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PREFACE

Previously, RNA was investigated merely as an intermediate between DNA and
proteins. Studies of regulatory pathways led to the discovery that small RNAs are major
regulators in animal cells, and other non-coding RNAs responsible for RNA cleavage
and modification. Now studies reveal that small RNA regulation exists throughout
eukaryotes and prokaryotes, and long non-coding RNAs exert a large influence over
epigenetics. We can also see that the RNA components of the cell are not merely ‘fixed
accidents’ of an ancient RNA world, but instead are continuing to evolve and affect the
metabolism of all life.

RNAs form complexes with proteins and other RNAs. The RNA-infrastructure
represents the spatiotemporal interaction of these proteins and RNAs in a cell-wide
network. This volume brings together these ideas to illustrate the scope of RNA-based
biology, and how connecting RNA mechanisms is a powerful tool to investigate regulatory
pathways. The first chapter is an introduction to the RNA-infrastructure and how RNAs
and proteins interact in networks. Following this is a chapter on RNA interactions,
explaining how RNA folds upon itself, and then interacts with other RNAs as well as
DNAs and proteins.

The second section focuses on RNA interference (RNA1), where siRNA is shown to
be important in defending plants against viruses. We then explore how miRNAs act in the
regulation of many gene networks, then the spatiotemporal aspects of miRNA-mediated
gene regulation. This networking is further investigated with two specific examples; (i)
spliceosomal RNA infrastructure and (ii) RNA-binding proteins, expanding on traditional
analysis of protein-protein interaction networks to include regulatory RNAs as well as
other interacting RNAs.

The third section describes some of the lesser understood RNA mechanisms. First we
examine how post-transcriptional control is reinforced by RNA protein complexes (RNPs),
responsible for controlling the abundance of gene expression during development. The
next chapter summarizes how non-random tRNA fragments can guide mRNA cleavage,
inhibit translation and promote morphological changes. A chapter on programmed
DNA elimination in the protozoan ciliate Tetrahymena then describes a mechanism for
RNAi-directed heterochromatin formation. Long non-coding RNAs are next introduced
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in their context of epigenomics, and a promoter-associated long non-coding RNA that
binds to the TLS protein, is examined in more detail.

RNA networks are also found throughout prokaryotes, and the fourth section reviews
prokaryotic viral defence (CRISPRs), regulation (riboswitches and small RNAs) and
other RNAs surrounding tRNA processing, as well as the spatiotemporal nature of the
prokaryotic RNA infrastructure.

The last section reviews some of the latest technology that has greatly increased our
knowledge of RNAs including small RNA discovery using high-throughput approaches.
We conclude by discussing evolutionary aspects of RNA networking and examining the
mechanisms we see today, how such RNA-mechanisms evolved and whether some date
back to the ancient RNA world.

This work is but a taste of the wide range of RNA-based mechanisms that connect
in the RNA infrastructure. We have only begun to untangle this complex cellular web,
and have still an awful lot to learn about the cell.

Lesley J. Collins
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CHAPTER 1

THE RNA INFRASTRUCTURE:
An Introduction to ncRNA Networks

Lesley J. Collins

Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
Email: Lj.collins@massey.ac.nz

Abstract: The RNA infrastructure connects RNA-based functions. With transcription-
to-translation processing forming the core of the network, we can visualise how
RNA-based regulation, cleavage and modification are the backbone of cellular
function. The key to interpreting the RN A-infrastructure is in understanding how core
RNAs (tRNA, mRNA and rRNA) and other ncRNAs operate in a spatial-temporal
manner, moving around the nucleus, cytoplasm and organelles during processing,
or in response to environmental cues. This chapter summarises the concept of the
RNA-infrastructure, and highlights examples of RNA-based networking within
prokaryotes and eukaryotes. It describes how transcription-to-translation processes
are tightly connected, and explores some similarities and differences between
prokaryotic and eukaryotic RNA networking.

INTRODUCTION

RNA biology in both eukaryotes and prokaryotes exists in a spatiotemporal network
of processes we call the RN A-infrastructure. In eukaryotes, there are numerous subtypes of
noncoding (nc) RNA genes involved including rRNA, mRNA, tRNA, snRNA, snoRNAs,
several classes of regulatory RNAs (RNAi) and many long ncRNAs. In prokaryotes,
in addition to tRNAs, mRNAs and rRNAs, we can have small RNAs, CRISPRs and
tmRNAs, and even viruses can contain small RNAs. ncRNAs are generally involved
in the transcription-to-translation processes surrounding the conversion and regulation
of information from DNA to protein, implicated in viral defence mechanisms, or are
involved in gene regulation (e.g., RNA interference; RNA1). What we are only beginning

RNA Infrastructure and Networks, edited by Lesley J. Collins.
©2011 Landes Bioscience and Springer Science+Business Media.



2 RNA INFRASTRUCTURE AND NETWORKS

to understand is how these processes are integrated, and how RNA plays a previously
understated role in the overall regulation of the cell.

There are some key differences in cells that are differentiated (i.e., from multicellular
cukaryotes), single celled eukaryotes and prokaryotes, but there are also striking similarities
in how RNA processing and regulation works in different types of cells, giving us clues
to their evolution. Although we are more familiar with RNA networks from eukaryotes,
prokaryotic noncoding RNA research is using concepts developed from eukaryotic work
to discovernew RNA-based systems in bacteriaand archaea. Although finding RNA genes
is becoming a standard step in genomic investigations, it is now clear that discovering
connections between these genes, and their associated proteins is justas important. Once we
add in regulatory and epigenetic elements (such as methylation and histone modification)
our regulatory networks can become very complex, but these complex networks have the
ability to indicate linkages between cellular machineries not previously observed. The
examples in this chapter will show how RNA-based processes within both prokaryotic
and eukaryotic cells interact in networks in both a spatial and temporal manner.

RNAs PROCESSING OTHER RNAs

A good example in how RNA-processes are connected comes from examining the
transcription-to-translation processes which formthe core of the RN A-infrastructure (Fig. 1).!
The processing of the three core-RNAs in eukaryotes (mMRNA, tRNA and rRNA) includes
the RNA-based mechanisms of RNA cleavage and modification (Fig. 1A). In eukaryotes
these are: rRNA by RNase MRP and snoRNAs; tRNA by RNaseP; and mRNAs spliced by
snRNAs within the spliceosome. We can then expand this idea to include spatial movement
and regulation during RNA-processing (Fig. 1B). In prokaryotes we still have tRNAs and
rRNAs being processed either directly by RNAs (e.g., RNase P of tRNA and tmRNA) or
indirectly (where rRNAs are released by tRNA processing) (Fig. 1C).

Examining the connections between these processes in more detail we see networking
between different mRNA machineries. For example, transcription by RNA Polymerase
IT (Pol IT) and mRNA splicing in mammals are carried out in close proximity,? and this
coupling may protect the newly synthesised RNA from degradation? before the termination
oftranscription.** Some splicing may occur cotransciptionally and this significantly improves
processing efficiency (reviewed in ref. 6). At the other end of the transcript, 3'-end cleavage
and polyadenylation of mRNA can be promoted by splicing proteins (e.g., U2AF65 reviewed
inref. 7). It is clear that splicing (the processing of mRNA with snRNAs) connects to other
mRNA-processes including RNA localisation, translational yield and mRNA decay.® In
another example, the Exon Junction Complex (EJC) is a set of proteins deposited on 5" end
of the exon during the second step of the splicing cycle, and remain bound to the spliced
mRNA as it is exported to the cytoplasm.’ This complex interacts transiently with many
factors that connect the mRNA to the downstream RNA processing network,'*!! as it is a
major link between mRNA-splicing and mRNA export, as well as having a potential role
in RNA degradation. The EJC appears to relay the previous location of introns,® and thus
detects incorrect splicing that introduces premature stop-codons. It has been shown that in
mammals at least, spliceosomal proteins and especially those involved in exon-definition,
remain associated with the pre-mRNA to be available for the splicing of the next introns.
This allows for efficient splice site recognition for subsequent introns since splice site
recognition only needs to be carried out once for a site.® With splicing central to downstream
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Figure 1. RNAs processing other RNAs are the key feature of the RNA-infrastructure. A) In
transcription-to-translation machineries in eukaryotes, ncRNAs are involved in the processing of
mRNA, tRNA and rRNA. B) In eukaryotes, compartmentalisation and biogenesis pathways permit
regulation of these processes in the RNA infrastructure. *MRP RNA may not be in all eukaryotes. C)
In prokaryotes in general, there is still processing of tRNAs and rRNAs but less mRNA processing. A

and B adapted from' with permission from authors. A color version of this figure is available at www.
landesbioscience.com/curie.



4 RNA INFRASTRUCTURE AND NETWORKS

RNA processing it is not surprising that many proteins are now seen as having roles in
splicing as well as their own function (e.g., transcription or capping). However, it remains
to be seen whether these proteins actually influence catalysis in the spliceosome, or are
detected due to the close proximity of these RNA processing complexes.

Similarly, transcribed pre-tRNAs require processing before being able to function as
amino acid transfer molecules for translation. Leader sequences at the 5" and 3’ ends of the
pre-tRNAs require cleaving, introns within the tRNA may need to be removed and in some
cases a 3’ CCA tail needs to be added.'? In addition, certain nucleotides within the tRNA
require modification by aminoacylation. The ribonucleoprotein RNase P is responsible for
cleaving the 5' leader sequence of pre-tRNAs in all cells, although the overall structure of
this protein-RNA complex differs in eukaryotes, bacteria and archaea. In bacteria there
is one small protein that plays diverse roles such as enhancing substrate binding, altering
substrate recognition, stabilising RNA conformation, and aiding catalysis by discriminating
between the substrate and product by binding to the 5’ leader sequence of the pre-tRNA. 1314
Eukaryotes have 9-10 proteins in the complex with a single RNA. Archaeal RNase P also has
multiple proteins (five including the ribosomal protein L7Ae) which do show some homology
to some of the eukaryotic RNase P proteins. The RNase P RNA from some representatives
from each kingdom can be induced to perform weak catalysis without its accompanying
proteins, but only with high salt and high cation conditions in vitro (summarized in ref. 15).

RNase P plays key networking roles in both the eukaryote’s and prokaryote’s RNA
infrastructure, resulting in the cleavage of additional substrates and the repression of
transcription (Fig. 2).'%!" In bacteria, as well as cleaving the 5’ leader sequence of tRNAs,
it cleaves a similar leader sequence for tnRNA. tmRNA (transfer-messenger RNA) is a
specialised tRNA molecule that together with the SmpB protein (small protein B) rescues
stalled ribosomes in a process called trans-translation (reviewed in ref. 18).With a structure
partly a tRNA molecule and partly an mRNA molecule,” the tRNA part binds to the
stalled ribosome, allows the translation to proceed along the mRNA part which encodes a
distinctive degradation signal and a translation stop signal. When the mistranslated proteinis
released after the stop signal it is targeted for degradation. This process of trans-translation is
conserved throughout bacteria and is also present in some mitochondria and chloroplasts.?*!
In prokaryotes other cleavage products by RNase P include some riboswitches and some
viral RNAs as well as the 4.5S rRNA which is part of the Signal Recognition Particle
involved in post-translational transport (reviewed in ref. 22).The eukaryotic counterpart
of the 4.5S rRNA (7SL RNA) is also cleaved by RNase P (reviewed in ref. 13). In yeast
the HRA1RNA and some C/D box snoRNAs are processed by RNase P although whether
cleavage is the exact mechanism is yet to be completely determined. In humans MALAT],
another long ncRNA, is cleaved by RNase P. tRNAs in organelles within eukaryotes (in
some species) either encode their own RNase P RNA (e.g., the yeast S. cerevisiae), use
the nuclear counterpart (e.g., humans) or occasionally do without the RNA component
altogether.”® Additionally, in the archaeans Nanoarchaeum equitans and Pyrobaculum
aerophilum and the hyperthermophilic bacterium Aquifex aeolicus, there does not appear to
be any RNase P-like RNA sequence in their genomes.?* In N. equitans the requirement for
RNase P has been replaced by a strict placement of the promoter 26 nucleotides upstream
of the mature tRNA sequence allowing transcription of leaderless tRNAs.?

There is a feedback affect of RNase P on its own polymerase RNA Pol I11'° and the
polymerase affecting rRNA transcription, RNA Pol 1."” Thus, RNase P in eukaryotes
has a large effect on other aspects of RNA processing including splicing (U6 snRNA is
transcribed by RNA Pol I1I), and RNA modification (by some yeast C/D box snoRNAs).
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Figure 3. RNase MRP has different functions in different cellular compartments. Within the nucleolus
it is involved in rRNA processing. However, in the cytoplasm it cleaves the leader sequence of the cell
cycle control protein CyclinB2, and in the mitochondria it is crucial for mtRNA replication where it
cleaves the D loop of the mtDNA to generate RNA primers. Whether this macromolecule consisting of
one catalytic RNA and ~9 proteins moves as a whole through the cell, or disassembles and re-assembles
at the different areas in which it functions, is not yet known. A color version of this figure is available
at www.landesbioscience.com/curie.

It clearly plays a central role in the RNA infrastructure of both eukaryotes and prokaryotes
and itis likely that other substrates and processing connections, especially in prokaryotes,
are still to be uncovered.

RNase MRP is a ribonucleoprotein found only in eukaryotes, but closely related and
sharing many of the same proteins with RNase P (for a review see ref. 13). It too has
multiple roles (Fig. 3), processing the A3 site of rRNA in the nucleolus, a critical cell
cycle control protein (Cyclin B2) in the cytoplasm, and the D-loop of mitochondrial DNA
(MtDNA) in the mitochondria to generate RNA primers for Mt DNA replication. This
is a good illustration of the spatial nature of RNA-Protein complexes that have different
roles in different cellular compartments. RNase MRP is transcribed by RNA Pol IIT and
thus is affected by the RNase P feedback on the polymerase.

Other aspects of rRNA processing in eukaryotes are linked to transcription and
downstream rRNA maturation. Extensive modification of the pre-rRNAs includes
methylation of 2" hydroxyl groups of ribose (guided by C/D box snoRNAs [small nucleolar
RNAs]) and pseudouridine formation from uracil (guided by H/ACA snoRNAs).?
In vertebrates, these snoRNAs are mostly found within introns, and are spliced out by
snRNAs, illustrating the strong network of RNA biogenesis and splicing machineries.
Yeast models (primarily in S. cerevisiae) indicate that RNA Pol I, elongation factors and
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rRNA sequence elements appear to optimize transcription elongation and co-ordinate
interactions (including those with snoRNAs) with the pre-rRNA for correct rRNA
processing and ribosome assembly.?’ In addition, a protein complex of three transcription
factors (the CURI complex comprising of Rap1, Fhll and Ifh1) links ribosomal protein
production and pre-rRNA processing.?® Thus, rRNA processing also uses feedback from
the later stages of processing to regulate transcription.

SPATIAL REGULATION OF EUKARYOTIC RNA PROCESSING

Spatial placement of both RNA and protein macromolecular components plays
an important part in the regulation of RNA-processing. In eukaryotes, this is clearly
demonstrated by how RNAs move through nuclear bodies (such as Cajal bodies, Gems
and nucleoli) and for some of them, into cytoplasmic bodies such as P-bodies and RNA
granules. As an example, Figure 4 illustrates the biogenesis of snRNAs and snoRNAs in

TMG-snRNAcap — m7G-snRNA
modification \ 1 s
SMN*

—_— Cytoplasm
SE SE Trarufcnptlon

‘ -
\ Nucleoplasm

capping

-u-..__‘l
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A Cajal
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Figure 4. The network of Sm-class snRNA and snoRNA biogenesis pathways connected by the SMN
complex and the PHAX complex. Transcribed snRNAs move through nuclear compartments during initial
processing then into the cytoplasm using the PHAX complex where they gain the SMN complex. After
this, the snRNA/SMN macromolecule moves back into the nucleus for further maturation before being
used for active splicing. In contrast snoRNAs do not enter the cytoplasm but instead use the PHAX
complex for intranuclear transport and the SMN complex for macromolecule maturation. Figure adapted
with permission of authors. A color version of this figure is available at www.landesbioscience.com/curie.
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humans. Typically there are different stages of RNA-processing taking place within different
nuclear sub-compartments, but for the Sm-class-snRNAs, the processing moves to the
cytoplasm, before the re-import of the snRNP-complexes back to the nucleus. In contrast,
the Lsm-class snRNAs (U6 and U6,,. snRNAs) in humans never leave the nucleus,”
although in yeast there may be some nuclear export and re-import of U6 snRNA.% Cajal
Bodies in particular appear to be important sub-nuclear compartments for RNPs since
they are not only repositories for the biogenesis of RNPs. Mature snRNPs travel through
Cajal Bodies, sometimes moving from one Cajal body to another suggesting that the Cajal
Body is being used as a ‘recycling center’, enabling the re-assembly of the tri-snRNPs.*° In
contrast, the assembly of C/D box snoRNPs appears to occur cotranscriptionally, but much
of the intra-nuclear and intra-cellular trafficking of snoRNPs remain to be characterised.”!

A feature of intra-cellular RNP trafficking is how some proteins assist these different
RNPs in different manners. One such group of proteins linking snRNA and snoRNA
biogenesis (Fig. 4) is the PHAX complex (consisting of PHAX, Cap Binding Protein
(CBC), CRM1 and RanGTP) which in humans at least, transports snRNAs from the
nucleus to the cytoplasm as well as transport of some snoRNAs (especially U3, U8, U13)
around the nucleus to speckles, Cajal bodies and nucleoli.’? Although PHAX is ametazoan
protein there has been a similar protein characterised in the protist Cryptosporidium
parvum.* Another important RN A-escorting macromolecule is the SMN protein complex,
which is found in the nucleoplasm and nuclear bodies called Gems.** The SMN complex
scrutinizes cellular RNAs to ensure that Sm cores (of highly reactive RNA-binding Sm
proteins) are only assembled on proper snRNAs,* and the Gemin5 protein of this SMN
complex can distinguish snRNAs from other cellular RNAs for snRNP biogenesis.** The
SMN complex also plays a role in other biogenesis pathways including those for hnRNPs
and microRNPs.* The above pathways for snRNP and snoRNP biogenesis have been
largely characterised for mammalian and yeast systems, and although there is now some
plant information,* there is little known about how these RNPs complexes form in the
many different groups of protists. As with plants we expect some different proteins to
be involved and there will likely be different pathways.

After nuclear export some mRNAs are translated immediately, but many mRNAs are
recruited to RNA granules (See Chapter 8, Table 1 pg 124 for cellular component definitions)
in the cytoplasm until developmental or environmental cues signal their translation.*
Cytoplasmic RNA granules (reviewed inrefs. 36,37)include Processing-bodies and Stress
Granules as well as compartments found in germ cells (polar and germinal granules) and
neurons (neuronal granules). Processing-bodies (P-bodies or GW bodies) are involved with
post-transcriptional processes, including mRNA degradation, nonsense-mediated mRNA
decay (NMD), translational repression and RNA-mediated gene silencing (reviewed in ref.
38).mRNA degradation is initiated by the deadenylation (shortening) of the 3’ polyA-tail
followed by decapping.’® Stress Granules are a cytoplasmic RNA granule that typically
forms during stress response (whereas P-bodies are present continuously).*’ Stress Granules
contain polyadenylated transcripts and are not degraded, making them available for rapid
re-initiation after stress recovery,*” whereas mRNAs recruited to P-bodies are largely
deadenylated.’” mRNAs within stress granules P-bodies and Stress Granules constantly
exchange RN As and proteins with the cytosol*” and mRNAs can move from one to the other.
P-bodies have been investigated in yeasts, plants, trypanosomatids, insects and vertebrates
(reviewed in ref. 37) and thus are likely to be important eukaryotic RNA-based cellular
features. Evidence is suggesting that Stress Granules are the consequence, not the cause
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of the shut off of translation during stress, and the formation of critical macromolecules
may be linked to the sequestering of key components (reviewed in ref. 37).

Although RNAs such as miRNAs, siRNAs and tRNAs typically act in the cytoplasm,
there are some miRNAs that may re-enter the nucleus, possibly playing a role in
modification or nuclear component assembly processes (summarized in refs. 41,42).
tRNAs in particular show interesting nuclear-cytoplasmic dynamics. tRNA transcription
and 5 processing is typically in the nucleolus, however 3’ processing has been found
mostly in the nuceloplasm; tRNA modification is usually in the cytoplasm but in some
species, tRNA splicing takes place on the mitochondrial cytoplasmic surface (reviewed
in ref. 42). Subsequently however, a retrograde pathway exists where the tRNAs are
imported from the cytoplasm back into the nucleus® but can then be re-exported to the
cytoplasm in response to nutrient availability.** Although major studies of tRNA cellular
dynamics has been mainly in yeast, the retrograde process (moving cytoplasm to nucleus)
at least appears conserved in vertebrates (summarized in ref. 42).

Spatiotemporal movement of RNAs or key components of RNA-based machineries,
is not restricted to eukaryotes. The Gram-negative bacteria Caulobacter crescentus
is dimorphic in that it has a stalked form that adheres to surfaces (with a holdfast
and stalk), and a swarmer form that is mobile with a flagellum. Often used as a model
for bacterial cell cycle and cell differentiation studies, C. crescentus shows substructure
localisation and temporal timing of trans-translation.**” tmRNA and its small protein
SmpB are colocalised to a helix-like pattern in swarmer and predivisional cells but they
are delocalised in stalked cells.* However, the protein RNase R which interacts with
the tmRNA is localised separately to another helix-like pattern that is out of phase with
the tmRNA-SmpB pattern. Trans-translation requires that the individual tmRNA-SmpB
molecules would have to disassociate from the helix-like structure in order to pass
through the ribosome, and it is feasible that these structures facilitate the regulation of
trans-translation.*® In a possible feedback mechanism, the tmRNA of C. crescentus is
regulated in the cell cycle by temporally controlled transcription and translation.*> With
trans-translation required for many functions across bacteria, including sporolation in
Bacillus subtilis,*® symbiosis in Bradyrhizobium japonicum'”, and pathogenecity in
Salmonella enteria (summarized in ref. 47), the tight regulation of the RNA component
is not unexpected. It is even possible that these helix-like structures seen in C. crescentus
are analogous to the P-bodies we find in eukaryotes.

RNA REGULATION, CONNECTING COMPONENTS
OF THE RNA-INFRASTRUCTURE

RNAIi Networks

RNA regulation (including RNAI, riboswitches and RNA-editing), storage
and degradation are linked to the processes discussed in the earlier sections. RNAi
(RNA interference involving miRNAs, siRNAs and piRNAs are reviewed in refs.
49, 50). Although best known for roles in regulating mRNA levels, RNAI is also directly
involved in many cellular processes including chromatin-mediated gene silencing and
DNA re-arrangements. It is also not a matter of one target to one regulator. It has been
shown’! that a single miRNA can directly or indirectly down-regulate the production of
thousands of genes. Although RNAi as a mechanism appears general in eukaryotes, the



10 RNA INFRASTRUCTURE AND NETWORKS

timing and location of miRNA expression varies even between vertebrates due to changes
in miRNA copy number, genomic context (either exclusively intergenic, or intronic and
intergenic) or both.” There can also be expression differences when there is conservation
of the miRNA sequence.*

Other forms of RNA-based transcriptional regulation include regulation by RNase P
which has a positive effect on Pol III promoter activity.!®>* RNase P associates with the
chromatin oftRNA and SSrRNA genes which contain the Type-1 Pol Il promoter sequences,
but not with the U6 snRNA and 7SL-RNA that have Type-3 Pol III promoter sequences.
Transcription of these Pol III transcribed ncRNAs declines sharply in extracts depleted of
active RNase P.'® RNase P may also have a role in the splicing-independent maturation of
snoRNAs as recently demonstrated in yeast* linking the production of tRNAs and rRNA.

A number of longer ncRNAs directly target transcription (reviewed in ref. 55)
including SRA (a transcriptional co-activator for several steroid-hormone receptors),
NRSE (Neuron-restrictive silencer element dsSRNA), HSR1 (heat shock RNA-1) and
7SK RNA. This latter ncRNA is transcribed by Pol I1I and represses transcript elongation
by Pol II (also reviewed in ref. 55). Another instance is a regulatory transcript from a
minor promoter interfering with the expression of the main transcript.’ With the ongoing
discovery®” of new ncRNAs in a wider range of eukaryotes we certainly expect the
identification of other direct transcriptional regulators.

An interesting trend is the discovery that small regulatory RNAs can be derived from
other ncRNAs. A number of studies have characterised miRNA-like RNAs derived from
snoRNA-derived RNAs*® and RNAs derived from the Vault RNA.* tRNA-derived
RNAs are thought to be involved in translational repression.®*' Studied in mammals,
plants, fungi, and the protists Giardia and Tetrahymena, tRNAs are cleaved by members
of the Ribonuclease A or T2 protein families in the anticodon loop forming 5" and 3’
tRNA halves. Although how these different tRNA halves regulate translation inhibition
is still very much under investigation, in mammals it has been shown that 5’ tRNA halves
induces Stress Granule formation®? and that the original cleavage is enhanced by stress.
In Trypanosomes, granules are formed that are distinct from Stress Granules.*”* Other
translational-inhibition small RNAs include qiRNAs (QDE-2 associated RNAs) from
the fungus Neurospora which inhibit protein translation during DNA damage response.*
With mass RNA sequencing still in its early days, these may represent only a fraction of
the real amount of derived regulatory RNAs.

Transcription-initiation RNAs" are typically transcribed from a repeat motif called a
‘spanion cluster’. These RNAs have a strong preference towards transcription initiation
sites. Other small regulatory RNAs of note are the tiny RNAs of mammals, which are
17-18 bp in length and have a connection to splicing in that their 3" ends map precisely
to the splice donor site of internal exons.® A subgroup of these splice-site RNAs are seen
to be associated with highly expressed genes.* How widespread these types of regulatory
RNAs are remains to be investigated, but high throughput sequencing technology has
enabled researchers to uncover these types and more.

RNAI is seen thus as a typical eukaryotic feature but there are some lineages that
have lost their RNAI proteins but some still maintain some form of ncRNA-based
regulation. The yeast S. cerevisiae does not have the ‘standard’ RNAi system since it
lacks Dicer-like RNases, Argonaute or Piwi-like proteins, but it does have ncRNAs

“In a wave of confusion we are also seeing different types of regulatory RNAs given the same prefix. Two
types of small RNA, transcription-initiation RNAs,* and tiny RNAs® have both been given the name
tiRNAs. To avoid confusion the expanded name rather than tiRNA will be used for both cases.
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that act in the regulation of its genes.” These ncRNAs including the ‘cryptic unstable
transripts’ (CUTS), tend to stem from bidirectional transcription and may be passive
by-products of transcriptional noise rather than any specific mechanism.®’ In single
celled protists, some species of Trypanosomes have lost their RN A1 systems while others
have retained them.®® Additionally, for some Trypanosomes the retention of associated
viruses is necessary and it has been suggested that the loss of RNAi has facilitated viral
retention. However genome plastidity is also a potential effect of this loss.® Whether
these RNAi-less Trypanosomes have evolved a different type of RNA-regulation system
to compensate, is as yet unknown.

RNA Networks and Epigenetics

ncRNAs play a major role in epigenetics® 7 and include networks consisting of long
ncRNAs (such as XIST and HOTAIR), and short ncRNAs®747 such as miRNAs, siRNAs
and piRNAs. miRNAs in particular have been shown to be important in RNA networks
behind stem-cell self-renewal and differentiation (reviewed in ref. 76). In general, there
are two types of stem-cell, tissue stem cells (which include somatic and germline cells
which develop, maintain and repair tissues in developing and adult organisms), and
embryonic stem cells (ES) which develop from an embryo to give rise to the foetus.
In one example of a miRNA-epigenetic network, the expression of the miR-290-295
miRNA cluster (a group of miRNAs that share a 5’ proximal AAGUGC motif) increases
during pre-implantation development and remains high in undifferentiated ES cells, but
then decreases after ES cell differentiation.”” These miRNAs act as post-transcriptional
regulators of retinoblastoma-like 2 (Rbl2) which in turn acts as a transcriptional repressor
of DNA methyl transferases (DNMTs), Dnmt3a and Dnmt3b. DNMTs epigenetically
silence OCT4, a key transcription factor of ES cell renewal and differentiation.”””
Alternatively if Dicer is knocked out, miRNAs are depleted and the methylation of
the Oct4 promoter is severely impaired during differentiation. Many other candidate
targets of the AAGUGC seed-containing miRNAs have been identified as well as many
indirectly regulated targets,”” but it remains to be seen how other aspects of self-renewal
and differentiation are affected by the miR-290 cluster.

Networks involving multiple long ncRNAs (defined generally as having a
length > 200 nt) are also known, with a classic example being the long ncRNA control
of X-chromosome inactivation (reviewed in refs.74,79). In mammals the potential double
dosage of gene expression from the X chromosome in XX females (when compared to
XY males) is controlled by inactivating one of the X chromosomes. In mice there are two
forms of X Chromosome inactivation (XCI)” where XCI is imprinted in extra-embryonic
tissues and the paternal X (Xp) is inactivated. Further along in development just before
the embryo proper, the Xp is re-activated after which random XClI is initiated during
early embryonic development. In humans XCI is randomly activated but it is not clear if
the imprinted form is present.” During random XCI in humans (Fig. 5), the long ncRNA
Xist is repressed on the future active X chromosome Xa by another long ncRNA Tsix,*
and activated on the future inactive X chromosome by a third long ncRNA Jpx.*

This complex network of long ncRNA and methylation processes can be seen if we
examine this system in more detail (Fig. 5). In mammals, in pre-XCI embryonic stem
cells (ES) Tsix is transcribed at a higher level than Xist, and triggers H3-K4 dimethylation
along both the Xist and Tsix genes. Xist becomes elevated when the major pluripotency
factors Nanog, Oct3/4 and Sox2 dissociate from intron 1 within Xis¢ initiating XCI. One
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Figure 5. RNA networking during mammalian random X chromosome inactivation (XCI). During Pre-XClI,
Tsix and RepA, compete for binding to the polycomb repressive complex PRC2. Tsix is expressed at
a high level upon XCI and triggers dimethylation (wide vertical arrows) along both the Xist and Tsix
genes, leading to active transcription of Xist and Tsix. On the future inactive X chromosome Xi, Oct4
binding is lost so Tsix is downregulated and Xist induced and is further enhanced by Jpx. A coating
of Xist RNA forms a chromatin compartment and recruits the chromatin repressive complex (CRC)
to the Xi. The inactive status of this chromosome is maintained by PCR2. On the future active X
chromosome Xa, Oct4 is retained and maintains Tsix expression. Tsix, associated with methyltransferase
Dnm3a, directs the methylation on the Xist promoter and Xist is repressed. Dicer-dependent XiRNAs are
possibly produced from Xist and Tsix ncRNA duplexes and could direct methylation along the future
Xi, and also direct methylation of CpG islands of the Xist promoter region in the Xa. Gene distances
are not to scale. Figure adapted from™ with permission from authors. A color version of this figure is
available at www.landesbioscience.com/curie.

of these proteins Oct4 is known to active Tsix and another RNA region Xite which is
an activator of Tsix. Oct4 also acts as a repressor of Xist aiding in the control of the
Xist:Tsix balance in XCI.*? During XCI different events occur upon the future active X
chromosome (Xa) and the future inactive X chromosome (Xi).

Onthe future inactive X chromosome (Xi), Oct4 binding is lost so Tsix is downregulated
and Xistis induced.® A coating of Xist RNA forms a silent chromatin compartment where
X-linked genes become ‘localised’ through binding to the Xist RNA.3 Xist RNA also
recruits the chromatin repressive complex (CRC) to Xi. The inactive status is maintained
by the polycomb repressive complex PCR2. In pre-XCI Tsix and another RNA, Repeat
A (RepA), compete for PRC2 binding® but upon XCI, RepA recruits PRC2 to Xist and
PRC2 methylates Xist at H3K27 to upregulate Xist*. RepA also collaborates with the
long ncRNA Jpx in an as yet unknown mechanism to transcriptionally activate Xist.*' On
the future active X chromosome Xa, Oct4 is retained and maintains Tsix expression. Tsix,



