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Preface

Regression analysis has quite a long history. It is conventional to think that it goes
back to the works of Gauss on approximation of experimental data. Nowadays,
regression analysis represents a separate scientific branch, which is based on
optimization theory and mathematical statistics. Formally, there exist two branches
of regression analysis: theoretical and applied.

Up to recent time, developments in regression analysis were based on the
hypothesis that the domain of regression parameters has no restrictions. Divergence
from that approach came later on when equality constraints were taken into
account, which allowed use of some a priori information about the regression
model. Methods of constructing the regression with equality constraints were first
investigated in Rao (1965) and Bard (1974).

Usage of inequality constraints in a regression model gives much more pos-
sibilities to utilize available a priori information. Moreover, the representation of
the admissible domain of parameters in the form of inequality constraints naturally
includes the cases when constraints are given as equalities.

Properties of the regression with inequality constraints are investigated in many
papers, in particular, in Zellner (1971), Liew (1976), Nagaraj and Fuller (1991) and
Thomson and Schmidt (1982), where some particular cases are considered. Detailed
qualitative analysis of the properties of estimates in case of linear regression with
linear constraints is given in the monograph (Malinvaud 1969, Section 9.8).

Asymptotic properties of the estimates of regression parameters in regression
with finite number of parameters under some known a priori information are studied
in Dupacova and Wets (1986), Knopov (1997a–c), Korkhin (1985), Wang (1996),
etc. We note that the results obtained in Korkhin (1985) and Wang (1996) under
different initial assumptions, almost coincide. There are many results concerning
practical implementation of regression models with inequality constraints, for
example, Liew (1976), Rezk (1996) and McDonald (1999), Thomson (1982),
Thomson and Schmidt (1982). This problem was also studied in Gross (2003,
Subsection 3.3.2).

In this monograph, we present in full detail the results on estimation of unknown
parameters in regression models under a priori information, described in the form
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vi Preface

of inequality constraints. The book covers the problem of estimation of regression
parameters as well as the problem of accuracy of such estimation. Both problems
are studied is cases of linear and nonlinear regressions. Moreover, we investigate
the applicability of regression with constraints to problems of point and interval
prediction.

The book is organized as follows.
In Chapter 1, we consider methods of calculation of parameter estimates in linear

and nonlinear regression with constraints. In this chapter we describe methods
of solving optimization problems which take into account the specification of
regression analysis.

Chapter 2 is devoted to asymptotic properties of regression parameters estimates
in linear and nonlinear regression. Both cases of equality and inequality constraints
are considered.

In Chapter 3, we consider various generalizations of the estimation problem
by the least squares method in nonlinear regression with inequality constraints on
parameters. In particular, we discuss the results concerning robust Huber estimates
and regressors which are continuous functions of time.

Chapter 4 is devoted to the problem of accuracy estimation in (linear and
nonlinear) regression, when parameters are estimated by means of the least squares
method.

In Chapter 5, we discuss/consider statistical properties of estimates of parameters
in nonlinear regression, which are obtained on each iteration of the solution to the
estimation problem. Here we use algorithms described in Chap. 1. Obtained results
might be useful in practical implementation of regression analysis.

Chapter 6 is devoted to problems of prediction by linear regression with linear
constraints.

Kiev, Ukraine Pavel S. Knopov
Dnepropetrovsk, Ukraine Arnold S. Korkhin
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Chapter 1
Estimation of Regression Model Parameters
with Specific Constraints

Consider the regression

yt D Qf .xt ;’0/C "t ; t D 1; 2; : : : ; (1.1)

where yt 2 <1 is the dependent variable, xt 2 <q is an argument (regressor),
’0 2 <n is a true regression parameter (unknown), Qf .xt ;’/ is some (nonlinear)
function of ’, "t is a noise, and t is an observation number.

In what follows the symbol “0” denotes the transposition.
We will use the function Qf .xt ;’/, where ’ 2 <n is a dependent variable, for

estimation of ’0 and for investigation of the obtained estimates.
For convenience we write

ft .’/ D Qf .xt ;’/; t D 1; 2; : : : (1.2)

and call such a function the regression function.
Assume that a priori parameter constraints are known:

gi .’
0/ � 0; i D 1;m: (1.3)

System of inequalities (1.3) involves equalities as a particular case due to the fact
that any equality can be represented in the form of two inequalities:

gi .’
0/ � 0 and � gi .’

0/ � 0:

Suppose that for t 2 Œ1; T � the values of yt and xt 2 <n are known. In the
present chapter the estimation of the parameter ’0 will be done by means of the
least squares method, i.e.

S.’/ D 1

2

TX

tD1
.yt � ft .’//2 ! min; (1.4)

P.S. Knopov and A.S. Korkhin, Regression Analysis Under A Priori Parameter
Restrictions, Springer Optimization and Its Applications 54,
DOI 10.1007/978-1-4614-0574-0 1, © Springer Science+Business Media, LLC 2012

1



2 1 Estimation of Regression Model Parameters with Specific Constraints

under the constraints

gi .’/ � 0; i D 1;m; (1.5)

where T is the length of the observed dynamic (time) series xt and yt .
Since the case of the linear regression and linear constraints on ˛ is extremely

important and is used for nonlinear estimation algorithms, it will be discussed
separately in Sect. 1.1.

Section 1.2 is dedicated to nonlinear estimation, i.e., to solving the problems (1.4)
and (1.5) under rather general setting. Section 1.3 is dedicated to the perspective
for economical applications in the case when the multivariate linear regression
parameter with nonlinear equality constraints is analysed.

1.1 Estimation of the Parameters of a Linear Regression
with Inequality Constraints

Assume that in (1.2) ft .’/ D Qft .xt ;’/ D x0
t’; t D 1; 2; : : : and take in (1.5)

gi .’/ D g0
i’; i D 1;m, where gi 2 <m, i D 1;m are known vectors. Then the

estimation problems (1.4) and (1.5) can be written in the following form:

S.’/ D 1

2

TX

tD1
.yt � x0

t’/
2; gi .’/ D g0

i’ � bi � 0; i D 1;m (1.6)

or
1

2
jjY � X’jj2 ! min; G’ � b; (1.7)

where Y D Œy1 y2 : : : yT �
0; X is some .T � n/ matrix. The rows of this matrix

are the vector rows x0
t , t D 1; T ; G is an .m � n/ matrix with rows g0

i , i D 1;m;
b D Œb1 b2 : : : bm�

0.
We pose some additional assumptions on the regressor and the constraints, which

will be used later on.

Assumption 1.1. Matrix X in (1.7) is of full rank.

Assumption 1.2. Matrix G in (1.7) is of full rank.

1.1.1 Method of Estimating the Solution to (1.7)

Taking into account the fact that the rank of X is equal to n (Assumption 1.1), we

obtain its orthogonal expansion X D M1

�
M2

OT�n;n

�
M0
3, M1 D ŒM11 M12�, where



1.1 Estimation of the Parameters of a Linear Regression with Inequality Constraints 3

M1 is an orthogonal T � T matrix, T � n is the dimension of the submatrix M11,
M2 is a non-degenerate .n � n/ matrix, M3 is an orthogonal .n � n/ matrix.

Put x D M2M�1
3 ’ � M0

11Y. From the orthogonal decomposition of the matrix X
and the properties of orthogonal matrixes mentioned above we obtain the following:
for the cost function in (1.7),

kY � X’k2 D
����Y � M1

�
Jn

OT�n;n

�
.x C M0

11Y/

����
2

D M1

����M0
1Y �

�
x

OT�n

�
�
�

M0
11Y

OT�n

�����
2

D
����
�

On

M0
12Y

�
�
�

x
OT�n

�����
2

D jjM0
12Yjj2 C jjxjj2;

while for the constraints in (1.7)

N1x � N2

holds true, where N1 D GM3M�1
2 ; N2 D b � GM3M�1

2 M0
11y.

Getting rid of the term independent of x, we obtain the transformed
problem (1.7):

1

2
jjxjj2 ! min; N1x � N2: (1.8)

This problem has a solution (as well as problem (1.7)) if the constraints are
consistent.

Consider the following minimization problem (Lawson and Hanson 1974,
Chapter 23 �5),

P.U/ D 1

2
jjNU � ˆjj2 ! min; U � Om; (1.9)

where U 2 <m;N D ŒN1

::: N2�
0, ˆ0 D ŒO0

n

::: 1�.
Unlike (1.8), (1.9) always has a solution. In order to establish the connection

between the problems (1.9) and (1.8) we introduce the following notation: OU is the
solution to (1.9), r D N OU � ˆ.

The necessary and sufficient conditions for the existence of the minimum in
(1.9) are:

N0.N OU � ˆ/C ƒ D Om; ƒ � Om; OU0ƒ D 0: (1.10)

Hence, we obtain

N0.N OU � ˆ/ � Om (1.11)

and
OU0N0.N OU � ˆ/ D Om: (1.12)
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By arguments similar to those given in Lawson and Hanson (1974, Chapter 23
�4), we have jjrjj2 D r0r D OU0N0.N OU � ˆ/ � rnC1, where rnC1 is .n C 1/th
component of r. Using this equality and (1.12) we obtain jjrjj2 D �rnC1 � 0.

Suppose that jjrjj > 0, and assume that Ox D �rnC1N0
1

OU. Then

N0.N OU � ˆ/ D
h

N1

::: N2

i �N0
1

OU
rnC1

�
D
h

N1

::: N2

i � Ox
�1
�
.�rnC1/

D .N1 Ox � N2/jjrjj2 � Om; (1.13)

which implies N1 Ox � N2. We also would like to mention that if jjrjj D 0 the con-
straints in (1.8) are not consistent, see Lawson and Hanson (1974, Chapter 23 �4).

Now we can demonstrate that Ox is the solution to (1.8).

Theorem 1.1. If the constraints in (1.8) are consistent, then the solution is given
by x D Ox D jjrjj�2N0

1
OU, where OU is the solution to (1.9).

Proof. The necessary and sufficient conditions for the existence of the minimum in
(1.8) are:

x C N0
1œ D On; œ � Om; œ0

i .N1ix � N2i / D 0; i D 1; : : : ; m; (1.14)

where N1i is the i th row of the matrix N1, N2i is the i th component of the vector
N2, œ 2 <m is the Lagrange multiplier, and œi denotes the ith component of œ.

Substituting in (1.14) x D Ox D jjrjj�2N0
1

OU, we obtain

œ D jjrjj�2 OU � Om: (1.15)

Next we show that œ also satisfies the third condition in (1.14). From (1.10),
(1.11), and (1.15) we derive

OU0ƒ D 0 D OU0N0.N OU � ˆ/ D OU0.N1 Ox � N2/jjrjj2 D œ0.N1 Ox � N2/:

Taking into account that œ � Om, and according to (1.13) N1 Ox � N2 � Om, we
obtain from the latter equation the third condition in (1.14). Then the pair .Ox;œ/
satisfies the necessary and sufficient conditions for existence of the minimum in
(1.8). Therefore, Ox is the solution to (1.8). Theorem is proved. ut

Thus, the solution to the problem (1.9) allows us to answer two questions: to
determine the compatibility of the constraints in (1.8) (and, consequently, in (1.7)),
and in case of compatibility to obtain the solution O’ by means of relatively easy
transformation of the solution to (1.9). Namely,

Ǫ D M3M�1
2 .jjN OU � ˆjj�2N0

1
OU C M0

11y/:



1.1 Estimation of the Parameters of a Linear Regression with Inequality Constraints 5

Corollary 1.1. If Assumption 1.1 holds true and the problem (1.7) has a solution,
then the related vector of Lagrange multipliers is given by œ D OUjjN OU � ˆjj�2.
Proof. The necessary and sufficient conditions for the existence of the minimum to
(1.7) are:

X0X’ � X0Y C Gœ D On; œ
0
.G’ � b/ D 0;œ � Om:

From above, using the orthogonal transformation X, we obtain

x C N0
1œ D On; œ � Om; œ

0
i .N1ix � N2i / D 0; i D 1; : : : ; m;

where œi is the ith component of œ.
We see that these relations are satisfied when x D Ox, œ D œ, compared with

(1.14). However, the pair of vectors .Ox;œ/ is unique due to uniqueness implied by
Assumption 1.1. On the other hand, as it was shown in the proof of Theorem 1.1, œ

is given by (1.15). Hence the corollary follows. ut

1.1.2 Algorithm of Finding the Solution to (1.9)

Assume that Assumptions 1.1 and 1.2 are satisfied. According to Lawson and
Hanson (1974, Chapter 23 �3), we can proceed as follows.

Step 1 Let P D ¿, = D f1; 2; : : : ; mg, U WD Om.
Step 2 Calculate the vector w D N0.ˆ � NU/ 2 <m.
Step 3 If the set = is empty or wj � 0 for all j 2 =, go to Step 12. Here wj is the

j th component of w.
Step 4 Find the index i 2 = such that wi D max.wj ; j 2 =/.
Step 5 Move the index i from the set = to the set P.
Step 6 Denote by NP the ..nC1/�mP/-matrix, whose j th column is j th column

of matrix N, if j 2 P, j D 1;m.
Here mP is the number of columns in the matrix NP.
If nC 1 � m, then calculate the vector zP D .N0

PNP/
�1N0

Pˆ 2 <mP .
If n C 1 < m, then find zP with a minimal norm: zP D N0

P.NPN0
P/

�1ˆ 2
<mP .
Denote the components zP by zj ; j 2 P.
Put zj D 0; j 2 =.
Form a vector z D Œzj �; j D 1;m.
Note that if nC1 < m, then the firstmP �1 components of zP are zero, the
mP of the component is equal to the element .mP; .n C 1// of the matrix
N0

P.NPN0
P/

�1 provided that nC 1 < m.
Step 7 If zj > 0 for all j 2 P, then put U WD z and go to Step 2.
Step 8 Find the index k 2 P such that

Uk

Uk � zk
D min

�
Uj

Uj � zj
W zj � 0; j 2 P

�
:
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Step 9 Put � WD Uk=Uk � zk .
Step 10 Put U WD U C �.z � U/.
Step 11 Move all indices j 2 P for which Uj D 0 from the set P to the set =. Then

go to Step 6.
Step 12 Stop. The solution OU D U is obtained.

1.1.3 Special Case of the Problem (1.7)

Usually a regression has a free term on which the constraints are often not imposed.
Let us show that in the case when xt D Œ1 Qx0

t �
0, Qxt 2 <n�1, the solution of the

estimation problem can be simplified by reducing the number of variables to one.
The theorem presented below takes place.

Theorem 1.2. If Assumption 1.1 holds true and no constraints are imposed on the

free term ˛1, then the solution to the problem (1.7) is of the form O’ D Œ Ǫ1 OQ’0
�0,

where Ǫ1 D y � OQ’0 Qx, OQ’ 2 <n�1 is the solution to

1

2
Q’0r Q’ � Q’0d ! min; A Q’ � b: (1.16)

Here Q’ 2 <n�1, r D PT
tD1 .Qxt � Qx/.Qxt � Qx/0, d D Pv

tD1 .Qxt � Qx/.yt � y/,Qx DPT
tD1 Qxt =T , y D PT

tD1 yt=T , and A is the m � .n � 1/ matrix composed of n � 1

last columns of the matrix G.

Proof. We write the Lagrange function for the minimization problem (1.7) in the
form L.’;œ/ D 1

2
’0R’ � ’0X0Y C œ0.G’ � b/, where œ is the m-dimensional

vector of Lagrange multipliers.
According to Assumption 1.1, the necessary and sufficient conditions for the

existence of the minimum in (1.7) are of the form

r’L.’;œ/ D R’ � X0Y C G0œ D On; (1.17)

�i .g0
i’ � bi/ D 0; �i � 0; i D 1;m; (1.18)

where r’L.’;œ/ is the gradient of the Lagrange function along the vector ’, and
�i is ith component of œ.

Since no constraints are imposed on the free term ˛1, the matrix G and its ith row
g0
i are of the form

G D
�

Om

::: A
�
; g0

i D Œ 0 Ai �; (1.19)

where Ai is the ith row of the matrix A. Then we have

G0œ D
�

O0
m

A0œ

�
: (1.20)
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Let us consider the condition (1.17). We consider the first of these equations,
which by (1.20) can be rewritten as

@L.’;œ/

@˛1
D ˛1T C ˛2

TX

tD1
xt1C˛2

TX

tD1
xt2 C � � � C˛n

TX

tD1
xt;n�1 �

TX

tD1
yt D 0:

Dividing both sides of the above equation by the number of observations T , we
obtain

˛1 C ˛2x1 C ˛3x2 C � � � C ˛nxn�1 � y D 0; (1.21)

where xi D PT
tD1 xti=T , i D 1; n� 1, is the ith component of Qx.

Equation (1.21) must be satisfied for the estimates of the parameters, i.e.,

Ǫ1 D y � Ǫ2x1 � Ǫ3x2 � � � � � Ǫnxn�1 D y � OQ’0 Qx; (1.22)

which proves the first statement of the theorem.
Consider the ith equation .i D 2; n/ in the system of equations (1.17),

@L.’;œ/

@˛i
D ˛1

TX

tD1
xtiC˛2

TX

tD1
xtixt1

C˛3
TX

tD1
xtixt2 C � � � C˛n

TX

tD1
xtixt;n�1

�
TX

tD1
xtiyt C aiœ D 0; i D 2; n;

where ai is the ith row of the matrix A0.
Substituting ˛i from equality (1.21) in the above equation, we obtain

nX

jD2
˛j

"
�xj�1

TX

tD1
xti C

TX

tD1
xtixt;j�1

#
�
"

�y
TX

tD1
xtiC

TX

tD1
xtiyt

#
C ai� D 0:

(1.23)

After transformations, we get

�xj�1
TX

tD1
xtiC

TX

tD1
xtixt;j�1 D

TX

tD1
.xti � xi/.xt;j�1�xj�1/ � y

TX

tD1
xtiC

TX

tD1
xtiyt

D
TX

tD1
.xti�xi /.yt�y/:
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Substituting the last two expressions in equality (1.23), we find

nX

jD2
˛j

TX

tD1
.xti � xi /.xt;j�1 � xj�1/�

TX

tD1
.xti � xi /.yt � y/Caiœ D 0; i D 2; n:

We express the obtained system of equations in the vector form using the notation
for problem (1.16):

r Q’ � d C A0œ D On: (1.24)

Consider the condition (1.18). Taking into account the structure of the matrix G
(see representation (1.19)), we obtain

œi .Ai Q’ � bi/ D 0; œi � 0; i D 1;m: (1.25)

Since (1.17) and (1.18) have a unique solution, the (1.24) and (1.25) obtained
from them possess the same property. Then these equations are the necessary and
sufficient conditions of the existence of the minimum in problem (1.16), which holds
true for the vector Q’ D OQ’. Hence, the subvector OQ’ of the vector O’ is the solution to
(1.16). Theorem is proved. ut

Based on Theorem 1.2, one can reduce the estimation of the regression parameter
to solving a quadratic programming problem in which the elements of the matrix of
the objective function are by modules less than one. Put

“ D B Q’; (1.26)

where

B D ��1
y ¢x;¢x D diag.�xi/; i D 1; n;

�D
y

vuutT �1
TX

tD1
.yt � y/2; �xi D

vuutT �1
TX

tD1
.xti � xi /2; i D 1; n:

Denoting r“ D ¢�1
x r¢�1

x , d“ D .�y¢x/
�1d, and A“ D AB�1, we obtain from

problem (1.16) that

1

2
“0r““ � “0d“ ! min; A““ � b: (1.27)

The advantage of the solution O“ of such estimation problem is that O“ does not
depend on the scale of measurement of variables. The elements of the matrix r“ and
of the vector d“ vary in the same range: from �1 to 1, which allows to reduce the
round-up errors.
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Therefore, as is well known (Draper and Smith 1998, Sect. 2.1.3; Maindonald
1984, Sects. 1.8 and 1.10), the numerical solution to the problem (1.27 is more exact
than that obtained as a numerical solution to (1.7) (if no constraints are imposed on
both problems). Under constraints, the accuracy of the numerical solution to (1.27)
will also be higher than that of problem (1.7) since the main error is due to the
inversion of matrices involved in the objective functions of the problems above.

The components of O“ are standardized estimates of .n�1/ last component of the
vector O’. We call them “beta weights” in analogy with the term used in regression
analysis without constraints. Such weights can be conveniently used for estimation
and comparison of the influence force of independent variables on the dependent
variable.

For the problem described in (1.27) we use the calculation scheme described
in Sect. 1.1.1. For this we reduce problem (1.27) to the least squares estimation
problem with constraints, see (1.7).

Let X� be a T � .n � 1/ matrix, with t th row Qx0
t � Qx0

, and let Y� be a vector
whose tth element is yt � y.

Let us transform the objective function in (1.16) by adding the element
1
2
.Y�/0Y�, which is a constant; thus, adding this element has no impact on the

solution of our optimization problem. After transforming (1.26) we have

1

2
Q’0r Q’ � Q’0d C 1

2
.Y�/0Y� D 1

2
Q’0.X�/0X� Q’ � Q’0.X�/0Y� C 1

2
.Y�/0Y�

D 1

2
jjY� � X� Q’jj2 D 1

2
jjY0 � X0“jj2�2y

D
�
1

2
“0r““ � “0d“ C 1

2
.Y0/Y0

�
�2y ;

where X0 is the T � .n � 1/ matrix with .t; i/th component given by xti � xi=�xi;
and tth element of Y0 2 <T is yt � y=�y , t D 1; T .

Therefore we have

1

2
“0r““ � “0d“ D 1

2
jjY0 � X0“jj2 � 1

2
.Y0/0.Y0/: (1.28)

It follows from (1.28) that solution to the problem

1

2
jjY0 � X0“jj2 ! min; A““ � b (1.29)

coincides with solution to (1.27).
The problem (1.29) is similar to (1.7), and thus can be solved by orthogonal

transformation of the matrix X0 described in Sect. 1.1.1. We only need to replace Y
by Y0, X by X0, ’ by “, G by A“ in every equation of Sect. 1.1.1.
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Thus we obtained the solution O“ to (1.29), and taking into account (1.26) we can
find OQ’ D B�1 O“, since the matrix B is non-degenerate and diagonal.

To find O’1 we use (1.22). Finally, the solution to the original problem (1.7) is

given by O’ D Œ O’1 OQ’0
�0.

1.2 Estimation of Parameters of Nonlinear Regression
with Nonlinear Inequality Constraints

1.2.1 Statement of the Problem and a Method of Its Solution

Consider a regression yt D ft .’
0/ C "t , where yt 2 <1 is the dependent variable,

’0 2 <n is the unknown parameter; "t is the noise; t is the index of the observation.

1.2.1.1 Estimation with Constraints

Let yt 2 <1 and xt 2 <n be known vectors, t 2 Œ1; T �. The estimate O’ for the
regression parameters can be found by solving the problem (1.4) and (1.5):

S.’/ D 1

2

TX

tD1
.yt � ft .’//2 ! min;

gi .’/ � 0; i 2 I D f1; 2; : : : ; mg: (1.30)

The solution to (1.30) can be obtained by iterations. Let us linearize at each itera-
tion the components f.’/D Œf1.’/ : : : fT .’/�

0, and the functions gi .’/; i D 1;m,
in neighborhood of the point determined at the previous iteration.

The auxiliary problem obtained after linearization has the following form at the
current point ’:

8
<

:

1

2
jjY � f.’/ � D.’/Xjj2 C 1

2
vX0A.’/X ! min;

Gı.’/X C gı.’/ � Omı ;
: (1.31)

where Y is the vector defined in (1.7), v is a positive number; D.’/ is a T �nmatrix,
D.’/ D Œ@ft .’/=@˛j �, t D 1; T , j D 1; n, the matrix Gı.’/ D Œ@gi .’/=@˛j �,
i 2 Iı.˛/ � I , j D 1; n, is of dimension mı � n, where mı is the number of
elements in Iı.’/; gı.’/ D Œgi .’/�, i 2 Iı.’/, A.’/ is a positive definite matrix
with elements independent of X.


