive
information about the possible values of h. Noninformative priors, on the other
hand, are intended to let the data dominate the posterior distribution; thus, they
contain little substantive information about the parameter of interest.

2.3 A Simple Application of Bayes’ Theorem

2.3.1 The Discrete Case

If we toss a coin, can we tell if it is an unfair coin? Specifically, what can the
Bayesian approach to inference do to assist in answering this question? The issue
that we are concerned with is the possibility of an unfair coin (e.g., a two-headed
coin; for now, we will ignore the possibility of a two-tailed coin or a biased coin-
tosser to simplify the presentation) being used. Let us jump directly into the Bayes
analysis to see how straightforward this type of analysis can be in practice.

First, we note that Bayesian methods rely on three items:

• An aleatory model.
• A prior distribution for the parameter(s) of the aleatory model.
• Data associated with the aleatory model.

As discussed earlier, the prior distribution encodes the analyst’s state of
knowledge about a hypothesis. In this example, we have two hypotheses (H) we
are going to consider:

H1 = we have a fair coin
H2 = we have an unfair coin

Recall in this example, that an unfair coin implies a two-headed coin. Thus, the
probability of heads associated with H2 would be 1.0 (since we cannot obtain a tail
if in fact we have two heads). At this point, we are ready to specify the prior
distribution.

Step 1: The Aleatory Model The likelihood function (or aleatory model)
representing ‘‘random’’ outcomes (head/tail) for tossing a coin will be assumed to
be given by a Bernoulli model:

PðDjHi Þ ¼ pi

where pi is the probability of obtaining a head on a single toss conditional upon the
ith hypothesis.

2.2 Bayes’ Theorem 9
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Step 2: The Prior Distribution Knowledge of the ‘‘experiment’’ might lead us to
believe there is a significant chance that an unfair coin will be used in the toss.
Thus, for the sake of example, let us assume that we assign the following prior
probabilities to the two hypotheses:

P H1ð Þ ¼ 0:75 P H2ð Þ ¼ 0:25

This prior distribution implies that we think there is a 25% chance that an unfair
coin will be used for the next toss. Expressed another way, this prior belief cor-
responds to odds of 3:1 that the coin is fair.

Step 3: The Data The coin is tossed once, and it comes up heads.

Step 4: Bayesian Calculation to Estimate Probability of a Fair Coin, P(H1) The
normalization constant in Bayes’ Theorem, P(D), is found by summing the product
of the prior distribution and the aleatory model over all possible hypotheses, which
in this example gives

PðDÞ ¼ PðH1Þp1 þ PðH2Þp2 ¼ ð0:75Þ0:5þ ð0:25Þ1:0 ¼ 0:625

where for hypothesis H1, p1 = 0.5 while for H2, p2 = 1.0. At this point, we have
the aleatory model (as a function of our one data point), the prior distribution, and
the normalization constant in Bayes’ Theorem. Thus, we can compute the posterior
probabilities for our two hypotheses. When we do that calculation, we find:

P H1j one toss; data are ‘‘heads’’ð Þ ¼ 0:6

P H2j onetoss; data are ‘‘heads’’ð Þ ¼ 0:4

The results after one toss are presented in Table 2.2 and show that the posterior
probability is the normalized product of the prior probability and the likelihood
(e.g., H1 posterior is 0.375 / 0.625 = 0.60).

What has happened in this case is that the probability of the second hypothesis
(two-headed coin) being true has increased by almost a factor of two simply by
tossing the coin once and observing heads as the outcome.

As additional data are collected, we can evaluate the impact of the data on our
state of knowledge by applying Bayes’ Theorem sequentially as the data are

Table 2.2 Bayesian inference of one toss of a coin in an experiment to test the hypothesis of a
fair coin

Hypothesis Prior
probability

Likelihood Prior 9

likelihood
Posterior
probability

H1: fair coin
(i.e., the probability
of a heads is 0.5)

0.75 0.5 0.375 0.60

H2: two-headed coin
(i.e., the probability
of a heads is 1.0)

0.25 1.0 0.250 0.40

Sum: 1.00 Sum: 0.625 Sum: 1.00

10 2 Introduction to Bayesian Inference



collected. For example, let us assume that we toss the coin j times and want to
make inference on the hypotheses (if a head comes up) each time. Thus, we toss
(x = 1, 2, …, j) the coin again and again independently, and each time the estimate
of the probability that the coin is fair changes. We see this probability plotted in
Fig. 2.1, where initially (before any tosses) the prior probability of a fair coin (H1)
was 0.75. However, after five tosses where a head appears each time, the
probability that we have a fair coin is small, less than ten percent.

2.3.2 The Continuous Case

Let us revisit the example described in Sect. 2.3.1 but employ a continuous prior
distribution. The posterior distribution for this example will then be given by:

p1 p x; njð Þ ¼ f x p; njð Þ p0 hð Þ
R 1

0 f x p; njð Þ p0 hð Þ dh

Since we used a Bernoulli aleatory model for the outcome of a coin toss, this leads
to a binomial distribution as the aleatory model for the number of heads in
n independent coin tosses in which the probability of heads on any toss is p:
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Fig. 2.1 Plot of the posterior probability of a fair coin as a function of the number of consecutive
heads observed in independent tosses of the coin
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f ðxjp; nÞ ¼
n

x

 !

pxð1� pÞn�x

To represent a prior state of ignorance, the prior could be specified as a uniform
distribution between p = 0 and p = 1, or:

p0 pð Þ ¼ 1 ð0� p � 1Þ

This is an example from the general category of noninformative priors men-
tioned earlier. We can now rewrite Bayes’ Theorem for this example as:

p1 p x; njð Þ ¼ hx 1� hð Þn�x

R 1
0 hx 1� hð Þn�x dh

¼ hx 1� hð Þn�x

Cðxþ1ÞCðn�xþ1Þ
Cðnþ2Þ

It can be shown that the posterior distribution is a beta distribution with
parameters:1
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Fig. 2.2 Plot of the posterior probability of a fair coin as a function of the number of consecutive
heads observed in independent tosses

1 The uniform distribution in this example is a particular instance of a conjugate prior, to be
discussed in more detail in Chap. 3.
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