

Ontology-based Application Integration

Heiko Paulheim

Ontology-based Application
Integration

Foreword by Johannes Fürnkranz

ISBN 978-1-4614-1429-2 e-ISBN 978-1-4614-1430-8
DOI 10.1007/978-1-4614-1430-8
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011936126

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Heiko Paulheim
Knowledge Engineering Group
Technische Universität Darmstadt
Germany
paulheim@ke.tu-darmstadt.de

mailto:paulheim@ke.tu-darmstadt.de
http://www.springer.com

This book is an extended version
of the dissertation

“Ontology-based Application Integration
on the User Interface Level”
at Technische Universität Darmstadt, D17.

Foreword

There is probably no invention in the history of mankind that had such a profound
impact on our lives in such a short time as the World Wide Web. Twenty years ago,
Tim Berners-Lee has developed the first versions of HTML which allowed to weave
documents into the large hypertext document that we know today. It was soon realized
that the potential of this technology is not limited to connecting texts, but may serve
as a backbone for a world-wide knowledge base called the Semantic Web. Again,
Tim Berners-Lee helped to pioneer the vision of data and knowledge being publicly
available in a formalized, machine-processable form. Based on standards like RDF
or OWL, knowledge and semantics may be freely exchanged between heterogeneous
applications. The number of facts stored in public knowledge repositories, so-called
ontologies, is increasing at a rapid scale. Linked open data are on the verge of
permeating our everyday lives.

Now we are facing the next revolution. Not only documents or knowledge will be
connected, but computer applications are no longer running on personal computers,
but on centralized servers which can be accessed via Web interfaces from a large
variety of processors in smartphones, TVs, cars, household appliances, and more. For
the end user, this not only relieves them of the burden of the update and maintenance
of their software, but allows them to access their applications in a uniform way,
everywhere and at every time.

A grand challenge for web-based software design is to integrate different heteroge-
neous applications into a homogeneous new system that utilizes the familiar existing
components but allows a transparent data exchange between these components. Such
Mash-Ups can be realized at the code level, by reprogramming functions of the indi-
vidual applications, or at the data or business logic level by formalizing the service
description and access of the applications, e.g. in the form of Web Services. Both
ways have the disadvantage that aspects of the application have to be reprogrammed
in order to allow a standardized data exchange.

This book shows how ontologies and semantic web technologies can be employed
to solve the practical problem of integrating applications on the user interface level.
It shows how the relevant concepts of user interfaces, such as components and inter-
actions, can be captured in a highly formalized ontology, and puts a strong emphasis

vii

viii Foreword

on practical aspects of the implementation of an integration framework based on
that ontology, such as the scalability of semantic event processing approaches, or
the support of seamless cross-technological interactions. Never losing the focus on
the end user, it further explores the possibilities ontologies provide to enhance the
usability of integrated applications.

The book describes this innovative approach in all aspects. It provides an excellent
introduction into ontologies and their applications in user-interface and application
design, so that the book can be read without extensive prior knowledge in these
areas. All presented concepts and techniques are illustrated with a case study that
demonstrates the design of an integrated application for the management of catastro-
phes, which has been developed in a research project with different partners from
the industry and academia, led by SAP Research. The book is thus of interest to
both, researchers in ontologies who are looking for an interesting application, and for
practitioners who want to find out techniques for combining different applications
in a non-intrusive knowledge-based way. I am confident that it will become a key
publication in its area.

Johannes Fürnkranz
Darmstadt, July 2011

Acknowledgements

While working on the topic of ontology-based application integration on the user
interface level throughout the last three years, I have had valuable support and input
from many people, without whom this book would not have become what it is.

Johannes Fürnkranz has encouraged me to pursue the topic of ontology-based
application integration, agreed to take over the supervision of my dissertation, and has
been continuously supporting me with valuable advice with respect to my research
and numerous other topics. Jürgen Ziegler has agreed on acting as my secondary
supervisor and has given me very valuable feedback in various discussions.

The topic covered by this book has been evolving out of and largely pursued within
the research project SoKNOS at SAP Research in Darmstadt. First and foremost,
Florian Probst has largely helped me in shaping the topic and taught me how to be
formally precise when crafting ontologies in many fruitful (and sometimes exhaust-
ing) discussions. Many people both in Darmstadt and in other institutions involved in
the SoKNOS project have been creating the atmosphere in which this research work
could grow, especially Sebastian Döweling, Karen Tso-Sutter, Anna Lewandowski,
and Thomas Ziegert, and everybody else who contributed to the SoKNOS project,
in particular Daniel Oberle, Grigori Babitski, and Jörg Hoffmann at SAP Research
Karlsruhe, Simon Bergweiler at DFKI, Alexander Walkowski, Christoph Stasch, and
Florian Daiber at University of Münster, Stephan Braune and Martin Thoma at B2M,
Marcus Hoffmann and Thorsten May at Fraunhofer IGD, and Alexander Behring
and Andreas Petter at TU Darmstadt.

After the SoKNOS project was finished, I have continued pursuing my research
in the AdiWa project and was happy to once more find a stimulating environment
with great researchers, especially Benedikt Schmidt, Birgit Zimmermann, Christian
Kuhn, Eicke Godehart, and Todor Stoitsev. During my whole time at SAP Research,
Knut Manske, Nicole Scholl, and Anna Wypior have been supporting me with all
the administrative work, Bettina Laugwitz has taught me interesting details about
statistical evaluation that I had long forgotten about, and Andreas Faatz has been
giving me valuable advice on very different issues far more than once.

During the work on this book, it was my great pleasure to supervise a lot of very
talented students. Rene Abraham helped compiling an initial survey of user interface

ix

x Acknowledgements

description languages. Atila Erdogan worked on the implementation of the Flex
container for Java user interfaces, and Lars Meyer evaluated different implementation
alternatives for improving the performance of the integration framework, as well
as he worked on the implementation and evaluation of the Semantic Data Explorer.
Roland Plendl contributed to the implementation of the rule-based object exchange
mechanism, and Tobias Wieschnowsky built a prototype of a graphical user interface
integration tool.

For the prototype implementation of the approach discussed in this book, I have
used the system OntoBroker, and some people supported me in getting non-standard
features implemented and told me about secret configuration options which are not
mentioned in the official manuals. At OntoPrise, Saartje Brockmanns and Roman
Korf have been patiently answering my questions and revealed various hidden func-
tionalities, and Michael Erdmann has pointed me to using Skolem terms for event
processing rules.

It was already two years before I started to dive into the topic of ontology-based
application integration that I began working with ontologies. Michael Rebstock and
Janina Fengel have sparked my interest in that topic and worked with me for two
years. Since then, I have been discussing research ideas with countless colleagues
at workshops, conferences, and other occasions, and always gained a lot from those
discussions.

Last, but not least, my wife Carolin and my family have been continuously
supporting me during the last years. Thank you for everything.

Heiko Paulheim
Darmstadt, July 2011

Contents

1 Introduction . 1
1.1 Vision . 1
1.2 Challenges . 3
1.3 Approach . 4
1.4 Contributions . 4
1.5 Outline of the Book . 5

Part I System Integration, Ontologies, and User Interfaces

2 Application Integration on the User Interface Level 9
2.1 Fundamentals . 9

2.1.1 Levels of Application Integration . 9
2.1.2 Definition of User Interface Integration 11
2.1.3 Benefits of Application Integration on the User Interface

Layer . 12
2.1.4 Requirements and Challenges of Application Integration on

the User Interface Layer . 13
2.1.5 Design Space of User Interface Integration 14

2.2 Portals . 15
2.3 Mashup Platforms . 17
2.4 Other Commercial and Established Solutions 19
2.5 Prototypes from Academia . 21

2.5.1 Snap-Together . 21
2.5.2 OpenInterface Workbench . 22
2.5.3 CRUISe . 22
2.5.4 Mixup and mashArt . 23
2.5.5 The Widget Composition Approach by Kotsalis 23

2.6 Identified Research Gaps . 24
2.7 Summary . 25

xi

xii Contents

3 Ontology-based System Integration . 27
3.1 What is an Ontology? . 27

3.1.1 Definitions . 28
3.1.2 Languages . 28
3.1.3 Reasoning on Ontologies . 33
3.1.4 Types of Ontologies . 35
3.1.5 Ontologies vs. Software Models . 39
3.1.6 Methodologies for Developing Ontologies 40

3.2 Top Level Ontologies . 42
3.2.1 DOLCE . 43
3.2.2 SUMO . 45
3.2.3 Cyc . 46
3.2.4 PROTON . 46

3.3 Infrastructures for Working with Ontologies . 49
3.3.1 Ontology Editors . 49
3.3.2 Ontology Visualization . 49
3.3.3 Programming Frameworks . 52
3.3.4 Storage Solutions . 54
3.3.5 Ontology Matching . 55

3.4 Ontologies in Application Integration . 55
3.4.1 Data Source Level . 56
3.4.2 Business Logic Level . 58
3.4.3 User Interface Level . 59

3.5 Summary . 59

4 Ontologies in User Interface Development . 61
4.1 Classification Schema . 61
4.2 Ontologies for Improving Visualization . 63

4.2.1 Information Clustering . 64
4.2.2 Text Generation . 64
4.2.3 Adaptation of User Interface Appearance 65

4.3 Ontologies for Improving Interaction . 67
4.3.1 Ontology-based Browsing . 67
4.3.2 User Input Assistance . 68
4.3.3 Providing Help . 70
4.3.4 Facilitating Interaction in Integrated User Interfaces 70

4.4 Ontologies for Improving User Interface Development 71
4.4.1 Identifying and Tracking Requirements 71
4.4.2 Generating User Interfaces . 72
4.4.3 Reusing User Interface Components . 73

4.5 Summary . 74

Contents xiii

5 A Framework for User Interface Integration . 79
5.1 Goals and Assumptions of the Approach . 79

5.1.1 Goals . 79
5.1.2 Assumptions . 82

5.2 Design Decisions . 83
5.2.1 Web-based vs. Non-web-based Approaches 83
5.2.2 Centralized vs. Decentralized Communication 84
5.2.3 Unified vs. Modularized Ontologies . 85
5.2.4 Open World vs. Closed World Semantics 87
5.2.5 Hypothesized vs. Skolemized Instances 88

5.3 Ontologies and Rules Used for User Interface Integration 89
5.3.1 Ontologies for Event Annotations . 89
5.3.2 Ontologies for Describing Applications 91
5.3.3 Ontologies for Capturing Applications’ States 92
5.3.4 Integration Rules . 92

5.4 Basic Framework . 94
5.4.1 Roles and Tasks in User Interface Integration 94
5.4.2 Technical Architecture . 96

5.5 Case Study: User Interface Integration in SoKNOS 101
5.5.1 The SoKNOS Project . 101
5.5.2 Applications Integrated in the SoKNOS Project 103
5.5.3 Example Interaction . 105
5.5.4 Special Cases . 107
5.5.5 Further Usage of Semantic Technologies in SoKNOS 112

5.6 Summary . 117

6 An Ontology of User Interfaces and Interactions 119
6.1 Existing User Interface Description Languages 119

6.1.1 HTML and XForms . 120
6.1.2 XIML . 122
6.1.3 XUL . 122
6.1.4 TeresaXML and MARIA XML . 123
6.1.5 LZX . 123
6.1.6 WAI ARIA . 125
6.1.7 UIML . 125
6.1.8 UsiXML . 126

6.2 Design and Implementation of the Ontology . 126
6.2.1 Typical Queries . 127
6.2.2 Reused Generic Ontologies . 128
6.2.3 The Top Level . 129
6.2.4 The Detail Level . 138

6.3 Integration Rules . 143
6.3.1 Case Study: Definition of Integration Rules 144

Part II Integrating User Interfaces with Ontologies

xiv Contents

7 Data Object Exchange . 151
7.1 Annotation of Class Models . 151
7.2 Problems with Static Annotation . 153

7.2.1 Multi-Purpose and Artificial Classes and Properties 153
7.2.2 Simplified Chains of Relations . 154
7.2.3 Non-atomic Data Types . 156

7.3 Non-Intrusive, Dynamic Annotation of Class Models 157
7.3.1 Rules for Mapping Class Models to Ontologies 157
7.3.2 Rules for Mapping Ontologies to Class Models 161
7.3.3 Object Exchange with Template-based Filtering 164
7.3.4 Non-intrusive Implementation . 166

7.4 Case Study: Annotating the SoKNOS Class Model with the
SoKNOS Domain Ontology . 168
7.4.1 Annotation in SoKNOS . 169
7.4.2 Mismatches in SoKNOS . 169
7.4.3 Example Object Exchange in SoKNOS 171
7.4.4 Performance Evaluation . 173

7.5 Summary . 175

8 Efficient Semantic Event Processing . 177
8.1 Why Efficiency is Important . 177
8.2 State of the Art in Semantic Event Processing 178
8.3 Implementation Variants and Evaluation . 180

8.3.1 Local vs. Global Event Processing . 180
8.3.2 Pushing vs. Pulling of Instance Data . 182
8.3.3 Local Caching of Instance Data . 185
8.3.4 Design of Connector Rules . 186

8.4 Generalization: Reasoning on Data From Running Applications 188
8.4.1 Generalized Architecture . 188
8.4.2 Performance Evaluations . 190

8.5 Case Study: Performance in SoKNOS . 193
8.6 Summary . 193

9 Crossing Technological Borders . 195
9.1 Architecture for Cross-Technological User Interface Integration 195

9.1.1 Extending Containers . 195
9.1.2 Handling Drag and Drop . 197
9.1.3 Extending Information Objects . 198
9.1.4 Combining Heterogeneous Applications with A-Box

Connectors and Caches . 198
9.2 Case Study: Integrating Java and Flex User Interface components

in SoKNOS . 199
9.2.1 Scenario . 199

6.3.2 Global Integration Rules . 146
6.4 Summary . 150

Contents xv

9.3 Summary . 205

Part III The Future of Ontology-based UI Integration

10 Improving Information Exploration . 209
10.1 Interaction with the Semantic Data Explorer . 209
10.2 Architecture . 211
10.3 Evaluation . 212

10.3.1 Scenario . 212
10.3.2 Evaluation Setup . 213
10.3.3 Evaluation Results . 215

10.4 Summary . 218

11 Towards End-user User Interface Integration . 219
11.1 Current Approaches to UI Integration Revisited 219
11.2 Enabling End Users for Ad Hoc Integration . 222
11.3 Towards a Visual, Ontology-based Tool for User Interface Integration
11.4 Summary . 226

12 Conclusion and Outlook . 227
12.1 Achievements . 227
12.2 Summary of Evaluations . 228
12.3 Open Research Issues . 230

12.3.1 Improving the Development Process of User Interface
Integration . 230

12.3.2 Enhancing the Capabilities of Integrated User Interfaces . . . 231
12.3.3 Possible Influence on Related Fields . 232

12.4 Concluding Remarks . 233

List of Abbreviations . 235

List of Figures . 239

List of Tables . 243

References . 245

Index . 267

9.2.2 Implementing the Flex Container . 200
9.2.3 Putting the Pieces Together . 205

224. .

Chapter 1

Introduction

Abstract While software engineering traditionally has been concerned mostly with
the development of individual components, there has been a paradigm shift during
the past decades. Assembling applications from existing components and integrating
applications to complex systems has become more important with a growing number
of existing artifacts. In the future, application integration on the user interface level
will drastically reduce development efforts and create customizable, seamlessly
integrated systems. However, currently existing approaches and frameworks are still
not capable of fully harvesting the benefits of this new style of system development.

1.1 Vision

During the past decades, software engineering has changed. The number of existing
applications and software artifacts, such as modules, libraries, components, and
services, has grown rapidly. Software systems have become more and more complex.
At the same time, the pressure to produce those complex software systems in ever
shorter periods of time has grown.

These shifts in the basic parameters has influences on the software engineering
process itself. An analysis presented by Blechar (2010, p. 25) identify a

“trend away from net new development of business software systems to composition of
business software systems.”

With the advent of web mashups in the course of the Web 2.0 , the vision of rapid inte-
gration of applications, including their user interfaces, has rapidly gained momentum.
In 2007, Gartner analysts stated that

“By 2010, Web mashups will be the dominant model (80 percent) for the creation of
composite enterprise applications. Mashup technologies will evolve significantly over the
next five years, and application leaders must take this evolution into account when evaluating
the impact of mashups and in formulating an enterprise mashup strategy.” (Gartner, 2007)

,
DOI 10.1007/978-1-4 - - _ , © Springer Science+Business Media, LLC 2011

, H. Paulheim Ontology-based Application Integration
614 1430 8 1

1

2 1 Introduction

One year later, they once again strengthened the business need for such mashup
technologies:

“Enterprises are now investigating taking mashups from cool Web hobby to enterprise-class
systems to augment their models for delivering and managing applications. Through 2010, the
enterprise mashup product environment will experience significant flux and consolidation,
and application architects and IT leaders should investigate this growing space for the
significant and transformational potential it may offer their enterprises.” (Gartner, 2008)

In the same year, Forrester analysts predicted

“that the enterprise mashup market will reach nearly $700 million by 2013; while this means
that there is plenty of money to be made selling mashup platforms, it will affect nearly every
software vendor. Mashup platforms are in the pole position and ready to grab the lion’s
share of the market – and an entire ecosystem of mashup technology and data providers is
emerging to complement those platforms. Those vendor strategists that move quickly, plan a
mashup strategy, and build a partner ecosystem will come out on top.” (Young et al, 2008)

In 2010, Gartner analysts stated that

“composite applications enable increased operational and decision-making efficiency by
supporting a single integrated view of a critical business entity – e.g., customer, supplier,
product, patient and taxpayer – whose data are scattered across multiple databases and
applications” (Blechar et al, 2010, p. 25)

and predicted that

“most organizations will benefit from using new development methodologies and tools
focused on providing sustainable agile AD [Application Development], including support for
the creation of composite applications and enterprise mashups.” (Blechar et al, 2010, p. 25)

In the same report, the analysts also found that

“composite applications increase the complexity of the computing environment and result in
dependencies that demand cautious management.” (Blechar et al, 2010, p. 25)

These quotations point to a need for appropriate, professional tools and mechanisms
for integration user interfaces. In the future, a typical software engineer will spend
less time on coding and more time on choosing components from an inventory and
assembling them to a new product. Existing software applications will be reused and
recombined to new products, avoiding the reinvention of the wheel and allowing
faster and cheaper software production.

Even nowadays, applications are rarely be built from scratch, starting with an
empty sheet of paper and ending up with a one-size-fits-all system. Instead, develop-
ers choose from a shelf of ready-to-use components and compose them to complex
systems. While this composition is currently a manual task, in the future, there will
be intelligent tools that require only little manual efforts, and deliver customized
integrated systems to the end users. For the end user, however, these applications will
not look like rag rugs, but rather like one-of-a-piece products, allowing interactions
that do not show the seams where the original components were stitched together.

1.2 Challenges 3

1.2 Challenges

The current state of the art still faces some major challenges for harvesting the
promised benefits created by the mashup style of developing applications (Ogrinz,
2009, pp. 10 and pp. 311). Today, creating a mashup from different applications
involves a lot of manual work and requires deep knowledge about the applications
integrated. Badly documented interfaces, heterogeneous data formats and technolo-
gies, and the lack of adequate and intelligent tool support make mashup development
complicated and difficult, thus, the benefits of mashup development are to large
extent eaten up by its costs.

Software components, however, typically do not come with matching screws and
bolts that make a seamless assembly an easy task. While numerous solutions have
been developed which integrate software components using technologies such as
web services, those solutions most often target at system integration at a lower level,
i.e., the data or business logic level. Integrating existing user interface components is
not possible with such technologies.

So far, existing tools for user interface integration are still very limited. In order
to result in a maintainable and customizable software system, it is essential that the
components forming an integrated system are only loosely coupled. Tight coupling
introduces dependencies between the integrated components and thus leads to a
system which is hard to maintain and hinders fast adaptations to the resulting software.
On the other hand, the end user will want to experience a software product as all
of a piece and not find any flaws when interacting with the integrated system, i.e.,
a seamlessly integrated application. As discussed by Schefström (1999, p. 24),
these two requirements conflict with each other, leading to the so-called integration
dilemma: strong cohesion and loose coupling are hard to achieve at the same time.
This conflict is particularly strong on the user interface level when implementing
seamless interactions.

Especially when it comes to the integration of user interface components, current
approaches still lack mechanisms for seamlessly integrating components and allowing
cross-component interactions. The problem gets even more complicated when dealing
with technologically heterogeneous user interface components, such as Flex, Java,
and Silverlight components, developed with different programming languages.

When application integration is performed on the user interface layer, it typically
involves the acquisition of knowledge about the applications’ internal functionality as
well as many hacks and workarounds. When integrating heterogeneous user interface
components, code is written in different programming languages, using different
paradigms and mechanisms for event processing, data conversion, etc. Translating
between those mechanisms requires code that is most often scattered across the
integrated system, which leads to code tangling and a monolithic architecture that is
hard to maintain.

4 1 Introduction

1.3 Approach

For showing that formal ontologies improve the integration of applications on the
user interface level, the book demonstrates the development of a formal ontology
of the domain of user interfaces and interactions, following established ontology
engineering methodologies and building on the foundations of upper ontologies. A
prototype implementation will prove the feasibility of applying ontologies and rules
to the given integration problem.

That prototype implementation will be the basis for different experimental eval-
uations. For showing that an implementation with reasonable performance is pos-
sible, different architectural variants are implemented, and their runtime behavior
is measured. The possibility of integrating applications based on heterogeneous
technologies is shown in a proof-of-concept prototype. Furthermore, the prototype
implementation is used in a running case study showing the integration of a larger-
scale emergency management system.

In addition to the the integration framework itself, the benefit of ontologies in
integrated user interfaces is shown with a tool for exploring information contained in
integrated applications, which is evaluated in a quantitative user study.

1.4 Contributions

In this book, we will introduce an approach for application integration on the user in-
terface level which uses ontologies for formally describing user interface components
and the data they process. A middleware based on semantic technologies is employed
to fully decouple the individual components and still facilitate seamless integration
of heterogeneous user interface components. This approach will show that the idea
of ontology-based integration, which has been applied to database integration and
business logic integration so far, carries over to the user interface level as well.

This book will provide several contributions to the research community. One
central artifact is a detailed formal ontology of the domain of user interfaces and
interactions, which allows for describing user interfaces based on strict formal foun-
dations. This ontology may not be used in a middleware for application integration
on the user interface level, but also for other purposes requiring a formal model of
a user interface, such as providing assistance to the end user, or facilitating user
interface adaptation, etc.

Data exchange between applications is a major cornerstone in system integration.
This book discusses an approach for dynamically annotating data objects for facili-
tating exchange at run-time, which is more flexible concerning heterogeneous data
models than today’s state of the art approaches are.

The works on efficient, high-performance event exchange in user interfaces pro-
vide a discussion and thorough evaluation of several architectural alternatives for
facilitating reasoning on data from running software systems. As performance today
is often a major obstacle for employing ontologies and semantic technologies in real

1.5 Outline of the Book 5

world scenarios, the results presented on that topic will help building scalable and
usable ontology-based systems of different kinds.

Finally, a user study on ontology-based information exploration will show how
ontologies and semantically annotated information may be used for assisting users
with complex knowledge gathering tasks, even if those users do not have any prior
knowledge on ontologies and semantic technologies. While ontology-based systems
often do not find their path out of the research labs, this evaluation points out a way
of carrying the benefits of ontology-based systems from specialized researchers to
end users.

1.5 Outline of the Book

This book is divided in three parts. Part I discusses the background and state of the art
in application integration on the user interface layer in Chap. 2. Chapter 3 introduces
ontologies and discusses their role in application integration. Chapter 4 shows the
state of the art of employing ontologies in user interface development.

Part II reports on an in-depth study of employing ontologies for application
integration on the user interface layer. Chap. 5 introduces a general framework for
application integration on the user interface level. This chapter serves as a basis for
discussing various aspects of application integration on the user interface level in
more detail in four chapters, which are widely independent from each other:

• Chapter 6 shows the development of an ontology used for formalizing user in-
terface components and for annotating the events passed between the different
components.

• Chapter 7 discusses the annotation of class models for facilitating the exchange
of data objects between user interface components, i.e., bridging conceptual
heterogeneities.

• Chapter 8 is devoted to the impact of performance on user interface integration
and evaluates different architectural variants with respect to performance.

• Chapter 9 specifically deals with the problem of technologically heterogeneous
user interface components.

The book is accompanied by a running case study dealing with SoKNOS
(Döweling et al, 2009; Paulheim et al, 2009), an integrated emergency management
tool that has been developed in a consortium of different companies and research
institutions, lead by SAP Research. In that project, the approach discussed in this
book has been applied on a larger scale. For each of the Chaps. 5, 6, 7, 8, and 9, the
implementation of the approach in SoKNOS is discussed.

Part III gives an outlook on future developments in application integration on the
user interface layer. Chapter 10 introduces a tool for information exploration built on
top of the framework developed throughout the book. In a user study, it shows how
information exploration can be significantly improved in an integrated user interface
combined with a suitable visualization. Chapter 11 discusses how end users can be

6 1 Introduction

enabled to build custom tailored, ad hoc integrated user interfaces, and introduces
the prototype of a tool which hides the complexity of formal ontologies and rules
under the mask of an easy-to-use interface.

The book closes with a summary and an outlook on open and related research
questions in Chap. 12.

Part I

System Integration, Ontologies, and User
Interfaces

Chapter 2

Application Integration on the User Interface

Level

Abstract This chapter starts with a definition of user interface integration and dis-
cusses how user interface integration differs from other application integration ap-
proaches in Sect. 2.1. Current state of the arts approaches are discussed, such as
portals in Sect. 2.2, mashups in Sect. 2.3, as well as other popular solutions and
academic prototypes in Sects. 2.4 and 2.5. The review of the state of the art discusses
the recent advances in the field and points out some currently existing drawbacks in
Sect. 2.6, which will be addressed in this book.

2.1 Fundamentals

Application integration on the user interface level is one technique of integrating
software applications. Other terms encountered in the literature are, e.g. front-end
composition, integration on the glass (Blechar, 2010, p. 50), and integration on the
presentation level or presentation integration (Yu et al, 2007, p. 923). However, user
interface integration is the most frequently used term1, which we will therefore use
throughout this book.

2.1.1 Levels of Application Integration

Application integration can be performed on different levels, following the widely
accepted three layer model introduced by Fowler (2003, pp. 19). Figure 2.1 gives an
overview on different views on application integration from the literature.

Daniel et al (2007, p. 60) follow the notion of Fowler (2003, pp. 19) that soft-
ware usually comes in three layers, the data source layer, the business logic layer

1 Google lists about 410,000 hits for “user interface integration” and “UI integration”, compared to
47,000 for “presentation integration”, 42,000 for “integration on the glass”, and 8,600 for “front-end
composition”.

9,
DOI 10.1007/978-1-4 - - _ , © Springer Science+Business Media, LLC 2011

, H. Paulheim Ontology-based Application Integration
614 1430 8 2

10 2 Application Integration on the User Interface Level

Data Source

Business Logic

Presentation

Data Storage

Functional Parts

User Interface
Parts

Screen Handling

Invocation

Data

API

User Interface

Communication

Data

Business Logic

Presentation

Policies and
Non-functional

Properties

Business
Protocol

Functional
Interface

Basic
Coordination

Data

Method

User Interface

Application
Interface

Daniel et al. (2007) Amsden (2001) Nilsson et al.
(1990) Linthicum (1999) Benatallah and

Nezhad (2007)

Invocation

Jin et al. (2009)

Calling Other
Applications’

Functions

New, Independent
Interface

Fully Integrated
Interface

Fig. 2.1: Different levels of integration: an overview of classifications from the
literature.

(originally called domain layer by Fowler, but business logic layer has become more
widespread2), and the presentation layer. Consequently, the authors derive that there
are three layers on which applications can be integrated, which leads to the simplest
model of system integration: an integration layer can be placed on top of each of
the layers, thus facilitating application integration on the data source layer, on the
business logic layer, and on the presentation layer.

Amsden (2001) introduces another variation of integration: one application may
invoke another one, i.e., start it via access to the underlying operating system. It is
arguable whether this is really a way of integration, since the two applications only
run side by side without any interaction after the invocation.

Nilsson et al (1990, p. 442) introduce a separation of integration on the user
interface layer: they distinguish the integration of user interface parts from the
integration on the screen handling layer. With architectures such as X Window
(Scheifler and Gettys, 1986, pp. 79), the implementation of the UI components
(called user interface part by the authors) is separated from the implementation of
the display of and interaction with those components (which is what the authors call
screen handling). Thus, the authors propose two different strategies of integration:
on the UI components and on the screen handling layer.

Linthicum (1999, p. 18) discusses several ways of enterprise application integra-
tion, i.e., the integration of applications of different enterprises. He distinguishes
two types of integration on the business logic level: application interface integration,
and method integration. Application interface integration means that one application
calls methods from another one. In contrast, method integration includes that the
underlying process models are exchanged, and more complex patterns of interaction

2 About 950,000 Google hits for “business logic layer”, compared to 80,000 hits for “domain layer”.

2.1 Fundamentals 11

between applications, going beyond singular method calls, are supported, such as
contract negotiations between companies (Paulheim et al, 2011a).

Benatallah and Nezhad (2007, p. 119) provide an even finer-grained distinction
of integration on the business logic layer. Besides Linthicum’s distinction of appli-
cation interface integration (called functional interface by the authors) and method
integration (called business protocol by the authors), they introduce the need for
additionally coordinating the message exchange itself (called basic coordination) as
well as policies such as privacy policies and quality of service agreements between
systems. Furthermore, the authors introduce the communication layer as another
layer of integration, thereby stressing that when integration distributed applications,
the communication protocol heterogeneities must be overcome (Rebstock et al, 2008,
pp. 28).

For the rest of this book, we will refer to user interface integration as integration
on the user interface or integration on the presentation layer. To provide meaningful,
useful integration, the integration layer has to be aware of the data processed by
and the operations that can be performed with different user interface components.
Thus, regarding the distinction introduced by Nilsson et al (1990), the focus will
be on integration on the component layer, however, the screen handling layer will
be regarded when performing cross-technological UI integration, as discussed in
Chap. 9.

2.1.2 Definition of User Interface Integration

Application integration on the user interface layer, or UI integration for short, is the
technique of assembling

“applications by reusing their own user interfaces. This means that the presentation layer of
the composite application is itself composed, at least in part, by the presentation layers of
the components” (Daniel et al, 2007, p. 61).

Composing the user interface out of reused user interface components, however,
is only the first step. An integrated user interface does not only display different user
interface components next to each other, it also has to allow interactions between
those components. The integrated user interface has to provide more value than the
sum of the integrated applications (Westermann and Jain, 2007, p. 20) – otherwise,
any effort of integration would not be justified, as the user could just run the individual
applications in parallel instead.

Therefore, UI integration also includes coordination, synchronization, and inter-
action between the integrated applications. Actions performed with or state changes
occurring in one of the integrated applications can cause reactions in other appli-
cations. If this sort of integration is pushed so far that the user can experience the
integrated application in as being one of a piece, we use the term seamless integration
(Paulheim and Erdogan, 2010, p. 303).

Jin et al (2009, p. 5) discuss four levels of UI integration: applications launching
other applications, applications calling other applications’ functions, several appli-

12 2 Application Integration on the User Interface Level

cations sharing one (new) user interface, and fully integrated user interfaces. In the
terminology used in this book, only the latter would be regarded as UI integration;
the others are merely integration on the invocation level (in Amsden’s terminology),
and the business logic level.

In the context of enterprise application integration (EAI), the term user interface-
level integration is used with a different meaning: for systems that have no publicly
available API and do not provide direct access to the business logic and data storage,
methods such as screen scraping and input emulation on the systems’ user interfaces
are used to get the data out of those systems (Linthicum, 1999, pp. 79). In contrast,
user interface integration, as used in this book, is about facilitating interactions
between user interfaces, not about using user interfaces as an entry point for getting
data out of IT systems.

Another notion of user interface integration has been introduced by Schefström
(1999, p. 18): the author does not focus on the composition of different user interfaces,
but on the harmonization of the layout and look and feel of integrated applications.

2.1.3 Benefits of Application Integration on the User Interface
Layer

There are two main benefits for performing application integration on the user inter-
face level: increasing the usability of software systems, and reducing development
efforts for those software systems.

From an end user’s point of view, any system that is integrated on a deeper
level than the user interface will come with an individually developed user interface
(Daniel et al, 2007, pp. 60). Thus, the user will be confronted with a new, unfamiliar
user interface and thus have to learn how to work with the system. An integrated
system with applications retaining the familiar user interfaces, on the other hand,
will result in a steeper learning curve, as the user can continue working with familiar
interfaces.

From a software engineer’s point of view, reusing existing user interface compo-
nents, as opposed to developing a new user interface from scratch, means saving
time. The user interface is the most expensive part of a software system, the portion
devoted to the user interface ranges from 50% (Myers and Rosson, 1992, p. 199)
to 70% (Sergevich and Viktorovna, 2003, p. 89) of the total development effort.
More sharply phrased: without an approach for integration on the user interface
level, the degree of reuse will never exceed 50%. UI integration can therefore reduce
development efforts of integrated software systems drastically.

