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Preface

How can one improve with a factor of 10 on something that has already the
reputation of being highly optimised? The answer lies in ignoring the most often
wrong assumption that it is already highly optimised and by going back to basics.
This inevitably includes developing a new formalisation of the problem at hand.
In our case, this meant thinking anew about what a distributed RTOS (Real Time
Operating System) is all about. What is the core functionality of an RTOS, of
a distributed RTOS? Is there a clean way to handle task synchronisation and
communication? The result was the unique network-centric OpenComRTOS project
described in this book.

Taking this as an opportunity, we wanted to use formal methods to prove the
final implementation. It turned out that formal methods can help to prove an
implementation, but they really shine when used to model the architecture at an
abstract level before any implementation is done. Their use has shown us again
how much we are all influenced by what we know. After all our brains have a hard
time reasoning without prior knowledge. Hence, our brains tend to look for known
patterns so that known rules can be applied.

Looking for better and new solutions is hampered by prior knowledge. Formal
methods help us because they allow us (or some would say: force us) to think at
a more abstract level, our vision being less cluttered by implementation details.
The result obtained in the project was a very clean and scalable architecture while
verification had almost become trivial. There is also a general assumption that
trustworthy means complex and large. Great was the surprise, however, when
we discovered it resulted in the opposite. The RTOS was measured to be up to
10 times smaller than a previously hand coded version that had been tweaked
over several years and used in demanding systems. This means less resources
and less power are needed. So, to make the world less energy-hungry, use formal
methods.

This project has to some extent reinvented the very concept of what an RTOS is. It
is a way to model, it is a way to simulate, it is a way to verify, it is a way to program
in a scalable and portable way concurrent systems. But our quest does not stop.
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OpenComRTOS is also an enabler for new functionality that is still being researched
while the book is being written. A lot of the work has to do with researching the
correct semantics to support e.g. composability, dynamic resource scheduling and
fault tolerance. Ultimately, it might result in new hardware.

Last but not least, formal methods have proven not to be so hard to use as
it was assumed to be. The project also demonstrated the strength of team work.
Communication in a well working team is ultimately the way to get rid of the
assumptions our brains involuntary make. Formal methods again help by replacing
intuition by abstraction. This book is not an academic one. It describes aspects that
were explored during a real industrial project to develop a distributed RTOS from
scratch using formal methods. Therefore it contains as well a broad discussion on
the context in which such RTOS are used, as well as deep technical details of some
of the formal models used. But as such, the description is not complete because it
describes a project, not a theory.

The book is organised as follows: In the first two chapters, we sketch the domain
of interest: trustworthy embedded real-time distributed systems. We discuss the
challenges to develop applications and systems in this domain and why formal
methods are becoming essential tools for the engineer working in this field. We
derive from it the requirements and specifications for OpenComRTOS. In the
following two chapters we look at what formal methods and tools are available and
introduce TLA+/TLC that was finally selected and used in the project. Subsequently,
we discuss the formal TLA+ models, as well as the architecture, of OpenComRTOS.
We dwell a bit deeper on the interaction semantics and provide an overview of the
code size and performance results. For the interested user the appendix includes a
usage tutorial, as well as the mathematical and logic foundations behind temporal
logics like TLA+. The appendix also contains the TLA+ and SPIN models used to
compare both formalisms in Chap. 3.

For the interested reader, a free version of OpenComRTOS for PC is available
from www.altreonic.com. This version also acts as a simulator and cross develop-
ment environment for multi-node targets.
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Chapter 1
Introduction: OpenComRTOS Role in a Unified

Systems Engineering Methodology

OpenComRTOS is part of a systematic, formalised systems and software
engineering methodology for embedded systems with a supporting environment
and tools. While OpenComRTOS can be used independently of it, users will benefit
from using the methodology in an integrated way. This methodology is characterised
by two key concepts: unified semantics and interacting entities. When used in
combination, they result in a better control of the engineering process leading to the
development of systems and products. OpenComRTOS plays an important role in
this approach as it is the system software layer allowing the mapping of the abstract
interacting entities at the modeling level into concrete concurrent instances.

1.1 Introduction

Our economy, our social and political environment can be considered as a system
of systems. As citizens, we want these systems to work for us and to improve our
lives. Technology and engineering are playing a growing and important role in it.
The main reason for this fact is that technology allows us to do more with less.
Technology provides us with efficiency. The task of the engineer is to put technology
at work and to develop systems and products that provide us with added value. This
applies to many domains, even in domains where technology only plays a supporting
role and the role of the human is still dominant.

The authors of this book are mostly concerned with the domain of so-called
embedded systems. While there is no unique definition for this domain, think about
it as the domain of devices and systems that have a processor and software inside,
often fully invisible to the user. It came into being when the transistor was invented.
This was the start of the digital electronics era. Digital implies that it became more
and more practical for engineers to start building systems based on the concept
of state machines. What the solid-state transistor changed was that because of its
shrinking size, many of these components could be used together to build very

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software 3
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4_1,
© Springer Science+Business Media, LLC 2011



4 1 Introduction: OpenComRTOS Role in a Unified Systems Engineering Methodology

large scale state machines. A typical example is the processor in a desktop PC, now
containing several of such devices, each having close to a billion transistors. Even
a small processor can contain a few 10,000 to a few 100,000 transistors. On top of
that, engineers made these components programmable. This comes down to using
components whose functionality changes all the time (essentially at the rate of their
clocks, often measured in MHz or GHz). The programs they run are composed of
elementary instructions, meaning that the use of programs increases the size of the
state machine exponentially. How do we ensure that such systems can be trusted to
be correct?

This is not an easy task. Before electronics, most systems were analogue or
mechanical ones. Such systems often require a lot of energy and are bulky, but
usually they are quite trustworthy. The reason for this is that such systems inherently
provide what is called “graceful degradation”. Their state space is continuous and
hence infinite, but when the material properties are affected by e.g. wear and tear, a
mechanical system will keep delivering its function, even when it will have become
less efficient. This is the property of graceful degradation. Of course, at some state,
the system will break down as well, but there will be ample warning (if one cares to
look and listen).

Digital electronic systems are often designed and manufactured in such a way
that each individual transistor remains in a safe domain over its anticipated lifetime,
just like with mechanical system. The difficulty comes from the fact that in an
electronic system, these transistors are connected and therefore they create a large
state machine. When a single transistor or its connections to another transistor fails
for some reason, the system might continue to work but there is also a non-zero
probability that the failure will bring the whole system to a halt. Often this means it
goes into an illegal, read: undefined, state. Fortunately, in (small) digital electronics
the state space is still combinatorial and in principle, one can simulate the system
across all these states or one can even design a test set-up that will exercise all
possible states, allowing to verify that the design prevents the system from reaching
such an illegal state, even if such an event is very unlikely under normal operating
conditions. The issue is that reaching such an illegal state can become very likely
when the operating conditions are no longer “normal” (e.g. because the external
conditions put the device outside its normal operating conditions). Often, the result
will be catastrophic.

The problem really becomes horrendous when we look at embedded software
running on such an electronic component. The issue is that now the size of the
state space is exponentially expanded. This is partly due to the way software
instructions are encoded in the hardware. If a single bit is changed, the behaviour
can become entirely different. In addition, programmable electronic components
are often built as so-called von Neumann machines. The processor instructions are
executed in sequence. The program will also contain branching points, meaning
that the resulting state space can grow very large, even under normal operating
conditions. Moreover, embedded software will often not have the property of
graceful degradation. If for some reason the next instruction is not the right one, the
system can come to a halt in nanoseconds and standard processors cannot recover
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from such errors. A hard reset and rebooting from the beginning is often the only
sensible option. Most of us are familiar with this notion, often called a “blue screen”,
but very few know that an ordinary PC will have at least one memory bit flipped per
day due to cosmic radiation. While this is often innocent, when such an event occurs
in a safety critical system, lives can be at stake.

Given that the state space is now exponential and that it is physically impossible
to test all possible states, how can we then have confidence in embedded software?
The solution engineers adopt is to prove that the software will be correct (this holds
under the assumption that the hardware is correct as well). This is essentially not
different from what engineers do in other domains. For example, construction and
material engineers will often not test their construction to see when it will fail.
No, they will develop a mathematical model and calculate the breaking point based
on the assumption that their raw materials were correctly manufactured. This allows
them to apply a hefty safety margin to their design. Unfortunately, software cannot
be made robust by adding somewhere a safety margin, hence we must “calculate”
it exactly. This is what the emerging field of formal techniques is all about and this
book is about its application to the development of a crucial embedded software
component: a network centric Real-Time Operating System.

Another aspect is that the development of embedded software is not a “stan-
dalone” activity. Embedded application software has many dependencies, often
on third party input or components. In addition, embedded software is essentially
implementing a real-world context as a computer program. If the description of this
real-world context is erroneous, these errors will be found back in the resulting
application software and there they can result in erroneous products even if the
implementation of the software was done correctly.

Therefore, we need to look at the whole systems engineering process. This is
essential to develop trustworthy products because engineering a product involves a
lot of human activity. It is a complex process with many aspects and many problems
that need to be mastered. One of them is the use of natural language. Because natural
language is not precise enough, often vastly differing between cultures and different
domains, it is the source of many issues in systems engineering. Therefore, we
must try to achieve a common language across all domains that are involved in
the engineering of a product or a system. We called this trying to achieve “unified
semantics”. The only way to do this is to develop a unified “systems grammar” as
we call it, that covers the full domain of systems (or software) engineering. This is
similar to the development of an ontology but it adds the notion of “interaction” to
make the relationships between the concepts concrete from early requirements to
the final release of the product or system being developed.

Just like in a language it defines terms of a vocabulary and relationships between
these terms. Such a systems grammar will also seek orthogonality, essentially trying
to come up with terms that have no overlapping and no ambiguous meaning. Less
is often better in this context. It can be understood as an application of Einstein’s
principle (or occam’s razor if you prefer). Keep things simple, but not too simple.
Essentially, if a solution is complex, it is not because its creators were smart,
but because they did not fully understand the problem at hand. Below follows a



