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Preface

This book covers the recent developments in modern reliability theory, mainly in
such important areas as signatures and multi-state systems and their influence on
statistical inference. Research in these areas is growing rapidly due to many
successful applications in very diverse problems. As the result, many industries
have benefited from adopting the corresponding methods.

These methods have attracted increasing attention in recent years for solving
many complex problems which were inspired by nature and technology. New
methods have been successfully applied to solving many complex problems where
traditional problem-solving methods have failed.

This book presents new theoretical issues that were not previously presented in
the literature, as well as the solutions of important practical problems and case
studies illustrating the application methodology.

The book provides an overview of the recent developments in the theory of
signatures and demonstrates their role in the study of dynamic reliability and
nonparametric inference for lifetime distribution of monotone systems. New
properties of system signatures (D-spectra) and component importance D-spectra
have been investigated. It was demonstrated how component Birnbaum impor-
tance measures can be expressed via these spectra and how bounds on lifetime
variances for coherent and mixed systems can be found by using signatures. In
addition, it was pointed out on the connection between several aspects of proba-
bility-signature and structure-signature.

Concerning multi-state system (MSS) reliability, the book introduces a special
transform for a discrete-states continuous-time Markov process, so-called LZ-
transform and demonstrates the benefits of its applications. In MSS context, there
issues such as practical availability modeling, a case-study for supermarket
refrigerating system, finding optimal reserve structure for power generating sys-
tem, determination of vital activities in reliability program, optimal incomplete
maintenance, optimal multi-objective reliability allocation, importance analysis
based on multiple-valued logic methods, and optimal replacement and protection
strategy were also considered. A separate chapter is devoted to the novel issue of
continuous-state system reliability. Absorbing controllable Markov processes were
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considered as the models of aging and degradation for some technical and/or
biological objects, as well as a semi-Markov model of MSS operation reliability.

The book aims to be repository for modern theoretical methods and their
applications in real-world reliability analysis and optimization. Recent advances in
statistical inference are presented in this volume by reliability analysis of redun-
dant systems with unimodal hazard rate functions, nonparametric estimation of
marginal temporal functionals, frailty models in survival analysis and reliability,
goodness of fit tests for reliability modeling and nonparametric estimators of the
transition probabilities for three-state Markov model.

All chapters are written by leading experts in the corresponding areas. This
book will be useful to postgraduate and doctoral students, researchers, reliability
practitioners, engineers and industrial managers with interest in reliability theory
and its applications.

We wish to thank all the authors for their insights and excellent contributions to
this book. We would like to acknowledge the assistance of all involved in the
review process of the book, without whose support this book could not have been
successfully completed. We want to thank all who participated in the reviewing
process: Prof. Somnath Datta, University of Louisville, USA, Prof. Ilya Gertsbakh,
Ben Gurion University of the Negev, Israel, Dr. Gregory Gurevich, SCE–Shamoon
College of Engineering, Israel, Prof. Alex Karagrigoriou, University of Cyprus,
Cyprus, Prof. Ron S. Kenett, KPA Ltd., Israel, Dr. Edward Korczak, Telecom-
munications Research Institute, Poland, Prof. Michael Peht, University of Mary-
land, USA, Prof. Dmitrii Silvestrov, Stockholm University, Sweden, Dr. Armen
Stepanyants, Institute of Control Science, RAS, Russia, Prof. Guram Tsitsiashvili,
Institute for Applied Mathematics, Eastern Branch of RAS, Russia, Dr. Valentina
Victorova, Institute of Control Science, RAS, Russia, Prof. Ilia Vonta, National
Technical University of Athens, Greece, Prof. David Zucker, Hebrew University
of Jerusalem, Israel.

We would like to express our sincere appreciation to Prof. Ilya Gertsbakh from
Ben-Gurion University, Israel, for his great impact on book preparation.

We would like also to thank the SCE–Shamoon College of Engineering (Israel),
and its president, Prof. Jehuda Haddad and the SCE Industrial Engineering and
Management Department and its dean Prof. Zohar Laslo for their support and ever
present help at all stages of the work.

Our special thanks to Boris Frenkel from Kivitek Ltd. (Israel) for his technical
assistance and help.

It was indeed our pleasure working with the Springer Senior Editorial Assistant,
Ms. Claire Protherough.

Israel, May 2011 Anatoly Lisnianski
Ilia Frenkel
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Chapter 1
Signature Representation
and Preservation Results for Engineered
Systems and Applications to Statistical
Inference

N. Balakrishnan, Jorge Navarro and Francisco J. Samaniego

Abstract The aim of this article is to provide an overview of some of the recent
developments relating to the theory of signatures and their role in the study of
dynamic reliability, systems with shared components and nonparametric inference
for a component lifetime distribution. Some new results and interpretations are
also presented in the process.

Keywords Coherent system � Mixed system � Signature � k-out-of-n system �
Exchangeability � Order statistics � Stochastic ordering � Hazard rate ordering �
Likelihood ratio ordering � Dynamic reliability � Dynamic signature � Systems
with shared components � Burned-in systems � D-spectrum � Nonparametric
inference � Parametric inference � Best linear unbiased estimator � Proportional
hazard rate model

1.1 A Brief Overview of Signature Theory

Most work on reliability theory focuses on the study of coherent systems; see, for
example, (Barlow and Proschan 1975). A reliability system is said to be a coherent
system if

N. Balakrishnan (&)
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• it is monotone in its components (i.e., replacing a failed component by a
working one cannot make the system worse), and

• every component is relevant (i.e., every component influences the functioning or
failure of the system).

Suppose a coherent system has n components whose lifetimes X1,…, Xn are
independent and identically distributed (i.i.d.) continuous random variables with
distribution function F. Let X1:n \_\ Xn:n be the order statistics obtained by
arranging the component lifetimes Xi’s in increasing order of magnitude. Then, the
system lifetime T will coincide with an order statistic Xi:n for some i [ {1,…, n},
which led to the following notion of system signature in a natural way. Let si, for
i = 1,…, n, be such that P(T = Xi:n) = si. Then, the system signature is simply
the vector s = (s1,…, sn), as introduced by Samaniego (1985). Signatures are most
useful in the comparison of system designs as amply demonstrated in the books by
Samaniego (2007) and Gertsbakh and Shpungin (2010). The system signature is a
pure distribution-free measure of a system’s design, and it is important to recog-
nize that it dissociates the quality or reliability of the components from that of the
system. The comparison of systems otherwise becomes very difficult since a series
system with 4 good components can outperform a parallel system with 4 poor
components. Thus, signature vectors enable us to compare the performance
characteristics of different systems in a complete nonparametric way without
reference to the lifetime distribution of the components.

The signature vector facilitates the following representation for the system
reliability.

Theorem 1 (Samaniego 1985) Let X1,…, Xn * F be the i.i.d. component life-
times of a coherent system of order n, and let T be the system lifetime and s its
signature. Then,

FTðtÞ ¼ PrðT [ tÞ ¼
Xn

i¼1

si PrðXi:n [ tÞ

¼
Xn

i¼1

si

Xi�1

j¼0

n
n

j

� �
fFðtÞg jf1� FðtÞgn�j; for t [ 0: ð1:1Þ

From representation (1.1), we also readily see, for example, that

EðTÞ ¼
Xn

i¼1

siE Xi:nð Þ:

Signatures also become useful in determining the reliability of one coher-
ent system relative to another as demonstrated in the following representation
result.

2 N. Balakrishnan et al.



Theorem 2 (Hollander and Samaniego 2008) Let T1 and T2 represent the lifetimes
of coherent systems of orders n and m, with respective signatures s1 = (s1,1,…, s1,n)
and s2 = (s2,1,…, s2,m) and ordered component lifetimes {X1:n,…, Xn:n} and
{Y1:m,…, Ym:m} drawn from independent i.i.d. samples from a common continuous
distribution F. Then,

Pr T1� T2ð Þ ¼
Xn

i¼1

Xm

j¼1

s1;is2;j Pr Xi:n� Yj:m

� �
: ð1:2Þ

Since the precedence probability Pr Xi:n� Yj:m

� �
is known to be

Pr Xi:n� Yj:m

� �
¼ 1

mþ n
n

� �
Xn

‘¼i

jþ ‘� 1
‘

� �
mþ n� j� ‘

n� ‘

� �
;

readily representation (1.2) shows that the relative reliability of two systems can be
readily determined from their respective signatures. More on such representation
results and also preservation results in terms of signatures are presented in the
subsequent sections.

The above representations can be stated in a more general way through mixed
systems. A mixed system, as defined by Boland and Samaniego (2004) is a sto-
chastic (ST) mixture of coherent systems; so, any probability vector s in the
simplex

s 2 ½0; 1�n :
Xn

i¼1

si ¼ 1

( )

is the signature of a mixed system. Although mixed systems are not physi-
cal systems and are realized in practice only by using a randomization device
which chooses a coherent system according to a fixed discrete probability distri-
bution, it facilitates the study of reliability characteristics of systems in a general
framework.

With this brief overview of signature theory, we are ready to proceed to
the main discussions of this paper. The rest of the paper is organized as follows.
In Sect. 1.2, we describe some general representation and preservation results
based on system signatures. In Sect. 1.3, we discuss the concept of dynamic
reliability and the notion of dynamic signature and associated representation and
preservation results. Next, in Sect. 1.4, we consider the situation of two systems
sharing some components and introduce the idea of joint signatures and then
describe some distributional results and properties associated with them. Finally,
in Sect. 1.5, we describe both nonparametric and parametric methods of inference
for component lifetime distributions based on system lifetime data under the
assumption that the system signature is known.

1 Signature Representation and Preservation Results for Engineered Systems 3



1.2 Signature-Based Representation and Preservation Results

We refer the readers to the book by Barlow and Proschan (1975) for basic details
on the coherent system reliability theory. There, it is stated (see page 12) that if
T is the lifetime of a coherent system with component lifetimes X1,…, Xn and
minimal path sets P1,…, Pk, then

T ¼ max
j¼1;...;k

XPj ; ð1:3Þ

where XPj ¼ mini2Pj Xi is the lifetime of the series system with components in Pj,
for j = 1,…, k. A set P � f1; . . .; ng is a path set of a coherent system if the system
works when all the components in P work. A path set P is a minimal path set if it
does not contain other path sets (see Barlow and Proschan 1975, p. 9 or Gertsbakh
and Shpungin 2010, p. 38). For example, the minimal path sets of the series–parallel
system T ¼ min½X1;maxðX2;X3Þ� (see Fig. 1.1) are P1 = {1, 2} and P2 = {1, 3}.
A k-out-of-n system is a system which works if at least k of its n component works.
Thus, the minimal path sets of a k-out-of-n, for k= 1,..., n, system are all k-element
subsets of {1,…, n}. It is evident that the lifetimes of the k-out-of-n systems are the
ordered component lifetimes X1:n\ � � �\Xn:n, respectively.

From (1.3), it is easy to prove by means of inclusion–exclusion formula that the
reliability function FTðtÞ ¼ PrðT [ tÞ of the system can be expressed as

FTðtÞ ¼
Xk

j¼1

FPjðtÞ �
X

i\j

FPi[PjðtÞ þ � � � þ ð�1Þkþ1FP1[���[PkðtÞ; ð1:4Þ

where FP stands for the reliability function of the series system lifetime
XP ¼ mini2P Xi for P � f1; . . .; ng. This representation can be traced back to
(Agrawal and Barlow 1984). Note that the system reliability function is a linear
combination of reliability functions of series systems with positive and negative
coefficients (that sum to one). Such representations are called generalized mixtures
since mixtures usually involve only positive coefficients. It may also be noted that
representation (1.4) holds for general coherent systems (without any assumption
about the components). For example, the reliability function of the system
depicted in Fig. 1.1 can be expressed as

FTðtÞ ¼ Ff1;2gðtÞ þ Ff1;3gðtÞ � Ff1;2;3gðtÞ: ð1:5Þ

2

3

1

Fig. 1.1 Coherent system
with lifetime
T = min [X1, max (X2, X3)]
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If the random vector (X1,…, Xn) has exchangeable component lifetimes (i.e.,
(X1,…, Xn) is equal in distribution to [Xr(1),…, Xr(n)] for any permutation r of the
set {1,…, n}), then FP ¼ FQ whenever P and Q have the same cardinality. In this
case, representation (1.4) can be simplified to

FTðtÞ ¼
Xn

j¼1

ajF1:jðtÞ; ð1:6Þ

where F1:jðtÞ ¼ PrðX1:j [ tÞ is the reliability function of the series system lifetime
X1:j = min (X1,…, Xj) and a1,…, an are some coefficients that depend only on the
structure of the system. Note that some coefficients can be negative and so here
again we have a generalized mixture representation. The vector a = (a1,…, an)
has been termed the minimal signature in Navarro et al. (2007). An analogous
representation can also be presented by using the reliability functions of parallel
systems, which has been termed the maximal signature in Navarro et al. (2007).
For example, if the system depicted in Fig. 1.1 has exchangeable components, then
representation (1.5) simplifies to

FTðtÞ ¼ 2F1:2ðtÞ � F1:3ðtÞ; ð1:7Þ

which gives the minimal signature of T to be (0, 2, -1). The minimal signatures
of all coherent systems with 1–5 components have been tabulated in Navarro and
Rubio (2010a, b).

In particular, if the component lifetimes are i.i.d., then representation (1.6) can
be simplified to

FTðtÞ ¼
Xn

j¼1

ajF
jðtÞ ¼ p FðtÞ

� �
; ð1:8Þ

where FðtÞ ¼ PrðX1 [ tÞ is the common reliability function of the component
lifetimes and pðxÞ ¼

Pn
j¼1 ajx j is the reliability polynomial of the system. This

representation for the i.i.d case was obtained in (Birnbaum et al. 1966, Esary and
Proschan 1963, Satyarananaya and Prabhakar 1978) and the coefficients in this
polynomial are called dominations. For example, if the components of the system
in Fig. 1 are independent, then representation (1.7) simplifies to

FTðtÞ ¼ 2F
2ðtÞ � F

3ðtÞ ¼ p FðtÞ
� �

;

where the reliability polynomial is p(x) = 2x2 - x3.
Evidently, the minimal signature of the series system X1:n is (0, 0,…,0, 1). The

lifetime of the (n-1)-out-of-n system is X2:n and its minimal path sets are
Pi = {1,…, n}-{i}, for i = 1,…, n. Hence, from (1.3), its minimal signature is
(0, 0,…, 0, n, 1-n). In general, the minimal path sets of Xi:n are all (n-i ? 1)-
element subsets of {1,…, n}. It is then easy to see from (1.3) that its minimal

signature a = (a1,…, an) satisfies a1 = _ = an-i = 0 and an�iþ1 ¼
n

n� iþ 1

� �
.
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The complete set of coefficients can be obtained from the expressions given in
David and Nagaraja (2003), p. 46. Therefore, if the component lifetimes are
exchangeable, then the vector FOS ¼ ðF1:n; . . .;Fn:nÞ of reliability functions of
lifetimes of k-out-of-n systems (order statistics) can be obtained from the vector
FSER ¼ ðF1:1; . . .;F1:nÞ of reliability functions of lifetimes of series systems as
FOS ¼ FSERAn, where An is a non-singular n 9 n triangular matrix. Conversely,
FSER can also be obtained from FOS as FSER ¼ FOSA�1

n , where An
-1 is the inverse

matrix of An. Hence, in this exchangeable case, upon replacing F1:1; . . .;F1:n by
F1:n; . . .;Fn:n in (1.6), we obtain

FTðtÞ ¼
Xn

j¼1

sjFj:nðtÞ; ð1:9Þ

where the coefficients s1,…, sn depend only on the structure of the system. Hence, these
coefficients should be the same as those in (1.1) for the i.i.d. continuous case. This shows
that the coefficients in (1.9) are non-negative and consequently (1.9) is indeed a mixture
representation. In fact, these coefficients are such that si = Pr (T = Xi:n) for i = 1,…, n,
whenever the random vector (X1,…, Xn) has a joint absolutely continuous distribution
(see Navarro and Rychlik 2007). However, this is not necessarily the case when
(X1,…, Xn) has an arbitrary exchangeable joint distribution. For example, if we consider
the series system T = X1:2 = min (X1, X2), evidently

F1:2ðtÞ ¼ 1 � F1:2ðtÞ þ 0 � F2:2ðtÞ;

and so (1, 2) is its signature vector. However, if X1 and X2 are i.i.d. with a common
Bernoulli distribution with parameter p 2 ð0; 1Þ (i.e., Pr (Xi = 1) = p and
Pr (Xi = 0) = 1 - p for i = 1, 2), then Pr (T = X2:2) = p2 ? (1 - p)2

= 0.
Consequently, representation (1.9) obtained in Navarro et al. 2008a, b) extends
representation (1.1) for coherent systems having arbitrary exchangeable compo-
nents, but by using the signature vector obtained in the i.i.d. continuous case. The
coefficients si can be obtained from the domination coefficients ai by using the
matrix An or through the general expressions presented in (Boland et al. 2003).

Finally, we show how a system with n exchangeable components can also be
represented as a mixture of ordered lifetimes from m similar components. This
property will enable us to compare systems of different sizes. Let T be the lifetime
of a coherent system with component lifetimes X1,…, Xn, and let (X1,…, Xm) be an
exchangeable random vector (with m C n) comprising component lifetimes. Now,
recall from (1.6) that the reliability function of the system is a linear combination
of F1:1; . . .;F1:n, and consequently it is also a linear combination of F1:1; . . .;F1:m

(m C n). Then, by using the fact that F1:1; . . .;F1:m can be obtained from
F1:m; . . .;Fm:m (using a matrix Am), we readily have

FTðtÞ ¼
Xm

j¼1

sðmÞj Fj:mðtÞ; ð1:10Þ
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where the coefficients s1
(m),…, sm

(m) depend only on the structure of the system.
These coefficients can be computed either by using the triangle rule of order
statistics or by using the general formulas presented in Samaniego (2007), Navarro
et al. (2008a, b). In fact, it can be proved that if (X1,…, Xm) has an absolutely
continuous joint distribution, then the coefficients sj

(m) are such that
sj

(m) = Pr (T = Xj:m). Thus, sj
(m) are non-negative and (1.10) shows that T is equal

in distribution to a mixture of k-out-of-m systems with component lifetimes X1,…,
Xm. The vector s(m) = [s1

(m),…, sm
(m)] is called signature of order m for the system.

Of course, the signature of order m = n coincides with the usual signature pre-
sented in (1.1).

The mixture representation results can be used to carry out ST comparisons of
systems by using signatures. The first result in this direction was obtained by
Kochar et al. (1999) for coherent systems with i.i.d. components, which is stated
below in Theorem 3. We refer the readers to the book by Shaked and
Shanthikumar (2007) for definitions and various properties of the ST, hazard rate
(HR), mean residual life (MRL) and likelihood ratio (LR) orders that are pertinent
to subsequent discussions.

Theorem 3 (Kochar et al. 1999) If T1 = /1(X1,…, Xn) and T2 = /2(X1,…, Xn)
are the lifetimes of two coherent systems with respective signatures
s1 = (s1,1,…, s1,n) and s2 = (s2,1,…, s2,n) and X1,…, Xn are i.i.d. with a common
continuous distribution F, then the following properties hold:

• If s1� ST s2, then T1� ST T2;
• If s1� HR s2, then T1� HR T2;
• If F is absolutely continuous and s1� LRs2, then T1� LRT2.

These preservation results were extended to the exchangeable case by Navarro
et al. (2008a, b). Moreover, their results, presented below in Theorem 4, can also
be used to compare systems of different sizes by using the concept of signature of
order m described above.

Theorem 4 (Navarro et al. 2008a, b) If T1 ¼ /1ðY1; . . .; Yn1Þ and T2 ¼
/2ðZ1; . . .; Zn2Þ are the lifetimes of two coherent systems with respective signatures
of order n [for n C max (n1, n2)] s1 = (s1,1,…, s1,n) and s2 = (s2,1,…, s2,n),
fY1; . . .; Yn1g and fZ1; . . .; Zn2g are contained in (X1,…, Xn) with (X1,…, Xn)
having an exchangeable joint distribution, then the following properties hold:

• If s1� ST s2, then T1� ST T2;
• If s1� HR s2 and

X1:n� HR. . .� HR Xn:n; ð1:11Þ

then T1� HRT2;
• If s1� HR s2 and
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X1:n�MRL. . .�MRL Xn:n; ð1:12Þ

then T1�MRL T2;
• If (X1,…, Xn) has an absolutely continuous joint distribution, s1� LR s2 and

X1:n� LR. . .� LR Xn:n; ð1:13Þ

• then T1� LRT2.

These properties are proved by using the representation (1.10) and the mixture
preservation results in Shaked and Shanthikumar (2007). It should be noted that in
Theorem 4 we need the ordering properties (1.11), (1.12) and (1.13) for the order
statistics which need not hold for exchangeable distributions (see Navarro and
Shaked 2006). However, since these ordering properties hold in the i.i.d. case, they
can be dropped from the statement of the theorem in this case. Also, observe that
the condition p� HRq is required for the MRL ordering property.

1.3 Dynamic Reliability with Representation
and Preservation Results

A system that is working at time t has a profile at that point in time which would
differ from its profile at time 0 when the system was new. This may be due to the
aging of its components which, if not for the exponential lifetime distribution, will
typically result in poorer performance than when the components were new. But
there may also be a change in the system itself which, while still working, may be
operating with one or more failed components. In this section, we will describe
some recent work aimed at characterizing the lifetime characteristics of working
used systems at a particular inspection time t at which some information about the
system and its components may have become available. There are many different
formulations possible for this problem, and here we shall discuss three of them.
For a detailed discussion on these problems and their solutions, one may refer to
the recent works of Navarro et al. (2008a, b) and Samaniego et al. (2009).

Before embarking on our intended survey, it is useful to make some remarks on
a slightly broader applicability of system signatures than has been typical in the
existing literature on this topic. The typical definition of the signature of a system
begins with the assumption that the system is coherent, as described, for example,
in Sect. 1.1. However, if several components have failed by time t during which
the system has been in service, the used system may in fact no longer be coherent.
The monotonicity of the original system will of course be inherited by the used
system, but it is no longer true that every component is necessarily relevant. This is
apparent from the following simple example. Suppose the 4-component coherent
system depicted in Fig. 1.2 is put into service.
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Suppose, at time t, it is noted that the system is still working, but that Component
1 has failed. It is clear that Component 2 is now irrelevant to the functioning of the
used system, and that the system now behaves exactly as a 2-component series
system with Components 3 and 4. Thus, at time t, such a used system is no longer
coherent, but is still a monotone 3-component system. The natural question that
arises then is whether the notion of system signature is applicable to a used inco-
herent system, and fortunately the answer to this question is affirmative. In the above
example, by denoting the failure times of the three working components at time t as
Y1, Y2 and Y3, and their ordered values by Y1:3, Y2:3 and Y3:3, one may easily compute
the signature vector s, with si = Pr (T = Yi:3) for i = 1, 2, 3, as s ¼ 2

3 ;
1
3 ; 0

� �
.

Indeed, it is straightforward to show that the representation and preservation theo-
rems for system signatures described in Sect. 1.2 apply in the broader context of
monotone systems. In what follows, we will use the standard definition and notation
for system signatures without making specific reference to whether the system in
question is coherent or simply monotone.

We now turn our attention to the ST behavior of working used systems. We
focus, first, on the case in which the system is inspected at time t and is simply
noted to be working. This is simply equivalent to studying the system residual
lifetime T–t, given that it is known that T [ t. Navarro et al. (2008a, b) established
that the following representation of the conditional residual reliability of a system,
given T [ t, holds:

PrðT � t [ xjT [ tÞ ¼
Xn

i¼1

piðtÞ PrðXi:n � t [ xjXi:n [ tÞ; ð1:14Þ

where piðtÞ ¼ si PrðXi:n [ tjT [ tÞ, with s being the signature of the system when
new and Xi:n being the ith order statistic (for i = 1,…, n) of the lifetimes of the n i.i.d
components of the original system. It should be noted that the vector
p(t) = [p1(t),…, pn(t)] depends on the system design (through s) as well as the
common component lifetime distribution F. In this way, unlike the signature of a
new system, this signature vector is a not a distribution-free measure. In this case, the
following preservation theorem has been established in Navarro et al. (2008a, b).

Theorem 5 (Navarro et al. 2008a, b) Let p1(t) and p2(t) be the vectors of the
coefficients in representation (1.14) of two coherent systems, both based on n
components with i.i.d. lifetimes distributed according to a common continuous
distribution F, and let T1 and T2 be their respective lifetimes. Then, the following
properties hold:

2

4

1

3

Fig. 1.2 The 4-component
parallel-series coherent
system with lifetime
T = max [min
(X1, X2), min (X3, X4)]
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• If p1ðtÞ� ST p2ðtÞ, then T1 � tjT1 [ tð Þ� ST T2 � tjT2 [ tð Þ;
• If p1ðtÞ� HR p2ðtÞ, then T1 � tjT1 [ tð Þ� HR T2 � tjT2 [ tð Þ;
• If F is absolutely continuous and p1ðtÞ� LRp2ðtÞ, then

T1 � tjT1 [ tð Þ� LR T2 � tjT2 [ tð Þ:

Navarro et al. (2008a, b) also discussed the behavior of a working used system at
time t, but with the information that at least i components have failed by time t. They
obtained the following representation theorem in this case.

Theorem 6 (Navarro et al. 2008a, b) If T is the lifetime of a coherent system with
n i.i.d components having a common continuous distribution function F and i 2
f1; 2; . . .; n� 1g such that PðT [ t;Xi:n\tÞ[ 0, then there exist coefficients
p1(t, i),…, pn(t, i) (that depend on F) such that

Pn
j¼1 pjðt; iÞ ¼ 1 and

PrðT � t [ xjT [ t;Xi:n\tÞ ¼
Xn

j¼1

pjðt; iÞ PrðXj:n � t [ xjXj:n [ tÞ ð1:15Þ

for all x C 0.

Some coefficients in (1.15) can be negative and it is therefore a generalized
mixture representation. One may refer to (Navarro et al. 2008a, b) for some
comments on the interpretation and computation of the coefficients p(t, i), as well
as a preservation result for the ST order.

A detailed study of dynamic system signatures has been made by Samaniego
et al. (2009). While the coefficients in representations (1.14) and (1.15) depend on
both the system design and the underlying component distribution F, it is of
natural interest to obtain the signature of a used system working at the inspection
time t that is distribution-free and is therefore a measure on the design, just as the
signature of a new system is. This becomes possible under a different form of
conditioning than those considered above. The following concept of the dynamic
signature of a used system working at time t, given that exactly i components of
the system have failed by time t, has been formulated in Samaniego et al. (2009).

Theorem 7 (Samaniego et al. 2009) Let s be the signature of a coherent system
based on n components with i.i.d lifetimes having a common continuous distri-
bution F. Let T be the system lifetime and let Xk:n (for k = 1,…, n) be the
kth ordered component lifetime. Moreover, let Ei ¼ fXi:n� t\Xiþ1:ng for
i 2 f0; . . .; n� 1g, and assume that PrðEi \ fT [ tgÞ[ 0. Then, the dynamic
signature of the system, given Ei \ fT [ tg, is the (n - i)-dimensional vector
sn-i(n - i) with its elements as

sn�i;kðn� iÞ¼ PrðT ¼Xk:njEi\fT [ tgÞ¼ skPn
j¼iþ1 sj

; for k¼ iþ1; . . .;n: ð1:16Þ

Remark The ratio on the RHS of (1.16) is in fact the conditional probability
mass function of an integer-valued random variable Y whose distribution function
is given by the cumulative signature, which is called D-spectrum (see Gertsbakh
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and Shpungin 2010). In their setting, Y stands for the random number of
sequentially destroyed components needed to cause the failure of the system.

From Theorem 7, the following representation result is readily deduced (see
Samaniego et al. 2009):

PrðT [ t þ xjEi \ fT [ tgÞ ¼
Xn�i

j¼1

sn�i; jðn� iÞGj:n�ijtðxÞ; for x [ 0; ð1:17Þ

where Gj:n�ijtðxÞ is the reliability function of the jth order statistic from a random
sample of size n-i from the population with conditional reliability function
GðxjtÞ ¼ Fðxþ tÞ=FðtÞ and sn�i;jðn� iÞ is the jth element of the signature vector
sn�iðn� iÞ of the working used system with exactly i failed components. A similar
representation, but of order n, is given by

PrðT [ t þ xjEi \ fT [ tgÞ ¼
Xn�i

j¼1

sn; jðn� iÞGj:njtðxÞ; for x [ 0; ð1:18Þ

where Gj:njtðxÞ is the reliability function of the jth order statistic from a random
sample of size n from the population with conditional reliability function
GðxjtÞ ¼ Fðxþ tÞ=FðtÞ. The vector snðn� iÞ with elements sn;jðn� iÞ in repre-
sentation (1.18) is called the dynamic signature of order n. Under an i.i.d.
assumption (*F) on component lifetimes, Samaniego (2007, p.32) proved that, for
any coherent system of size k, and for n[k, there is a coherent system of size
n with the same lifetime distribution. In the notation used here, sk(k) is the sig-
nature of the system of size k and sn(k) is the signature of the system of size n that
is equivalent to it. Using this vector, the following preservation theorem has been
established in Samaniego et al. (2009).

Theorem 8 (Samaniego et al. 2009) Let s
ð1Þ
n ðn� iÞ and s

ð2Þ
n ðn� jÞ be the dynamic

signatures of order n of two coherent systems, both based on n components with i.i.d.
lifetimes having a common continuous distribution F. Let T1 and T2 be their
respective lifetimes and suppose both systems are working at the inspection time
t and have exactly i and j failed components, respectively, by time t. Then, the
following properties hold:

• If s
ð1Þ
n ðn� iÞ� ST s

ð2Þ
n ðn� jÞ, then T1 � tjT1 [ t;Eið Þ� ST T2 � tjT2 [ t;Ej

� �
;

• If s
ð1Þ
n ðn� iÞ� HR s

ð2Þ
n ðn� jÞ, then T1 � tjT1 [ t;Eið Þ� HR T2 � tjT2 [ t;Ej

� �
;

• If F is absolutely continuous and s
ð1Þ
n ðn� iÞ� LRs

ð2Þ
n ðn� jÞ, then T1 � tjT1 [ t;ð

EiÞ� LR T2 � tjT2 [ t;Ej

� �
:

Signature-based necessary and sufficient conditions for various orderings of the
residual lifetimes of the systems compared in the above theorem have also been
given by Samaniego et al. (2009).

The representation of the residual reliability of a used system working at time t,
given Xi:n� t\Xiþ1:n, facilitates a novel study of certain well-known notions of

1 Signature Representation and Preservation Results for Engineered Systems 11



aging. In the definitions below, drawn from Samaniego et al. (2009), the notions of
conditional New Better than Used (i-NBU) lifetime distributions and Uniformly
NBU (UNBU) lifetime distributions are introduced.

Definition 1 Consider a coherent system based on n components with i.i.d. life-
times X1; . . .;Xn�F, where F is a continuous distribution with support (0, ?). Let
T be the system’s lifetime, and let Ei ¼ fXi:n� t\Xiþ1:ng, where X0:n � 0. For
fixed i 2 f0; . . .; n� 1g, T is conditionally NBU, given i failed components,
(denoted by i-NBU) if for all t [ 0, either

• PrðEi \ fT [ tgÞ ¼ 0 or
• PrðEi \ fT [ tgÞ[ 0 and

PrðT [ xÞ	 PrðT [ xþ tjEi \ fT [ tgÞ for all x [ 0: ð1:19Þ

Definition 2 An n component coherent system is said to be UNBU if it is i-NBU
for i 2 f0; 1; . . .; n� 1g.

Sufficient conditions on the common component lifetime distribution F and on
the system’s dynamic signatures to ensure that the system is UNBU have also been
given by Samaniego et al. (2009), and their result is as follows.

Theorem 9 (Samaniego et al. 2009) Let sn(n-i), i = 0,…, n-1, be the dynamic
signatures and T be the lifetime of a coherent system based on n components
whose lifetimes are i.i.d. with common continuous distribution F. Assume that F is
NBU and that

snðnÞ	 ST snðn� iÞ for i ¼ 1; . . .; n� 1: ð1:20Þ

Then, the system is UNBU.

An interesting application of these dynamic signatures to evaluation of burned-
in systems has also been discussed by Samaniego et al. (2009). The engineering
practice of burn-in is widely used as a vehicle for weeding out poor systems or
poor components before a product is deployed or released for sale. The testing of
new computer software for bugs that might be detected and removed constitutes a
prototypical example. Using a performance per unit cost criterion, the options of
fielding a new system or fielding a system burned into the ith component failure
(that is, to Xi:n) have been compared in Samaniego et al. (2009). For an n com-
ponent system with i.i.d. component lifetimes (*F), three modeling scenarios
have been investigated: F is exponential, F is increasing failure rate (IFR) Weibull
(i.e., with shape parameter larger than 1) and F is increasing failure rate (DFR)
Weibull (i.e., with shape parameter less than 1). Conditions are identified in which
a system burned into the ith component failure, for some given i 2 f1; . . .; n� 1g,
will provide better performance per unit cost than a new system. The answers
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obtained are shown to depend critically on the relationship between the fixed cost
A of building the system and the cost C of each of its components. We refer the
readers to Samaniego et al. (2009) for further details.

1.4 Joint Signatures and Systems with Shared Components

Let us consider two coherent systems with lifetimes T1 ¼ /1ðY1; . . .; Yn1Þ and
T2 ¼ /2ðZ1; . . .; Zn2Þ, where fY1; . . .; Yn1g and fZ1; . . .; Zn2g are the respective sets
of component lifetimes. We shall assume that fY1; . . .; Yn1g and fZ1; . . .; Zn2g are
contained in {X1,…, Xn}, where X1,…, Xn are i.i.d. with a common distribution
function F. Under this setup, note that T1 and T2 may share some components and
thus can be dependent. The dependence can be represented by their joint distri-
bution function

Gðt1; t2Þ ¼ PrðT1� t1; T2� t2Þ:

Two cases of special interest are (a) when T1 = Xi:n for a fixed i 2 f1; . . .; ng
and T1 \ T2, and (b) when T1 = Xi for a fixed i 2 f1; . . .; ng and Xi \ T2.

The joint distribution function G of these two coherent systems can also be
represented in terms of the distribution functions F1:n,…, Fn:n of the associated
k-out-of-n system lifetimes. This result, due to Navarro et al. (2010), is as follows.

Theorem 10 (Navarro et al. 2010) The joint distribution function G of T1 and T2

can be written as

Gðt1; t2Þ ¼
Xn

i¼1

Xn

j¼0

si;jFi:nðt1ÞFj:nðt2Þ for t1� t2 ð1:21Þ

and

Gðt1; t2Þ ¼
Xn

i¼0

Xn

j¼1

s
i;jFi:nðt1ÞFj:nðt2Þ for t1 [ t2; ð1:22Þ

where F0:n = 1 (by convention) and {si, j} and {si, j
* } are collections of coefficients

(which do not depend on F) such that
Pn

i¼1

Pn
j¼0 si;j ¼

Pn
i¼0

Pn
j¼1 s
i;j ¼ 1.

The proof given in Navarro et al. (2010) is based on the minimal cut set
representation obtained in Barlow and Proschan (1975), p. 12 and representation
(1.10). Observe once again that both expressions (1.21) and (1.22) are generalized
mixture representations. Moreover, Pr(T1 = T2) can be positive and consequently
G can have a singular part. For this reason, it is not possible to obtain a common
mixture representation based on Fi:n(t1) and Fj:n(t2) for all t1 and t2. The vector of
matrices S = (S, S*), where S = (si, j) and S* = (si, j

* ), with the coefficients in
representations (1.21) and (1.22), has been termed the joint signature of the
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systems by Navarro et al. (2010). Their procedure for computing these coefficients
is illustrated in the following example. Incidentally, this example also shows that
some coefficients si, j and si, j

* can be negative.

Example Let us consider the coherent system depited in Fig. 1.1 with lifetime
T1 = min [X1, max (X2, X3)] and T2 = X3:3, where X1, X2, X3 are i.i.d. variables
with a continuous distribution function. First of all, note that T1 \ T2. The joint
distribution function G of (T1, T2) can be written, for t1 B t2, as

Gðt1; t2Þ ¼ PrðminðX1;maxðX2;X3ÞÞ� t1;maxðX1;X2;X3Þ� t2Þ
¼ PrðfX1� t1g [ fmaxðX2;X3Þ� t2g;maxðX1;X2;X3Þ� t2Þ
¼ PrðX1� t1;maxðX1;X2;X3Þ� t2Þ
þ PrðmaxðX2;X3Þ� t1;maxðX1;X2;X3Þ� t2Þ
� PrðX1� t1;maxðX2;X3Þ� t1;maxðX1;X2;X3Þ� t2Þ
¼ PrðX1� t1;X2� t2;X3� t2Þ þ PrðX2� t1;X3� t1;X1� t2Þ
� PrðX1� t1;X2� t1;X3� t1Þ

¼ Fðt1ÞF2ðt2Þ þ F2ðt1ÞFðt2Þ � F3ðt1Þ
¼ F1:1ðt1ÞF2:2ðt2Þ þ F2:2ðt1ÞF1:1ðt2Þ � F3:3ðt1Þ:

Then, since the signatures of order 3 of X1:1, X2:2 and X3:3 are 1
3 ;

1
3 ;

1
3

� �
, 0; 1

3 ;
2
3

� �

and ð0; 0; 1Þ, respectively (see Navarro et al. 2008a, b), we obtain

Gðt1; t2Þ ¼
1
9

F1:3ðt1ÞF2:3ðt2Þ þ
2
9

F1:3ðt1ÞF3:3ðt2Þ

þ 1
9

F2:3ðt1ÞF1:3ðt2Þ þ
2
9

F2:3ðt1ÞF2:3ðt2Þ þ
3
9

F2:3ðt1ÞF3:3ðt2Þ

� F3:3ðt1Þ þ
2
9

F3:3ðt1ÞF1:3ðt2Þ þ
3
9

F3:3ðt1ÞF2:3ðt2Þ þ
4
9

F3:3ðt1ÞF3:3ðt2Þ

for t1 B t2. Similarly, for t1 [ t2, we obtain

Gðt1; t2Þ ¼ PrðT1\t1; T2\t2Þ
¼ PrðT2\t2Þ
¼ F3:3ðt2Þ:

Therefore, the joint signature in this case is determined by

S ¼
0 0 1=9 2=9
0 1=9 2=9 3=9
�1 2=9 3=9 4=9

0
@

1
A and S
 ¼

0 0 1
0 0 0
0 0 0
0 0 0

0

BB@

1

CCA:
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It is of interest in this case to note that Pr(T1 = T2) = 0 and so the joint
distribution function G is absolutely continuous.

A similar representation holds for the joint reliability function of lifetimes of
two coherent systems sharing some components. Also, representations in terms of
series and parallel systems can be obtained similarly (see Navarro et al. 2010).
Finally, some preservation results can be obtained for the lower orthant and upper
orthant bivariate orders based on some matrix-ordering properties for the joint
signature of these systems. Interested readers may refer to Navarro et al. (2010) for
further details.

1.5 Statistical Inference from System Lifetime Data

The first problem we will treat in this section is the problem of estimating the
component lifetime distribution from a random sample of failure times of systems
whose components have i.i.d. lifetimes with common distribution F. This problem
is of some interest and importance in engineering reliability. Since the behavior of
the components may differ under laboratory and field conditions, solving the above
problem may be the only approach available for accurately estimating F. While the
problem of estimating F from observed system lifetimes is treated in the reliability
literature under varied assumptions, the estimator described below has the advan-
tage of being applicable to systems of arbitrary size and design and of being fully
nonparametric, that is, free of the assumption that F has a known parametric form.
The solution described below has a number of desirable properties: it is the non-
parametric maximum likelihood estimator (NPMLE) of F and is a consistent,
asymptotically normal and nonparametrically efficient estimator of F. More details
on properties of this estimator may be found in Bhattacharya and Samaniego (2010).

In what follows, we restrict our attention to the class of coherent systems and
ST mixtures of them (i.e., mixed systems), and we tacitly assume again that the
components of the systems considered here have i.i.d. lifetimes with a common
continuous distribution F. Suppose the mixed system of interest has a fixed, known
design with signature vector s. Then, under these conditions, it is known (see
Sect. 1.1) that the reliability function FT of the system lifetime T is given by

FTðtÞ ¼
Xn

i¼1

si

Xn

j¼n�iþ1

n
j

� �
ðFðtÞÞ jðFðtÞÞn�j: ð1:23Þ

Much of what is done in the sequel will utilize the particular form of the
relationship in (1.23) given in (1.8) and based on the domination coefficients (or,
equivalently, in the minimal signature).

Suppose that a random sample of system failure times T1; . . .; TN � i:i:d: FT is

available. The empirical reliability function of the sample system lifetimes bFT ;NðtÞ
is, of course, the NPMLE of the system reliability function FTðtÞ and is a
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consistent, asymptotically normal and nonparametrically efficient estimator of
FTðtÞ. Now, all that remains to be done is to solve the inverse problem, that is, to

find the estimator bFNðtÞ of FðtÞ which solves, for all t [ 0, the equation

bFT ;NðtÞ ¼
Xn

i¼1

ai
bFNðtÞ
� �i

:

For any t [ 0, the asymptotic distribution of bFT ;NðtÞ may be expressed as

ffiffiffiffi
N
p bFT ;NðtÞ � FTðtÞ
� �

!D U�Nð0;FTðtÞFTðtÞÞ: ð1:24Þ

As noted above, for a given fixed t, the estimators bFNðtÞ and bFT ;NðtÞ are
explicitly related via the equation

bFT ;NðtÞ ¼ p bFNðtÞ
� �

; ð1:25Þ

where p is the reliability polynomial defined earlier in (1.8). Since the reliability
polynomial p is a strictly increasing function when its argument is in the interval

[0, 1], we may obtain a well-defined estimator of bFNðtÞ by inverting the rela-
tionship in (1.25). The estimator of interest, which is, by the invariance property of
maximum likelihood estimation, the NPMLE of FðtÞ, may be expressed as

bFNðtÞ ¼ p�1 bFT ;NðtÞ
� �

:

Since the asymptotic distribution of bFT ;NðtÞ is known and is as given in (1.24),
and since p is a smooth one-to-one function, we may apply the d-method to obtain

the asymptotic distribution of bFNðtÞ. In the standard presentation of the d-method,
the exact expression for the asymptotic variance of the transformed variable

p�1 bFT ;NðtÞ
� �

involves the derivative of the function p-1. Indeed, we may write

ffiffiffiffi
N
p bFNðtÞ � FðtÞ
� �

!D U�N 0;
d
dy

p�1ðyÞjy¼FT ðtÞ

	 
2

FTðtÞFTðtÞ
 !

: ð1:26Þ

However, since p is a polynomial of (potentially high) degree n, one is not

generally able to obtain the asymptotic variance of bFNðtÞ in (1.26) in closed form.
It has been shown by Bhattacharya and Samaniego (2010) that the asymptotic
result in (1.26) may be written in a somewhat more useful form as

ffiffiffiffi
N
p bFNðtÞ � FðtÞ
� �

!D W �N 0;
Xn�1

i¼1

iai p�1ðFTðtÞÞ
� �i�1

 !�2

FTðtÞFTðtÞ

0

@

1

A:

ð1:27Þ
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Since y = p(x) is a known function, its inverse p-1(y) may be obtained
numerically at any given y (say, by interval halving). Suppose that the random
sample of N system lifetimes gives rise to the set of ordered failure times
t1:N ; . . .; tN:N . The reliability function FTðtÞ is estimated by the empirical distri-

bution bFT ;NðtÞ of the observed system failure times, with

bFT ;NðtÞ ¼
1 for t\t1:N ;
N�i

N for ti:N � t\tiþ1:N ; i ¼ 1; . . .;N � 1;
0 for t	 tN:N :

8
<

:

The estimator bFNðtÞ of FðtÞ is simply the step function with jumps at times
t1:N ; . . .; tN:N and values given by

bFNðtÞ ¼
1 for t\t1:N ;
p�1 N�i

N

� �
for ti:N � t\tiþ1:N ; i ¼ 1; . . .;N � 1;

0 for t	 tN:N :

8
<

:

The estimator bFNðtÞ is, asymptotically, the optimal estimator of F in the
nonparametric setting explained above. Bhattacharya and Samaniego (2010) car-
ried out Monte Carlo simulations, based on samples of size 50 and 100, to evaluate

the performance of bFN for the well-known five-component bridge system. Five
parametric models—exponential, Weibull, lognormal, gamma and Pareto—as

component distributions F. These results provide support to the claim that bFN does
indeed perform well, over a reasonably broad class of possible models for F, even
for moderate sample sizes like N = 50 and certainly for sample sizes of 100 or
more. Furthermore, by using (1.27), it is possible to obtain, numerically,
approximate but quite reliable confidence intervals for FðtÞ when the sample size
N is sufficiently large. Bhattacharya and Samaniego (2010) have also discussed
some possible extensions of the above inversion method to non-i.i.d. settings. They
have noted that, even in the case of independent but non-identically distributed
(INID) component lifetimes, the estimation of component distributions is not
generally possible, as the component distributions are not identifiable from data on
system failure times. However, in the special case in which, for each i, the ith
component of the system has reliability function hi(p), where hi is strictly
increasing for p 2 ½0; 1�, with hi(0) = 0 and hi(1) = 1, the inversion technique
described above leads to the identification of the NPMLEs of the n component
reliability functions and to the determination of their asymptotic distributions.

Another development on nonparametric inference for component lifetime dis-
tribution, different in nature compared to the one detailed above, is due to
Balakrishnan et al. (2011b). This exact method utilizes the order statistics
T1:N\ � � �\TN:N obtained from the lifetimes T1; . . .; TN of N identical systems
under test. Once again, by assuming that the components in each system are i.i.d.
with a continuous distribution F, and that the signature of the system is specified,
these authors have used order statistics Ti:N to develop exact nonparametric
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