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Foreword

What is the relevance of temporal signal structure to the brain? We may gain some
insight by comparing the brain to the computer. In the modern computer, signals are
binary (have only two possible values), are made to change as quickly as technol-
ogy permits, and temporal relations between signals are of central importance. The
computer is driven by a clock through a quick succession of globally ordered states,
while great care and effort is expended to make sure that no signal spills over from
one state to the next. Ordered states are defined by commands in a program, each
command specifying the setting of a large number of switches. At one time [1], this
picture of a digital machine was taken seriously as a model for the brain, switches
being identified with neurons. Digital machines are universal, meaning that any con-
ceivable finite process can be realized in them, thus creating the vision that also the
processes of the mind could be realized as processes in a physical machine. At the
time, this idea was taken as the breakdown of the formerly perceived impenetrable
glass wall between mind and matter. Unfortunately, the research program of Arti-
ficial Intelligence, which was built on this vision, has not given us intelligence in
the machine yet. What is wrong with this vision of the brain as a digital machine?
The succession of states in the computer is specified by programs, programs arise in
human brains, and thus processes in the computer are imposed on it from outside.
The big remaining question regarding the brain is that of the origin of its ordered
states and sequences of states.

The role of temporal signal correlations in the brain may well be compared to
that in the computer. The purpose of the brain is to coordinate activity in its vari-
ous parts into ordered states and successions of states, such that things that belong
together and form part of a functional whole are activated together. In this task of
coordination, the brain is essentially out on its own, with very scant external help,
which can in no way be compared to the insight of the computer’s programmer.
Classical artificial neural network models (important examples being the perceptron
and associative memory) tended to grossly underestimate this task of generating and
organizing brain states. In these models, time is paced by the presentation of stimuli,
the network responding to each input pattern by convergence to a stationary state.
This volume concentrates on a different brand of neural network models, in which
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vi Foreword

the generation of temporal patterns is the focus of interest. As these studies in their
turn tend to pay less attention to the solution of functional tasks (beyond the stan-
dard problem of segmentation) and concentrate to a large extent on the modeling
of brain rhythms that are actually found, it may be of interest if I attempt to give a
wider perspective on the functional significance of temporal signal structure.

There are two aspects to the data structure of brain state, that is, to the way neural
activity represents cognitive content. Considering neurons as elementary symbols,
these aspects are (a) which of these symbols are active in a given psychological mo-
ment, and (b) how these symbols are put in relation to each other. If there are several
objects in a scene, for example, each to be described by several attributes, a number
of neurons will be active to represent the objects and the attributes (aspect (a)), but
it is also necessary to represent the information which of the several attributes re-
fer to which of the several objects (aspect (b)). Another example is visual (or more
generally, sensory) segmentation: the problem of expressing the subdivision of the
sensory field into coherent perceptual objects.

This is generally called the binding problem—the problem of representing re-
latedness between the symbols represented by neurons. It is now common lore to
consider neural signal synchrony as solution to the binding problem: sets of neurons
that are relating to each other express this by firing simultaneously. In simple cases,
such as the above examples, this seems a perfect solution, as both generation and
functional exploitation of signal synchrony are natural to neural networks. Signal
synchrony is generated by plausibly existing neural connections. In object-attribute
binding, the branching feed-forward connections from the original stimuli to neu-
rons representing objects and attributes can propagate the same signal fluctuations to
those neurons as signature of common origin and as expression of relations between
attributes and objects, In sensory segmentation, horizontal connections between the
neurons in a sensory field, being shaped by spatial closeness and other Gestalt laws,
tend to run between neurons responding to the same perceptual object, and these
connections thus tend to correlate signals within segments, as has been modelled
many times. Functional exploitation, that is, the read-out of signal synchrony, relies
on the fact that neurons are coincidence detectors, and thus functional interaction is
restricted to sets of signals that are synchronous.

As nice and conceptually coherent the picture engendered by these examples is,
it doesn’t settle the binding issue, for experimental and for theoretical reasons. It
is a disturbing fact that in spite of intensive search and in spite of ample evidence
for neural signal synchrony, especially in the form of gamma rhythms (a frequency
range from about 35 to 90 hertz), the prediction that signals within sensory segments
should be globally correlated has not been confirmed experimentally. This alone
raises the question whether there are other mechanisms than signal synchrony by
which the brain can express binding, and theory is called upon to work out propos-
als. (One such proposal for solving the segmentation problem without using tem-
poral binding is described in [2].) And there is more work to do for theory. The
above binding examples—attribute-object binding and sensory segmentation—are
misleading in their simplicity, reducing the binding issue to the decomposition of the
neural state into a few blocks, a view often defended by reference to our inability to
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keep simultaneously in mind more than a few chunks of a novel scene (the seven-
plus-or-minus-two rule of [3]). On the other hand, we are evidently able to cope
with very complex arrays of binding when representing a complex sentence, which
necessitates to keep track simultaneously of multiple bindings between semantic,
lexical, syntactic and phonetic elements, or when representing a visual scene of fa-
miliar structure, which necessitates the simultaneous handling of numerous relations
between abstract and concrete patterns and their spatial relationships. Testimony to
this complexity are the parsing trees of linguistics or the data structures of computer-
based scene analysis (which themselves are all gross simplifications of the reality
in our brains). Such complex relational patterns cannot be expressed by signal syn-
chrony within realistic reaction times, given the poor temporal resolution of neural
signals (1 to 3 msec, set by response times of neural membranes).

To do justice to the reality of our cognitive apparatus, we need a picture that
lets us understand how the neural machinery in our head (or, for that matter, in a
mouse’s or salamander’s head) is able to represent very intricate relational struc-
tures, and do so within typical reaction times of small fractions of a second. The
called-for mechanisms must not only have high capacity and expressive power, but
must in addition be able to store and retrieve relational structures once they have
been formed. Finally, a clear picture must be developed for how the brain forms its
preferred relational structures and how these preferred structures are to be charac-
terized, for surely they can’t be arbitrary.

A foreword is not the place to come forward with the proposal of a new system,
but let me just remark that it is my conviction that rapid switching of synapses is part
of the mechanism [4], and my laboratory has come to the conclusion that the ma-
chinery for storing and retrieving relational structures has the form of connections
of a second order, of associative connections between switching synapses [5,6]. It is
highly relevant to this book, however, to point out the fundamental significance of
the time domain for these structures and processes, whatever they may be in detail.

To say it briefly, temporal signal structure is essential for expressing novel bind-
ings, for laying down relational structures of growing complexity in memory, for
reviving relational structures from memory (at a decisively reduced cost in terms
of information rate) and for expressing bindings that resist memory storage. The
mechanism for generating neural connectivity patterns, and, I claim, also of rela-
tional structures in memory, is network self-organization: the network creates struc-
tured activity patterns and synapses change in response to signal correlations, thus
altering network and activity patterns. This reactive loop between network and ac-
tivity tends to stabilize certain connectivity patterns, which are characterized by a
close correspondence between signal correlations and connections. Network self-
organization could perhaps be seen as a sequence of steps, each of which consists in
the establishment of a temporal binding pattern followed by plastic change of con-
nections, strengthening those between neurons bound to each other (that is, having
correlated signals) while weakening those between neurons that are active but not
bound to each other. Even if these individual binding patterns consist merely of one
or a few blocks of bound neurons, the result of a sequence of such events can be a
very intricate network of relations.
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So far, network self-organization has been mostly applied to the generation of
static networks, as illustrated by models of the ontogenesis of the visual system with
its retinotopic connection patterns and columnar arrangements of sensory features
(orientation, motion, stereo, color; for an example see [7]). If, however, synapses are
allowed to switch on a fast time scale, a given set of neurons can support a number of
alternate connectivity patterns, to be activated at different times. An important appli-
cation of this could be neighborhood-preserving fiber projections corresponding to
different transformation parameters to solve the problem of, for example, position-
invariant pattern recognition [6]. For a model for how such alternate relational net-
works and their control structures could be generated by network self-organization,
see [8].

Whereas the capacity of short-term memory is severely limited, as by Miller’s
seven-plus-or-minus-two rule, the capacity of long-term memory is generally held
as virtually unlimited. The price to be paid is the laborious process of transferring
short-term memory into long-term memory. Maybe this process is laborious because
it necessitates the establishment of a new permanent relational network with the help
of quite a number of consecutive activity binding patterns, as mentioned above.

Let me come back to our comparison between computer and brain. McCulloch
and Pitts identified neurons with what in modern parlance are the logic gates—
or bistable elements, or bits—of a digital machine. The bits of the computer can
actually play the role of elements of pattern representations, analogous to the in-
terpretation of neurons as elementary symbols. Many of them do, however, control
switches (hence the name gate). Maybe it is time to reinterpret McCulloch and Pitts
networks correspondingly, taking some of the “neurons” as elementary symbols, as
is customary, but taking others as switches that can be opened and closed, an idea
expressed already in [9].

The computer makes extensive use of temporal binding. All the bit settings in a
given state are related to each other in the sense of forming one coherent functional
state as specified in a program command. All signals necessary to constitute a state
must have arrived at their target before the computer clock triggers the next state.
The computer can afford this tight regime as its signals and pathways by now have
a bandwidth of more than a gigahertz. In the brain, where the signal bandwidth is
less than one kilohertz, a state comes into existence as the result of signals arriving
without precise synchronization, so that the transition from one state to the next is a
smooth and gradual affair.

The greatest step to be taken to transition from the computer to the brain is to find
an explanation for the origin of states. As has been said above, whereas in the com-
puter the switch settings essential for state organization are programmer-imposed,
brain states must be self-organized. The gradual affair of brain state establishment
may not just be a weakness but may be essential to this self-organization. If the
brain has mechanisms to assess a state’s level of self-consistency or completeness,
it can iterate as long as it takes to establish a valid state. This complexity is the price
the brain has to pay to be capable of programming itself as it goes along. If the
state leaves behind a permanent trace that makes it easier to establish it, or parts of
it, later again, and this self-programming may, after extensive exercise, install the
equivalent of complex algorithms.
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Unfortunately, our neural models are still very weak relative to this goal of brain
state organization. This may be responsible for one great shortcoming of current
neural network models and of related approaches—their inability to scale up in
terms of numbers of elements or of functional sophistication to anything like the
brains of even small animals. The difficulty is that larger systems cannot be made
to converge to definite structures under the influence of training input. The solution
to this problem must lie in decisive reduction of the systems’ number of internal
degrees of freedom, to be achieved by network self-organization (the one gigabyte
of human genetic information not being enough to code for the petabyte needed to
note down the wiring diagram of the human cortex). As an essential ingredient of
any theory of network self-organization will be a clear understanding of the way in
which temporal signal structure is shaped by a given network, the contents of this
book seems to be highly relevant to neural network models of the coming decade.
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Chapter 1
Introduction

Guillermo Cecchi and A. Ravishankar Rao

Abstract The field of neural modeling uses neuroscientific data and measurements
to build computational abstractions that represent the functioning of a neural sys-
tem. The timing of various neural signals conveys important information about the
sensory world, and also about the relationships between activities occurring in dif-
ferent parts of a brain. Both theoretical and experimental advances are required to
effectively understand and model such complex interactions within a neural sys-
tem. This book aims to develop a unified understanding of temporal interactions in
neural systems, including their representation, role and function. We present three
different research perspectives arising from theoretical, engineering and experimen-
tal approaches.

A significant amount of effort in neural modeling is directed towards understanding
the representation of external objects in the brain, prominently in primary and asso-
ciative cortical areas, and along the pathways that process sensory information from
the periphery. There is also a rapidly growing interest in modeling the intrinsically
generated activity in the brain represented by the default mode state, the emergent
behavior that gives rise to critical phenomena such as neural avalanches, and the
self-generated activity required to drive behavior. Time plays a critical role in these
intended modeling domains, from the mundane yet exquisite discriminations the
mammalian auditory system achieves in echolocation and voice recognition, to the
precise timing involved in high-end activities such as competitive sports or profes-
sional music performance.

The effective incorporation of time in neural network models, however, has
been a challenging task. Inspired by early experimental observations of oscilla-
tory activity in electro-encephalogram recordings, and more recently in magneto-
encephalogram observations [9], many theoretical efforts have been focused on the
emergence and functionality of oscillations and synchronized activity of neural pop-
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2 G. Cecchi and A.R. Rao

ulations. In fact, the phenomenon of synchronization of ensembles of oscillators has
been long recognized as an essential feature of biological systems. The pioneering
work of Winfree and Kuramoto [10, 15] laid the foundation for a theoretical anal-
ysis of oscillator networks with relatively simple configurations. In neuroscience,
similarly, Wilson and Cowan provided a framework to analyze the conditions under
which ensembles of locally interacting neurons can give rise to oscillations. These
early ideas have permitted researchers to find a conceptual link between neural mod-
eling and the variety of complex perceptual and cognitive brain states that require
local or long-distance coordination of neural ensembles, such as perceptual binding
of real and illusory contours [5], face recognition [12], sensorimotor tasks [8], and
attention [4], for which experimental evidence of involvement of oscillations has
been documented.

Despite this wealth of observations, theoretical frameworks to conceptualize the
full functional implications of oscillatory networks remain scattered and discon-
nected. Moreover, most modeling efforts are descriptive or heuristic, and tailored
to specific, constrained situations. The purpose of this book is to provide a rallying
point to develop a unified view of how the time domain can be effectively employed
in neural network models. We will concentrate on three broad lines of research that
run in parallel, but have enough sleepers to bind them together.

A first direction to consider is the utilization of ensembles of oscillators with
the purpose of achieving specific, well-designed computational tasks. This is exem-
plified by the use of synchronization between oscillators as a means to solve the
binding problem, that is, how to carve out all the units that, across different levels
of abstraction, contribute to the emergence of a perceptual or cognitive object, with-
out including other unrelated active units and without requiring a combinatorial,
exploding number of connections. This issue, with implications for several related
problems in neuroscience and signal processing such as perceptual integration and
image segmentation, has been the focus of intense research in recent years, including
approaches from biological, engineering and mathematical perspectives that range
from physiological plausibility to adaptive network topologies for synchronization.

Motivated mostly by the need to implement practical applications for signal pro-
cessing, a second line of interest is the development of dedicated hardware solutions
for fast, real-time simulations of large-scale networks of oscillators. The implica-
tions of this type of research are enormous, and certainly go beyond the application
to signal processing, as a successful hardware simulator could in principle form
the basis on which to expand and multiply recent advances in the field of neural
implants, neuro-prosthetics and brain-machine interfaces.

Finally, the advancement of electro-physiology techniques, including the devel-
opment of new ones, together with practically inexhaustible computational power,
has allowed for increased availability of experimental data to match the different
levels of abstraction, be they multi-electrode recordings, electro- and magneto-
encephalo- and cortico-grams (EEG, MEG, ECoG), functional magnetic resonance
(fMRI), and ultra-fast optical imaging [1, 2, 6, 7, 11]. As a consequence, a third
and in fact enormously active direction of research is the extraction of temporal
patterns from the various sources of brain data, with objectives that range from the
theoretically motivated to purely clinical studies.
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The chapters have been organized accordingly, reflecting these three research ap-
proaches: theoretical, engineering and experimental. Following is a brief description
of each contribution in relation to the objectives of the book.

1.1 Theoretical Background

While the synchronization of relaxation oscillators in simple network topologies is
well understood, extensions to less constrained conditions are still an open area of
research. In Chap. 2, De Lellis, di Bernardo and Russo investigate the conditions
that allow synchronization in dynamical systems consisting of networks of units
with arbitrary dynamics, topologies and coupling functions. They explore two par-
allel approaches. First, they focus on network plasticity: under very general assump-
tions on the vector field that defines the dynamics of the neural units (the QUAD
condition, a generalization of Lipschitz’s condition for uniqueness of solution of
ordinary differential equations), it is possible to derive conditions for the dynamics
of weight adaptation that ensure synchronization. Interestingly, the resulting update
rule looks like a generalization of Hebbian learning, providing a plausible path for
physiological interpretation. Alternatively, the authors ask whether it is possible to
specify the node dynamics such that under simple coupling functions, and with-
out the need of topology or weight adaptation, synchronization will be guaranteed.
They answer this question through the use of contraction theory, which defines expo-
nentially decaying bounds for the divergence of nearby trajectories of a dynamical
system, if the norm-induced measure of the Jacobian is appropriately bound over
the entire phase space. With this result, they show that the simple addition of self-
inhibitory feedback to the units results in asymptotically synchronizing networks,
for a large and simple class of coupling functions.

One of the most widely studied computational applications of neural synchrony
is as a solution to the superposition catastrophe problem [13]. In Chap. 3, Burwick
proposes an intriguing alternative to typical phase-locking synchrony implementa-
tions. One manifestation of the superposition problem is that when a network learns
to recognize patterns with substantial overlap at the input level (e.g., many pixels in
common), a fine-tuned layer of inhibitory units is required to avoid the spread of ac-
tivation, and synchronization, to all of the units when any given pattern is presented.

Instead of relying on inhibition and units oscillating at constant frequency (at
least in steady-state), the author shows that an acceleration term added to the dy-
namics of the units has the effect of creating a coherent synchronization only for
the units that encode the winning pattern; the other units, while active, fail to syn-
chronize, and instead perform a precessional, non-stationary motion in the space of
phases. The acceleration term depends only on the lateral connections between the
units, and is responsible for the winning ensemble “leaving behind” the units that
do not sufficiently recognize the pattern.

A drawback of oscillatory models is that it is difficult to observe patterns of ac-
tivation in individual neurons consistent with the theory; oscillations seem to truly
be a collective phenomenon. As a consequence, for synchronization to take place,
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oscillatory networks require time in order to transmit phase information back and
forth across the ensemble, limiting their computational capacity as well as their
modeling scope. In Chap. 4, Achler proposes a mechanism to address the binding
of such distributed representations, which is achieved by feedback inhibition, rather
than oscillations. The recurring inhibitory feedback suppresses the activity of “dis-
tractors” that do not belong to the object-encoding ensemble. While it still requires
time for the recurrence to play out, this mechanism may potentially result in faster
convergence times, and furthermore provide an alternative physiologically plausible
model for binding.

While optimization approaches are common in signal processing, computer vi-
sion and, under various guises, in theories of efficient coding for early sensory
processing, little progress has been made towards generalizing optimization prin-
ciples to the realm of oscillatory networks. In Chap. 5, Rao and Cecchi develop
an approach towards understanding sensory coding in an oscillatory network based
on maximizing the sparseness of the spatio-temporal representation of inputs. This
leads to a network dynamics by which higher-level representations of object features
are synchronized with the lower-level object primitives. Furthermore, a superposi-
tion of input objects produces higher-level representations that preserve the distinc-
tion between the objects via the phases of the oscillations. This behavior leads to
a quantitative characterization of the network behavior in terms of its efficacy in
classifying and disambiguating superposed objects. These quantitative measures of
network behavior are a function of the network topology, and depend on the fan-
out of feed-forward, feedback and lateral connections. Rao and Cecchi show that
these quantitative measures of network behavior are maximized when the network
topology is qualitatively similar to the topology of brain networks.

1.2 Engineering Development and Applications

Recollection and prediction constitute two essential attributes of behavior in higher-
order organisms such as vertebrate animals. In Chap. 6, Chung et al. demonstrate
that these attributes can arise through neural network controllers embedded in a
dynamic environment. Both recollection and prediction require a temporal compar-
ison in that the state of the organism or environment in the past or future is compared
against the current state. In this sense, temporal dynamics are essential in order to
represent interactions between the organism and environment. The authors use two
tasks, that of ball-catching and pole-balancing to illustrate their framework for rep-
resenting recollection and prediction. They use classical feed-forward and recurrent
networks, and a hierarchy of retro- and predictive configurations based on the ac-
cess to external markers and to internal dynamical regularities. Their work provides
a possible framework to understand the representation of temporal order in the brain.

Overcoming the computational bottleneck is a major challenge facing researchers
interested in exploring temporal phenomena in neural networks. This problem arises
because simulations of these networks need to be carried out iteratively over small
time increments in order to preserve numerical stability and the accuracy of the
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simulations. This implies that several iterations may be necessary to produce oscil-
lations and phenomena such as synchronization. Hence, hardware implementations
of the underlying models are particularly attractive, as real-time behavior can be
achieved.

In Chap. 7, Saito et al. present hardware-based neural models that reproduce the
biologically observed characteristics of neural responses. They offer several im-
provements over existing hardware implementations, such as eliminating the need
for inductors, thereby enabling a realization using CMOS IC chips. Their system has
been implemented and tested to demonstrate the generation of oscillatory patterns
that govern locomotion in micro-robots.

In Chap. 8, Rast et al. describe an alternative method to address direct hardware
implementations of neural network systems. They have successfully designed a neu-
ral chip multiprocessor called SpiNNaker. This platform allows users to specify net-
work models using a high-level hardware description language. The authors have
implemented spiking neuron models with support for asynchronous interactions be-
tween the neurons. Their goal is to be able to simulate networks with a billion neu-
rons, which approaches the size of a mammalian brain. This research constitutes a
promising exploration of the challenges in designing a highly scalable architecture
for performing simulations of large neural networks.

The ultimate goal of much of the research in neural systems modeling is to be
able to produce behavior that mimics the function of biological organisms, particu-
larly in the way real brains operate. Several researchers work on component models
that explain the functioning of specific pieces of the entire puzzle, such as the encod-
ing and processing of visual sensory information, or motor control. However, there
are relatively few efforts to integrate such component models together. In Chap. 9,
Li and Nara present a roving robot that combines sensory processing with motor
behavior in order to solve a maze navigation task. Such a task is ill-posed, and re-
quires appropriate control rules to be able to navigate around obstacles in order to
reach a desired destination. Li and Nara use the mechanism of chaotic dynamics to
implement an effective navigation scheme. The desired destination is signaled by
means of auditory signals. When confronted with an obstacle, their system is able
to generate alternate paths to reach the destination.

1.3 Biological Experimentation

As already stated, one of the main goals of the inclusion of time in neural network is
to create a theoretical framework to understand the behavior of the nervous system.
In Chap. 10, Vasconcelos et al. ask the experimental counterpart to the theories of
temporal processing: is there a codification of external objects that specifically relies
on timing? They utilize a multi-electrode technique pioneered by Miguel Nicolelis
and John Chapin that allows the simultaneous recording of the electrophysiolog-
ical activity of up to hundreds of neurons, distributed across several cortical and
sub-cortical areas of the rat’s brain. With this setup, they show that different ob-
jects with which the rats interact display a unique activity pattern, when the activity
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is represented by the average firing rate within time bins with sizes ranging from
40 to 1,000 msec. Interestingly, they find that the optimal temporal resolution and
the relative contribution of the different brain areas, in terms of object coding, are
object-dependent, suggesting that the intrinsic features of the objects, as well as the
behavioral interaction patterns the animals engage in with the, determine the coding
features.

Moreover, they also find that exposing the animals to the objects and allowing the
interact with them increases the correlation between the firing patterns with those
generated in the subsequent periods of slow-wave and REM sleep, a finding that
parallels those obtained by Bruce McNaughton in the hippocampus and Dan Mar-
goliash in the songbird system [3, 14].

In Chap. 11, Sturzbecher and de Araujo expound on the possibilities and limita-
tions of combining simultaneous recordings of functional magnetic resonance imag-
ing (fMRI) and electro-encephalograms (EEG), from the perspective of increasing
the spatial and temporal resolution of functional data. Focusing on the practical ap-
plication of identifying the brain region from which seizures originate in epileptic
patients (the epileptogenic zone), they explain that the problem of colocating EEG
and fMRI sources can be addressed by solving the surrogate problem of mapping the
traces created by the very frequent interictal epileptic discharges (IED), typical of
the disease even in the absence of seizures. The inference of fMRI/EEG source lo-
cation is normally based on the general linear model (GLM), which assumes a fixed
temporal profile for the electro-physiology to hemodynamic response function, and
measures the amplitude of the fMRI response to the IED’s using linear correlation.
The authors show that by using Kullback–Leibler divergence to measure these re-
sponses, which does not require any assumption about the transfer response, it is
possible to significantly increase the accuracy of source localization. Their finding
illustrates a concrete, practical application of an explicit inclusion of time in the
analysis of real neural data.
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Chapter 2
Adaptation and Contraction Theory
for the Synchronization of Complex Neural
Networks

Pietro DeLellis, Mario di Bernardo, and Giovanni Russo

Abstract In this chapter, we will present two different approaches to solve the
problem of synchronizing networks of interacting dynamical systems. The former
will be based on making the coupling between agents in the network adaptive and
evolving so that synchronization can emerge asymptotically. The latter will be using
recent results from contraction theory to give conditions on the node dynamics and
the network topology that result into the desired synchronized motion. The theoret-
ical results will be illustrated by means of some representative examples, including
networks of neural oscillators.

2.1 Introduction

Synchronization and coordination of motion are key features of many biological
and living systems. For example, circadian rhythms regulate the functions of cells
in our bodies which are entrained to the day/night cycle via the sophisticated action
of various gene regulatory networks, see, for example, [14]. More notably, synchro-
nization has been proposed as a powerful mechanism to explain some of the patterns
observed in the brain [1, 3, 19, 27]. For instance, as noted in [18], partial synchrony
in cortical networks can be used to explain several brain oscillatory patterns such
as the alpha and gamma EEG rhythms. Also, synchronization of brain waves has
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