Eric Verhulst - Raymond T. Boute
José Miguel Sampaio Faria
Bernhard H.C. Sputh - Vitaliy Mezhuyev

Formal
Development of a
Network-Centric

RTOS

Software Engineering for Reliable
Embedded Systems

@ Springer

Formal Development of a Network-Centric RTOS

Eric Verhulst - Raymond T. Boute
Jos€ Miguel Sampaio Faria « Bernhard H.C. Sputh
Vitaliy Mezhuyev

Formal Development
of a Network-Centric RTOS

Software Engineering for Reliable Embedded
Systems

@ Springer

Eric Verhulst

Altreonic NV
Gemeentestraat 61AB1
B3210 Leuven, Belgium
Eric.Verhulst @lancelot.be

José Miguel Sampaio Faria
Rua Sra das Boas Novas 776
4935-490 Mazarefes

Portugal
Jjmfaria@criticalsoftware.com

Vitaliy Mezhuyev

Open License Society

Zavelstraat 160

3010 Leuven

Belgium

Vitaliy.Mezhuyev @openlicensesociety.org

ISBN 978-1-4419-9735-7
DOI 10.1007/978-1-4419-9736-4

Raymond T. Boute

Department of Information Technology
Universiteit Gent

Faculty of Engineering

St. Pietersnieuwstraat 41

9000 Gent

Belgium

boute @intec.UGent.be

Bernhard H.C. Sputh

Open License Society

Zavelstraat 160

3010 Leuven

Belgium
bernhard.sputh@openlicensesociety.org

e-ISBN 978-1-4419-9736-4

Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011933844

(© Springer Science+Business Media, LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,

or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject

to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Eric.Verhulst@lancelot.be
jmfaria@criticalsoftware.com
Vitaliy.Mezhuyev@openlicensesociety.org
boute@intec.UGent.be
bernhard.sputh@openlicensesociety.org
www.springer.com

Preface

How can one improve with a factor of 10 on something that has already the
reputation of being highly optimised? The answer lies in ignoring the most often
wrong assumption that it is already highly optimised and by going back to basics.
This inevitably includes developing a new formalisation of the problem at hand.
In our case, this meant thinking anew about what a distributed RTOS (Real Time
Operating System) is all about. What is the core functionality of an RTOS, of
a distributed RTOS? Is there a clean way to handle task synchronisation and
communication? The result was the unique network-centric OpenComRTOS project
described in this book.

Taking this as an opportunity, we wanted to use formal methods to prove the
final implementation. It turned out that formal methods can help to prove an
implementation, but they really shine when used to model the architecture at an
abstract level before any implementation is done. Their use has shown us again
how much we are all influenced by what we know. After all our brains have a hard
time reasoning without prior knowledge. Hence, our brains tend to look for known
patterns so that known rules can be applied.

Looking for better and new solutions is hampered by prior knowledge. Formal
methods help us because they allow us (or some would say: force us) to think at
a more abstract level, our vision being less cluttered by implementation details.
The result obtained in the project was a very clean and scalable architecture while
verification had almost become trivial. There is also a general assumption that
trustworthy means complex and large. Great was the surprise, however, when
we discovered it resulted in the opposite. The RTOS was measured to be up to
10 times smaller than a previously hand coded version that had been tweaked
over several years and used in demanding systems. This means less resources
and less power are needed. So, to make the world less energy-hungry, use formal
methods.

This project has to some extent reinvented the very concept of what an RTOS is. It
is a way to model, it is a way to simulate, it is a way to verify, it is a way to program
in a scalable and portable way concurrent systems. But our quest does not stop.

vi Preface

OpenComRTOS is also an enabler for new functionality that is still being researched
while the book is being written. A lot of the work has to do with researching the
correct semantics to support e.g. composability, dynamic resource scheduling and
fault tolerance. Ultimately, it might result in new hardware.

Last but not least, formal methods have proven not to be so hard to use as
it was assumed to be. The project also demonstrated the strength of team work.
Communication in a well working team is ultimately the way to get rid of the
assumptions our brains involuntary make. Formal methods again help by replacing
intuition by abstraction. This book is not an academic one. It describes aspects that
were explored during a real industrial project to develop a distributed RTOS from
scratch using formal methods. Therefore it contains as well a broad discussion on
the context in which such RTOS are used, as well as deep technical details of some
of the formal models used. But as such, the description is not complete because it
describes a project, not a theory.

The book is organised as follows: In the first two chapters, we sketch the domain
of interest: trustworthy embedded real-time distributed systems. We discuss the
challenges to develop applications and systems in this domain and why formal
methods are becoming essential tools for the engineer working in this field. We
derive from it the requirements and specifications for OpenComRTOS. In the
following two chapters we look at what formal methods and tools are available and
introduce TLA+/TLC that was finally selected and used in the project. Subsequently,
we discuss the formal TLA+ models, as well as the architecture, of OpenComRTOS.
We dwell a bit deeper on the interaction semantics and provide an overview of the
code size and performance results. For the interested user the appendix includes a
usage tutorial, as well as the mathematical and logic foundations behind temporal
logics like TLA+. The appendix also contains the TLA+ and SPIN models used to
compare both formalisms in Chap. 3.

For the interested reader, a free version of OpenComRTOS for PC is available
from www.altreonic.com. This version also acts as a simulator and cross develop-
ment environment for multi-node targets.

Acknowledgements

This work has been made possible by the support of many people and organisations:

* Alexander Keda for developing the verification models and code generators.

* Anatoliy Konovalenko for developing the RTOS unit tests.

* Andrey Nitsenko for developing the graphical event tracer.

* Annie Dejonghe for moral support and administrative support.

* Bernhard Sputh for managing the release of the product and porting the RTOS.
* Dimitry Panfilov for developing the first visual front-end and porting the RTOS.
* Gjalt De Jongh for his conceptual discussions and first implementations.

* José Miguel Faria for developing the first formal models.

Preface vii

e Raymond Boute for his deep knowledge of formal techniques.
e Vitaliy Mezhuyev for his meta-modelling input.

The project was also financially supported by IWT of the Flemish Region and
Melexis NV. Melexis also provided the first target processor.

Linden Eric Verhulst

Contents

List of Figurescooiiiiii i e
Listof Tables......... ... e

PartI Trustworthy Embedded Systems

1 Introduction: OpenComRTOS Role in a Unified Systems
Engineering Methodologyccooiiiiiiiiiiiiiiiiiiiiiiiinn,
L1 IntroduCtionooiuiiiiiiii i
1.2 A Systematic Engineering Methodology Based

on Unified Semantics and Interacting Entities........................
1.3 Interacting Entities for the Software Domain
1.3.1 Silicon Technology Advancesccccovviuune...
1.3.2 Silicon Technology Limitationsccccooiuuee...
1.3.3 The World Becomes Connectedc...ccovuene.
1.4 A Link with the Work Plan in a Systems Engineering Project
1.5 System Engineering Methods and Engineering Standards...........
1.6 Where Do Formal Techniques Fitin?.....................ooooooia.

2 Requirements and Specifications for the OpenComRTOS Project
2.1 Background of OpenComRTOS ...,
2.2 Early Requirements Derived from the Virtuoso RTOS
2.3 Real-Time Embedded Programming....................ooooeieeeaan.

2.3.1 WhyReal-Time?cooiiiiiiiiiiiiiiiic i
2.3.2 Why a Simple Loop Is Often not Enough...................
2.3.3 Superloops and Static Scheduling
2.3.4 Rate Monotonic Analysisc.ccoovviiiiiiiiiiieeennn.
2.3.5 Priority based Scheduling in OpenComRTOS
2.3.6 The Issue of Priority Inversion and Its
Inadequate SOIUtIONooviiiiiiii i
2.4 Next Generation Requirementsovvieeeiiiiiiiieeennnn.

ix

2.5
2.6
2.7

Contents

Top Level Requirements for OpenComRTOS 32
Specifications Derived from Requirements........................... 34
Systems and Application Grammar of OpenComRTOS 36
2.7.1 Base Principles and Definitionsccoo.ae. 36
2.7.2 A Note on Typing Conventions...........c.ccoevvuuuueeeeennn. 37
2.7.3 OpenComRTOS System and Application Grammar 37

PartII Formal Modeling Fundamentals

3 The Choice of TLAT/TLC: Comparing Formal Methods 45
3.1 Formal Methods Survey and Pre-Selection........................... 45
32 Case StudY ...ooiiii 46

32,1 IntroduCtion...........oeeiiiiiiiiiiiiiiiiiiieeeees 47
322 The Algorithm...........oiiiiiii 47
323 Remarksoooii 49
324 Drawbacksooiiiiiiiiiiii e 49
325 Related Work ..o 50
33 TLAT and TLC ..ooviiititiii e 51
331 OVEIVIEW .ot 51
3.3.2 Model Developedcoeviiiiiiiiiiiiiiiii 53
34 Promelaand SPIN ... 59
341 OVEIVIEW .ot 59
34.2 ModelDevelopedcooeiiiiiiiiiiiiiiii 62
3.5 CompariSOnooiuuuiieit it 66
3.5.1 Matching of the Method to the Application................. 66
352 HumanFactors ... 66
3.5.3 Widespread Utilization..................ooooiiiiiia. 66
3.5.4 Licensing/Distribution ... 68
355 Maturity..ooooenn e 68
3.5.6 Performance ... 68
357 Interfaceoiiiiiii 68
3.5.8 Coverage of the Input Language 68
3.5.9 Bibliography ... 69
3.5.10 EXPIreSSIVENESSeeeiinniiiiieeiiiiee e 69
3.5.11 Readabilitycooouiiiiiiiii i 70
3.5.12 Reusability...........oooiiiiii 71
3.5.13 Scalability ..oo.vieiiiii i 71
3.5.14 Level of Abstractionccooiiiiiiiiiiiiiiiieaann. 71
3.5.15 Checking Possibilitiesccoooiiiiiiiiiiiiiann. 72
3.5.16 Coverage of the Lifecycleooll. 72

4 Basic Formal Specification in TLA™ocociin, 73

4.1 IntrodUCHONcooviiiiiii 73
4.1.1 Goal: Awareness in Specifying Systems 73

4.12 A Two-Step Approach ..., 73

Contents

4.2

43

4.4

xi

Structure of TLA™ Specifications.............o.oviviiriiiniianinn.. 74
4.2.1 Basic StrUCtUIeooiiiiiiiiiiiii i 74
4.2.2 Module Structureovvviiiiiiiiiiiii i 75
Introducing TLAY By EXxample...........oooviiiiiiiiiinniinen.. 76
4.3.1 Basic TLAT NOtONS «..vvveniiniiiiiiiiiiieieiean 76
4.32 Basic Examples: TLA* Sequences

and OpenComRTOS LiStsoovviiiiiiiiiiiieennn. 77
4.3.3 An Extended Example: The Module Port................... 79
ConCIUSION ..ottt 85

PartII' OpenComRTOS Design

5 Formal Modelling of the RTOS Entities 89
5.1 Introductionoooiiiiiiiiii e 89
5.2 OpenComRTOS Environment Model................................ 90

52.1 Term Definitionsoooiiiiiiiiiiiiiiiiiieenn. 91
5.22 CONSEANLS ..ttt e 91
5.2.3 Variables Representing the System State 92
524 TheLl-Packet........ccoviiiiiiiiiiiiiiiiiiiiiiiii i 92
5.2.5 General Constraint for All Models 93
5.3 Formal Model of the Semaphore-Entity 93
5.3.1 0 ConStantso.uuiiiiiii i 94
5.32 Variables ... 94
5.3.3 Initialisation ..ot 94
5.3.4 Signalling the Semaphore.......................oo 95
5.3.5 Testing the Semaphore ..., 97
5.3.6 ConStraintS.........ueiiiiiii e 100
5.3.7 Defining the Next Statecooooiiiiiiiiiiiaan. 101
5.3.8 Propertiesto Check ... 101
5.3.9 Proof Obligationscccoiiiiiiiiiiiiiiiiieeann. 102
5.3.10 Checkingthe Models...............coooiiiiiiiiiiiii . 104
5.4 Model Verification ..ot 104
5.5 CONCIUSION ...eutiitii i 105

6 Final Architecture of the RTOS, 107

6.1 The Building Blocks of OpenComRTOS 107
6.1.1 The Hub Entity of OpenComRTOS 108
6.1.2 TaskS oot 113
6.1.3 Packets........oooiiiii 114
6.2 The Semaphore Loopccooiiiiiiiii i 115
6.2.1 The Semaphore Loopin Detail 116

6.2.2 Heterogeneous Multiprocessor Systems and
Their ISsues...... ..o 118
6.3 OpenComRTOS Development Process for Applications 119
6.4 SUMMATY ...t 119

xii Contents

7 Task Interaction Models in OpenComRTOS.............................
7.1 INtrodUuCtionoeiein et

7.2 Modelling Task Interactioncccoviiiiiiiiiiiiiiiiieann.

7.3 Timing Properties of Task Interactionsooooeeeeinnn.

7.4 Notes on Asynchronous Interactions..............ccccovviueeeen.nn.

7.5 CONCIUSIONS ...ttt ettt

8 Results: Code Size and Performance............................ol.
8.1 MEtriCs Of SUCCESS . uuvvtteteee e
L.l Code SIZe ..nnneiiiiii i

8.1.2 Total Memory USevveiiiiiiiiiiiiiiiiiiee e

8.1.3 Influence of Processor Architecture

8.1.4 Semaphore Loopocevviiiiiiiiiiiiiiiiiiic

8.1.5 Interrupt Latencyccovviiiiiiiiiiiiiiiiii i,

Part IV Appendix

A OpenComRTOS-Suite 1.3 Usage Tutorial
A.1 Developing a Single Node Semaphore-Loop Project
A.2 Going Distributed with OpenComRTOS
A3 Tracing in OpenComRTOS........,

A3.1 HowtoEnable Tracingcccooiiiiiiiiii...
A32 HowtoRetrieveaTraceccooooiiiiiiiiii...
A.3.3 Retrieving and Displaying Traces from
Distributed Systemsoooiiiiiiiiiii
A.4 Measuring the Interrupt Latency of OpenComRTOS
A.4.1 Designing Distributed Heterogeneous Systems
Using the OpenComRTOS Suiteoooeet.
A.4.2 Presenting the Measurement Results........................
A.43 Specifying the System ...,
A44 Tmplementation.............eeeuuuuuiiiiiieeeeeeeeeeees
A4S Application ...
A.4.6 Collected Measurement Results
A5 SUMMATY .«

B Foundations for TLA™ and Temporal Logic

Bl IntroducCtioncoiiiiiiiiiii i e
B.1.1 Goal: Increased Awareness in Specifying Systems.........
B.1.2 Approachand Overviewooooeeiiiiiiiinn....

B.2 A Unifying Formalism.................ooooiiiiii
B.2.1 Rationale.......... ...
B.2.2 Syntax........ooiiiii
B.2.3 Styleof Use....oooiiiiiiiii
B.2.4 Introducing TLA™ Via Funmath.............................

B.3 Faithful Formalization of Informal Specifications

B.3.1 Choice of Proper Data Abstractions.........................

Contents Xiii
B.3.2 Auxiliary Functions in Formal Specifications 184

B.4 Calculational Reasoning and Patterns in TLA* 186
B.4.1 Capturing Temporal Logics by Temporal Calculi 186

B.4.2 A Functional Temporal Calculus (FTC) 187

B.4.3 Defining the Temporal Calculus of Actions (TCA)......... 190

B.4.4 Calculational Reasoning in TCA/TLA* 192

B.4.5 Applications to Patterns in TLA*............................ 194

B.5S CONCIUSIONS .. .evteetet et 196

C Comparision of Formal Methodscooooiiiiiiiiiiii 199
C.1 TLA™ Model of Harris’ Algorithmccoeeiiininn... 199
C.2 Promela Model of Harris” Algorithmooiiiiiia. 206
GlOSSATY 211
References............ooiuiiiii 213
Index .. .o 217

List of Figures

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

1.1

2.1
22
23
24

3.1
32
33
34
35
3.6
3.7
3.8

4.1

6.1
6.2
6.3

7.1
7.2

Al
A2
A3

Unified Systems Engineering Methodology 7
The context of systems engineering................occeeeviinnne.... 16
Superloop schedule with three interrupt sources 22
Two periodic tasks scheduled with RMAooooiint 24
Three tasks sharing a resource with and without priority

INheritance SUPPOITt......oouuuuiiit it 30
Example of a specification in TLA™coooiiiinns. 52
Header of the TLAT modelcoooiiiiiiiiiiii, 56
Bottom of the TLA™ Specification of Harris’ algorithm............ 57
Definition of Coherencecciiiiiiiiiiiiiii ... 57
Definition of action Createlcociiiiiiiiiiiii... 57
Definition of action LocateDccooiiiiiiiiiiii... 58
Definition of action CasD2ccciiiiiiiiiiiiiiiiiin... 59
Comparison of the formalisms ..o, 67
Rendezvous in SendReceivePacketServicecoovviiit 83
A simple OpenComRTOS application using Port Hubs............. 108
Hub diagram..........ccoooii e 109
Application diagram with all Interactions for the

Semaphore Loop ...oooeeiiiiiii i 115
Task interactions witha Hub ..., 124
Asynchronous Task interactions with Hubs 129
Screenshot of OpenVE'’s the ‘New Project’ dialogue 144
OpenVE with opened Topology View (no nodes defined yet) 145
The dialogue to specify the properties of the new win32-node 145

XV

XVi List of Figures

Fig. A4 Topology view showing the newly created win32-node 146
Fig. A.5 OpenVE Application Diagram with highlighted Task button........ 146
Fig. A.6 ‘New Task’ dialogue, with highlighted ‘Task

Entrypoint’ creation buttoncoooiiiiiiiiiiiiiiiie., 147
Fig. A.7 The Task Entrypoint creation dialogue, showing the

source code that will be generatedooooiiiiiiiii 147
Fig. A.8 Application diagram showing the newly created Taskl 148
Fig. A9 Application diagram showing both Task1l and Task2 149
Fig. A.10 The ‘New Semaphore’ dialogue of OpenVE 149
Fig. A.11 Application diagram with all entities, showing the

interaction selection MeNUoovuiiiiiiiiiiiiiiiiiieiiiiean. 150
Fig. A.12 Application diagram with all Interactions for the

Semaphore Loop ...oooneiiiiiiiiii 150
Fig. A.13 Source code for Taskl1, the incorrectly placed

interactions highlighted 151
Fig. A.14 The ‘New stdioHostServer’ dialogue of OpenVE 151
Fig. A.15 Application diagram with the complete Semaphore-

Loop and the Stdio Host Serverccooviiiiiiiiiiiiiin... 152
Fig. A.16 Source code of Taskl with Semaphore and Stdio Host

Server INteractionsc..oviiiiiiiiiiii i 152
Fig. A.17 Console output upon running the ‘SemaphoreLoop’ project 153
Fig. A.18 Edit Link Ports Dialogue, with highlighted ‘Add Link

Port” buttonooiiii i 154
Fig. A.19 OpenVE link configuration dialogue....................coooiiii. 154
Fig. A.20 Topology of the two Win32 Nodes connected with a

bidirectional Link ... 155
Fig. A.21 OpenVE with open ‘Properties’ side-pane and

highlighted ‘node’ propertycoeeeiiiiiiiieiiiiiinen... 156
Fig. A.22 Console output of both win32-nodes............c..ooovieiiiiinn.. 156
Fig. A.23 OpenVE with open Property Paneoooooi 157
Fig. A.24 Tracing enabled Application Diagramcoooiiiii. 159
Fig. A.25 OpenTracer displaying parts of the

SemaphoreTracing MP_TCPIPexampletrace........................ 159
Fig. A.26 Stages of IRQ handling in a typical Microcontroller System 161
Fig. A.27 Screenshot of the Interrupt Latency GUI Application............... 164
Fig. A.28 Interrupt latency measurement system topology 165
Fig. A.29 Interrupt latency measurement system application diagram 166
Fig. A.30 Measured IRQ to ISR Latency on ARM Cortex M3

50MHz (logarithmic scale)ccoeviiiiiiiiiiiiiiiiiiienn. 167
Fig. A.31 Measured IRQ to Task Latency on ARM Cortex M3

50MHz (logarithmic scale)ccceiiiiiiiiiiiiiiiiiiiieen. 167
Fig. B.1 Numbersof beansooooiiiiiiiiiiiiiiii 182
Fig. B.2 Bagofbeans...........oooiiiiiiiiii 183

Fig. B.3 The Bags module from Specifying Systems compressed 185

List of Tables

Table 3.1

Table 7.1

Table 8.1
Table 8.2
Table 8.3
Table 8.4

Table B.1

Table B.2

Table B.3

Correspondence of TLA" model with the textual

description in Sect. 3.2.2

Time semantics of two Tasks interacting in

OpenComRTOS ...

Code size for OpenComRTOS kernel on MLX16
Total memory used for OpenComRTOS on MLX16
Code size figures (in 8 bit Bytes)ccoeviiiiiiiiiiiii.

Semaphore Loop times (=2 signals, 2 tests, 4 context

switches) in microsecondsoooviiiiiiiiiiiii i

Basic mathematical TLA™ expressions via Funmath

equivalent, part 1 ...

Basic mathematical TLA™ expressions via Funmath

equivalent, Part 2 ...
Action and temporal operators of TLA™ defined via Funmath ...

Xvii

Part I
Trustworthy Embedded Systems

Chapter 1
Introduction: OpenComRTOS Role in a Unified

Systems Engineering Methodology

OpenComRTOS is part of a systematic, formalised systems and software
engineering methodology for embedded systems with a supporting environment
and tools. While OpenComRTOS can be used independently of it, users will benefit
from using the methodology in an integrated way. This methodology is characterised
by two key concepts: unified semantics and interacting entities. When used in
combination, they result in a better control of the engineering process leading to the
development of systems and products. OpenComRTOS plays an important role in
this approach as it is the system software layer allowing the mapping of the abstract
interacting entities at the modeling level into concrete concurrent instances.

1.1 Introduction

Our economy, our social and political environment can be considered as a system
of systems. As citizens, we want these systems to work for us and to improve our
lives. Technology and engineering are playing a growing and important role in it.
The main reason for this fact is that technology allows us to do more with less.
Technology provides us with efficiency. The task of the engineer is to put technology
at work and to develop systems and products that provide us with added value. This
applies to many domains, even in domains where technology only plays a supporting
role and the role of the human is still dominant.

The authors of this book are mostly concerned with the domain of so-called
embedded systems. While there is no unique definition for this domain, think about
it as the domain of devices and systems that have a processor and software inside,
often fully invisible to the user. It came into being when the transistor was invented.
This was the start of the digital electronics era. Digital implies that it became more
and more practical for engineers to start building systems based on the concept
of state machines. What the solid-state transistor changed was that because of its
shrinking size, many of these components could be used together to build very

E. Verhulst et al., Formal Development of a Network-Centric RTOS: Software 3
Engineering for Reliable Embedded Systems, DOI 10.1007/978-1-4419-9736-4_1,
© Springer Science+Business Media, LLC 2011

4 1 Introduction: OpenComRTOS Role in a Unified Systems Engineering Methodology

large scale state machines. A typical example is the processor in a desktop PC, now
containing several of such devices, each having close to a billion transistors. Even
a small processor can contain a few 10,000 to a few 100,000 transistors. On top of
that, engineers made these components programmable. This comes down to using
components whose functionality changes all the time (essentially at the rate of their
clocks, often measured in MHz or GHz). The programs they run are composed of
elementary instructions, meaning that the use of programs increases the size of the
state machine exponentially. How do we ensure that such systems can be trusted to
be correct?

This is not an easy task. Before electronics, most systems were analogue or
mechanical ones. Such systems often require a lot of energy and are bulky, but
usually they are quite trustworthy. The reason for this is that such systems inherently
provide what is called “graceful degradation”. Their state space is continuous and
hence infinite, but when the material properties are affected by e.g. wear and tear, a
mechanical system will keep delivering its function, even when it will have become
less efficient. This is the property of graceful degradation. Of course, at some state,
the system will break down as well, but there will be ample warning (if one cares to
look and listen).

Digital electronic systems are often designed and manufactured in such a way
that each individual transistor remains in a safe domain over its anticipated lifetime,
just like with mechanical system. The difficulty comes from the fact that in an
electronic system, these transistors are connected and therefore they create a large
state machine. When a single transistor or its connections to another transistor fails
for some reason, the system might continue to work but there is also a non-zero
probability that the failure will bring the whole system to a halt. Often this means it
goes into an illegal, read: undefined, state. Fortunately, in (small) digital electronics
the state space is still combinatorial and in principle, one can simulate the system
across all these states or one can even design a test set-up that will exercise all
possible states, allowing to verify that the design prevents the system from reaching
such an illegal state, even if such an event is very unlikely under normal operating
conditions. The issue is that reaching such an illegal state can become very likely
when the operating conditions are no longer “normal” (e.g. because the external
conditions put the device outside its normal operating conditions). Often, the result
will be catastrophic.

The problem really becomes horrendous when we look at embedded software
running on such an electronic component. The issue is that now the size of the
state space is exponentially expanded. This is partly due to the way software
instructions are encoded in the hardware. If a single bit is changed, the behaviour
can become entirely different. In addition, programmable electronic components
are often built as so-called von Neumann machines. The processor instructions are
executed in sequence. The program will also contain branching points, meaning
that the resulting state space can grow very large, even under normal operating
conditions. Moreover, embedded software will often not have the property of
graceful degradation. If for some reason the next instruction is not the right one, the
system can come to a halt in nanoseconds and standard processors cannot recover

1.1 Introduction 5

from such errors. A hard reset and rebooting from the beginning is often the only
sensible option. Most of us are familiar with this notion, often called a “blue screen”,
but very few know that an ordinary PC will have at least one memory bit flipped per
day due to cosmic radiation. While this is often innocent, when such an event occurs
in a safety critical system, lives can be at stake.

Given that the state space is now exponential and that it is physically impossible
to test all possible states, how can we then have confidence in embedded software?
The solution engineers adopt is to prove that the software will be correct (this holds
under the assumption that the hardware is correct as well). This is essentially not
different from what engineers do in other domains. For example, construction and
material engineers will often not test their construction to see when it will fail.
No, they will develop a mathematical model and calculate the breaking point based
on the assumption that their raw materials were correctly manufactured. This allows
them to apply a hefty safety margin to their design. Unfortunately, software cannot
be made robust by adding somewhere a safety margin, hence we must “calculate”
it exactly. This is what the emerging field of formal techniques is all about and this
book is about its application to the development of a crucial embedded software
component: a network centric Real-Time Operating System.

Another aspect is that the development of embedded software is not a “stan-
dalone” activity. Embedded application software has many dependencies, often
on third party input or components. In addition, embedded software is essentially
implementing a real-world context as a computer program. If the description of this
real-world context is erroneous, these errors will be found back in the resulting
application software and there they can result in erroneous products even if the
implementation of the software was done correctly.

Therefore, we need to look at the whole systems engineering process. This is
essential to develop trustworthy products because engineering a product involves a
lot of human activity. It is a complex process with many aspects and many problems
that need to be mastered. One of them is the use of natural language. Because natural
language is not precise enough, often vastly differing between cultures and different
domains, it is the source of many issues in systems engineering. Therefore, we
must try to achieve a common language across all domains that are involved in
the engineering of a product or a system. We called this trying to achieve “unified
semantics”. The only way to do this is to develop a unified “systems grammar” as
we call it, that covers the full domain of systems (or software) engineering. This is
similar to the development of an ontology but it adds the notion of “interaction” to
make the relationships between the concepts concrete from early requirements to
the final release of the product or system being developed.

Just like in a language it defines terms of a vocabulary and relationships between
these terms. Such a systems grammar will also seek orthogonality, essentially trying
to come up with terms that have no overlapping and no ambiguous meaning. Less
is often better in this context. It can be understood as an application of Einstein’s
principle (or occam’s razor if you prefer). Keep things simple, but not too simple.
Essentially, if a solution is complex, it is not because its creators were smart,
but because they did not fully understand the problem at hand. Below follows a

