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Preface to the Series

Springer’s Selected Works in Probability and Statistics series offers scientists and scholars the
opportunity of assembling and commenting upon major classical works in statistics, and honors the
work of distinguished scholars in probability and statistics. Each volume contains the original papers,
original commentary by experts on the subject’s papers, and relevant biographies and bibliographies.

Springer is committed to maintaining the volumes in the series with free access of SpringerLink, as
well as to the distribution of print volumes. The full text of the volumes is available on SpringerLink
with the exception of a small number of articles for which links to their original publisher is included
instead. These publishers have graciously agreed to make the articles freely available on their websites.
The goal is maximum dissemination of this material.

The subjects of the volumes have been selected by an editorial board consisting of Anirban
DasGupta, Peter Hall, Jim Pitman, Michael Sörensen, and Jon Wellner.
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Preface

Oded Schramm was born on December 10, 1961, in Jerusalem, and died at the age of 46 in a climbing
accident on Guye Peak, WA, on September 1, 2008. In between, he made profound and beautiful
contributions to mathematics that will have a lasting influence.

In these two volumes, we have collected some of his papers, supplemented with three survey papers
by Steffen Rohde, Olle Häggström and Cristophe Garban that further elucidate his work. Despite the
seemingly generous size of the collection, spatial considerations neverthelss forced us to omit most
of Oded’s papers, and the mere fact that all of them are inspiring pieces of work led to some difficult
issues on what to include and what to omit. The reader should not view our choices as an attempt
to separate his best works from those that are merely great. Rather, we have tried to put together a
representative collection that shows the breadth, depth, enthusiasm and clarity of his work. Others
may have diverging opinions on what should or should not have been included, but we do hope that
Oded himself would not have been too displeased by our choices. The papers we have included speak
for themselves; let us just say a few words about how we have organized them into five sections.

Oded began his mathematical career as a geometer, making GEOMETRY the natural topic for
Section 1. This section opens with Oded’s first two papers from his Master’s thesis in 1987 under Gil
Kalai at the Hebrew University. We then move on to circle packing and conformal geometry, including
examples of his extraordinarily fruitful collaboration with Zheng-Xu Hu, and end the section with
the joint paper with Mario Bonk on embeddings of hyperbolic spaces. Of course geometric aspects
permeate also all of the following sections. In fact, Oded once mentioned to one of us that in order to
be able to think about a problem he always liked it to have a geometric component.

In the mid 1990’s, Oded became interested in the topic of probability theory, which dominates
Sections 2-5 of this collection. Section 2 deals in particular with the study of NOISE SENSITIVITY,
pioneered in a joint paper with Itai Benjamini and Gil Kalai that opens the section. Noise sensitivity
turned out to be a rich topic with applications ranging from voting systems to percolation. In the two
other papers of this section, the first coauthored with Jeff Steif and the second with Christophe Garban
and Gabor Pete, Oded went progressively deeper into noise sensitivity in a percolation setting, arriving
at surprisingly detailed insights.

In Section 3 we have collected some of Oded’s papers on RANDOM WALKS AND GRAPH LIM-
ITS. This includes (i) a paper with Itai Benjamini establishing recurrence of random walks on suitably
defined limits of finite planar graphs, (ii) the joint paper with his student Omer Angel on distributional
limits of triangulations, (iii) a singly-authored paper on compositions of random transpositions, (iv) a
collaboration with Yuval Peres, Scott Sheffield and David Wilson on the remarkably fruitful interplay
between the infinity Laplacian and certain board games, and (v) the concise 2008 paper on so called
hyperfinite graph limits.

One of the probabilistic objects that caught the strongest grip on Oded’s imagination was PER-
COLATION, which appeared prominently in Section 2 as a major testing ground for noise sensitiv-
ity. Papers on other aspects of percolation are collected in Section 4. Here we will see how Oded
joined forces with Itai Benjamini, Russ Lyons and Yuval Peres in order to uncover many of the new
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viii Preface

and interesting phenomena that happen when we move beyond the usual setting of percolation in a
Euclidean geometry, and instead study what happens on hyperbolic lattices and other nonamenable
graph structures. Most of the papers in this section are joint work with (subsets of) this team of
coauthors, plus Harry Kesten who joined them in establishing a beautiful result on uniform spanning
trees. We end the section on a different note, namely Oded’s joint paper with Itai Benjamini and
Gil Kalai making progress on the important open problem of determining the order of magnitude of
fluctuations of first passage percolation on the Euclidean lattice.

Despite strong competition from Oded’s other works, there seems to be a consensus view that
the most important of all his contributions to mathematics is his discovery and subsequent study of
SCHRAMM-LOEWNER EVOLUTION (or stochastic Loewner avolution as Oded himself preferred
to call it; conveniently, the abbreviation SLE works either way), which is the topic of Section 5. SLE is
a family of conformally invariant random processes in the plane that turn out to appear as the scaling
limit of percolation and a variety of other critical models. We begin this section with the famous paper,
published in 2000 in the Israel Journal of Mathematics, where Schramm singlehandedly discovered
SLE and obtained the first preliminary results on scaling limits. Then followed a series of papers with
Greg Lawler and Wendelin Werner in which SLE was exploited to deduce deep results on intersection
properties of random walks; here we include only some of the highlights. We furthermore include
important joint papers with Steffen Rohde, Scott Sheffield, David Wilson and Stanislav Smirnov, plus
Oded’s contribution to the International Congress of Mathematicians in Madrid, 2006, in which he
gives a survey of the field with an emphasis on open problems.

There were no signs of a decrease in creativity or productivity on Oded’s part until the untimely
and tragic end, and we can only guess what further discoveries we miss because of it. Substantial parts
of his work, joint with others, is still not completely written up and will appear in the coming years.

However, Oded will be missed not just because of his mathematics, but even more because of
the gentle, warm-hearted and generous person that he was. Of course, the loss of him is felt most
strongly by his wife Avivit, his daughter Tselil and his son Pele. But he was very much loved by the
mathematical community and by everyone who knew him, as amply witnessed on the memorial blog
which was set up shortly after his death: http://odedschramm.wordpress.com/

We hope that this collection will contribute, however modestly, to keeping the memory of Oded
alive, and to nourishing the mathematical heritage he left for all of us. Yehi zichro baruch - may the
memory of him be a blessing.

Itai Benjamini
Olle Häggström

http://odedschramm.wordpress.com/
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1 Introduction 

When I first met Oded Schramm in January 1991 at the University of California, San Diego, he 
introduced himself as a "Circle Packer". This modest description referred to his Ph.D. thesis 
around the Koebe-Andreev-Thurston theorem and a discrete version of the Riemann mapping 
theorem, explained below. In a series of highly original papers, some joint with Zhen-Xu He, he 
created powerful new tools out of thin air, and provided the field with elegant new ideas. At the 
time of his deadly accident on September 1st, 2008, he was widely considered as one of the most 
innovative and influential probabilists of his time. Undoubtedly, he is best known for his invention 
of what is now called the Schramm-Loewner Evolution (SLE), and for his subsequent collaboration 
with Greg Lawler and Wendelin Werner that led to such celebrated results as a determination 
of the intersection exponents of two-dimensional Brownian motion and a proof of Mandelbrot's 
conjecture about the Hausdorff dimension of the Brownian frontier. But already his previous work 
bears witness to the brilliance of his mind, and many of his early papers contain both deep and 
beautifully simple ideas that deserve better knowing. 

In this note, I will describe some highlights of his work in circle packings and the Koebe 
conjecture, as well as on SLE. As Oded has co-authored close to 20 papers related to circle packings 
and more than 20 papers involving SLE, only a fraction can be discussed in detail here. The 
transition from circle packing to SLE was through a long sequence of influential papers concerning 
probability on graphs, many of them written jointly with Itai Benjamini. I will present almost no 
work from that period (some of these results are described elsewhere in this volume, for instance in 
Christophe Garban's article on Noise Sensitivity). In that respect, the title of this note is perhaps 
misleading. 

In order to avoid getting lost in technicalities, arguments will be sketched at best, and often 
ideas of proofs will be illustrated by analogies only. In an attempt to present the evolution of 
Oded's mathematics, I will describe his work in essentially chronological order. 

Oded was a truly exceptional person: not only was his clear and innovative way of thinking an 
inspiration to everyone who knew him, but also his caring, modest and relaxed attitude generated a 
comfortable atmosphere. As inappropriate as it might be, I have included some personal anecdotes 
as well as a few quotes from email exchanges with Oded, in order to at least hint at these sides of 
Oded that are not visible in the published literature. 

This note is not meant to be an overview article about circle packings or SLE. My prime 
concern is to give a somewhat self-contained account of Oded's contributions. Since SLE has been 
featured in several excellent articles and even a book, but most of Oded's work on circle packing 
is accessible only through his original papers, the first part is a bit more expository and contains 
more background. The expert in either field will find nothing new, and will find a very incomplete 
list of references. My apology to everyone whose contribution is either unmentioned or, perhaps 
even worse, mentioned without proper reference. 

Acknowledgement: I would like to thank Mario Bonk, Jose Fernandez, Jim Gill, Joan Lind, 
Don Marshall, Wendelin Werner and Michel Zinsmeister for helpful comments on a first draft. I 
would also like to thank Andrey Mishchenko for generating Figure 3, and Don Marshall for Figure 
6. 
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2 Circle Packing and the Koebe Conjecture 

Oded Schramm was able to create, seemingly without effort, ingenious new ideas and methods. 
Indeed, he would be more likely to invent a new approach than to search the literature for an 
existing one. In this way, in addition to proving wonderful new theorems, he rediscovered many 
known results, often with completely new proofs. We will see many examples throughout this note. 

Oded received his Ph.D. in 1990 under William Thurston's direction at Princeton. His thesis, 
and the majority of his work until the mid 90's, was concerned with the fascinating topic of circle 
packings. Let us begin with some background and a very brief overview of some highlights of this 
field prior to Oded's thesis. Other surveys are [Sa] and [Ste2]. 

2.1 Background 

According to the Riemann mapping theorem, every simply connected planar domain, except the 
plane itself, is conformally equivalent to a disc. The conformal map to the disc is unique, up 
to post composition with an automorphism of the disc (which is a Mobius transformation). The 
standard proof exhibits the map as a solution of an extremal problem (among all maps of the 
domain into the disc, maximize the derivative at a given point). The situation is quite different 
for multiply connected domains, partly due to the lack of a standard target domain. The standard 
proof can be modified to yield a conformal map onto a parallel slit domain (each complementary 
component is a horizontal line segment or a point). Koebe showed that every finitely connected 
domain is conformally equivalent to a circle domain (every boundary component is a circle or a 
point), in an essentially unique way. No proof similar to the standard proof of the Riemann mapping 
theorem is known. 

Theorem 2.1 ([K01]). For every domain n c IC with finitely many connected boundary compo
nents, there is a conformal map f onto a domain n' c IC all of whose boundary components are 
circles or points. Both f and n' are unique up to a Mobius transformation. 

Koebe conjectured (p. 358 of [K01]) that the same is true for infinitely connected domains. It 
later turned out that uniqueness of the circle domain can fail (for instance, it fails whenever the set 
of point-components of the boundary has positive area, as a simple application of the measurable 
Riemann mapping theorem shows). But existence of a conformally equivalent circle domain is still 
open, and is known as Koebe's conjecture or "Kreisnormierungsproblem". It motivated a lot of 
Oded's research. 

There is a close connection between Koebe's theorem and circle packings. A circle packing P 
is a collection (finite or infinite) of closed discs D in the two dimensional plane IC, or in the two 
dimensional sphere 8 2 , with disjoint interiors. Associated with a circle packing is its tangency graph 
or nerve G = (V, E), whose vertices correspond to the discs, and such that two vertices are joined 
by an edge if and only if the corresponding discs are tangent. We will only consider packings whose 
tangency graph is connected. 

Conversely, the Koebe-Andreev-Thurston Circle Packing Theorem guarantees the existence of 
packings with prescribed combinatorics. Loosely speaking, a planar graph is a graph that can be 
drawn in the plane so that edges do not cross. Our graphs will not have double edges (two edges 
with the same endpoints) or loops (an edge whose endpoints coincide). 

3 
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Figul'c 1: A circle packing and its tangency graph . 

T heorem 2.2 ([Ko2], [T], [AI]). For every finite planar gruph G , there is a circle packing in the 
plane with nerve G. The lJacking is unique (up to Mobius tmns/orlnations) jfG is a triangulation 
of 52. 

See the following seetions for t he history of this theorem, and sketches of proofs. In particular, in 
Section 2.3 we wi!] indicate how the Circle Packing T heorem 2.2 call be obtained from t.he Koebe 
Theorem 2.1 , and COll\'crsc]y that the Kocbc theorem call be deduced from t.he Circle Packing 
Theorem. Eyery fillite planar graph can be extended (by adding vertices and edges as in Figure 
3(c)) to a triangulation, hCIU.;e pad:(,\bility of triangulations implies paclmbility of finite planar graphs 
(there arc many ways to extend a graph to a triangulation, and uniqueness orthe packing is no longer 
true). T he situation is more complicated for infinite graphs. Oded wrote scyeral papers dealing with 
this case. T hurston conjectured that circle packings approximate conformal maps, in the following 

scnsc: Consider the hexagollal packing H~ of circles of radius € (a portion is visible in Fig. 2 and 
Fig. 3(11)). Let fl c C be a domain (a conne<:ted open set) . Approximate fl from the inside by a 
circle packing Pc of circk>s of fl n He, as in Fig. 2 and Fig. 3(a) (more precisely, take the connected 
component containing p of the union of those circles whose six neighbors are still contained in 
fl). Complete the nerve of this packing by adding one vertex for each connected component of 
the complement to obtain a triangulation of the sphere (there arc three new vertices VI , V2 , V:J in 
Fig. 3(c); t he three copies of 'lIJ are to be identified) . By the Circle Packing Theorem, there is 
a circle packing P: of t he sphere with the same tangency graph (Figures 2 lind 3(d) show these 
packings after steroographic projection from the sphere onto the plane; the circle corresponding to 
V 3 was chosen as the upper hemisphere and became thc outside of the large circle after projection). 
Notice that each of the complementary components now corresponds to one ("large" ) circle of p~, 
a nd the circles in the boundary of Pc are tangent to these complementary circles. Now consider the 
map Ie that sends t he centers of the circles of Pc to the corresponding centers in ~, and extend it in 
a piecewise linear fash ion. Rodin and Sullivan proved Thurston's conjecture t hat It approximates 
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?,\ 

Figure 2: A circle packing approximation to a Riemann map. 

t.he Riemann map, if !1 is simply connected (see Fig. 2): 

The ore m 2.3. {RSuj Let n be simply connected, P, (f E \1, and P: normalized such that the com
plementary circle is the unit circle, and such that the circle closest to p (n:.sp. q) com:.sponds to 
a circle contai11ing 0 (resp . some positive n:al number). Then the above maps f~ converge to the 
conformal map f !1 -+ D that is 1W1malized by i(P) = 0 and /(q) > 0, uniformly on compact 
subsets ol n as e: -+ O. 

Their proof depends crucially Oll the non-trivial uniqueness of t.he hexagonal packing as the 
only packing in the plane wit.h nerve t.he triangular lattice. Oded found remarkable improvements 
and generali~at.ions of t.his theorem . See Section 2.6 for further discussion. 

2.2 Why are C ircle Packings inte resting? 

Despite their intrinsic beaut.y (see t.he book [Ste2] for stunning illustrat.ions and an elementary 
introduction), circle packings are interesting because they prOvide a canonical and conformally 
natural way to embed a planar graph into a surface. T hus they have applications to combinatorics 
(for instance the proof of Miller and Thurston [MT] of t.he Lipton-Tarjan separator theorem, see 
e.g. the slides of Oded 's circle I)acking tal k on his memorial webpage) , to differential geometry 
(for instance the construction of minimal surfaces by Bobenko, Hoffmann and Springborn [BHS] 
and their references) , to gcometric analysis (for instance, the Bonk-Kleiner [BK] quasisymmetric 
parametrization of Ahlfors 2-regular LLC tOI)ological spheres) to discrete probability theory (for 
instance, through the work of Benjamini and Schramm on harmonic functions on graphs and 
recurrence Oil random planar graphs [BS 1 ],[BS2], [BS3]) and of course to complex analysis (discrete 
analytic functions, conformal mapping) . However, Oded 's work on circle packing did not follow 
any "main-stream" in confor·mal geomet.ry or geometric funct ion theory. I believe he cont.inued to 
work on thcm just because he liked it. His interest never wavered, and many of his numerous late 
contributions to Wikipedia wcre about Lhis topic. 

Existence and uniqueness are int.imately connected . Nevertheless, for better readability [ will 
discuss them in two separate sections. 
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Figure 3: A circle packing approximation of a triply connected domain, its nerve, its completion 
to a triangulation of 52, and a combinatorially equivalent circle packing; (a)-(c) are from Oded's 
thesis; thanks to Andrey Mishchenko for creating (d) 
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2.3 Existence of Packings 

Oded applied the highest standards to his proofs and was not satisfied with "ugly" proofs. As 
we shall see, he found four (!) different new existence proofs for circle packings with prescribed 
combinatorics. Before discussing them, let us have a glance at previous proofs. 

The Circle Packing Theorem was first proved by Koebe [K02] in 1936. Koebe's proof of existence 
was based on his earlier result that every planar domain n with finitely many boundary components, 
say m, can be mapped conformally onto a circle domain. A simple iterative algorithm, due to 
Koebe, provides an infinite sequence nn of domains conformally equivalent to n and such that nn 
converges to a circle domain. To obtain nn+l from nn, just apply the Riemann mapping theorem 
to the simply connected domain (in IC U { 00 }) containing nn whose boundary corresponds to the 
(n mod m)-th boundary component of n. With the conformal equivalence of finitely connected 
domains and circle domains established, a circle packing realizing a given tangency pattern can be 
obtained as a limit of circle domains: Just construct a sequence of m-connected domains so that the 
boundary components approach each other according to the given tangency pattern. For instance, 
if the graph G = (V, E) is embedded in the plane by specifying simple curves Ie : [0, 1] ----> 8 2 , 

e E E, then the complement no of the set 

U le[O, 1/2 - E] U U le[1/2 + E, 1] 
eEE eEE 

is such an approximation. It is not hard to show that the (suitably normalized) conformally 
equivalent circle domains n~ converge to the desired circle packing when E ----> O. 

Koebe's theorem was nearly forgotten. In the late 1970's, Thurston rediscovered the circle 
packing theorem as an interpretation of a result of Andreev [AI], [A2] on convex polyhedra in 
hyperbolic space, and obtained uniqueness from Mostow's rigidity theorem. He suggested an al
gorithm to compute a circle packing (see [RSu]) and conjectured Theorem 2.3, which started the 
field of circle packing. Convergence of Thurston's algorithm was proved in [dV1]. Other existence 
proofs are based on a Perron family construction (see [Ste2]) and on a variational principle [dV2]. 

Oded's thesis [Sl] was chiefly concerned with a generalization of the existence theorem to 
packings with prescribed convex shapes instead of discs, and to applications. A consequence ([Sl], 
Proposition 8.1) of his "Monster packing theorem" is, roughly speaking, that the circle packing 
theorem still holds if discs are replaced by smooth convex sets. 

Theorem 2.4. ([51), Proposition 8.1) For every triangulation G = (V,E) of the sphere, every 
a E V, every choice of smooth strictly convex sets Dv for v E V \ {a}, and every smooth simple 
closed curve C, there is a packing P = {Pv : v E V} with nerve G, such that Pa is the exterior of 
C and each Pv, v E V \ {a} is positively homothetic to Dv' 

Sets A and B are positively homothetic if there is r > 0 and s E IC with A = rB + s. Strict 
convexity (instead of just convexity) was only used to rule out that three of the prescribed sets 
could meet in one point (after dilation and translation), and thus his packing theorem applied in 
much more generality. Oded's approach was topological in nature: Based on a cleverly constructed 
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Figure 4: A packing of convex shapes in a Jordan domain, from Oded's thesis 

spanning tree of G, he constructed what he called a "monster". This refers to a certain IVI
dimensional space of configurations of sets homothetic to the given convex shapes, with tangencies 
according to the tree, and certain non-intersection properties. Existence of a packing was then 
obtained as a consequence of Brower's fixed point theorem. Here is a poetic description, quoted 
from his thesis: 

One can just see the terrible monster swinging its arms in sheer rage, the tentacles causing a 
frightful hiss, as they rub against each other. 

Applying Theorem 2.4 to the situation of Figure 3, with Dv chosen as circles when v 1-
{VI, V2, V3}, and arbitrary convex sets D vj , Oded adopted the Rodin-Sullivan convergence proof 
to obtain a new proof of the following generalization of Koebe's mapping theorem. The original 
proof of Courant, Manel and Shiffman [CMS] employed a very different (variational) method. 

Theorem 2.5. (fSl), Theorem 9.1; [eMS)) For every n + I-connected domain n, every simply 
connected domain D c IC and every choice of n convex sets Dj , there are sets Dj which are 
positively homothetic to D j such that n is conformally equivalent to D \ Uf Dj. 

Later [S7] he was able to dispose of the convexity assumption, and proved the packing theorem 
for smoothly bounded but otherwise arbitrary shapes. As a consequence, he was able to generalize 
Theorem 2.5 to arbitrary (not neccessarily convex) compact connected sets D j , thus rediscovering 
a theorem due to Brandt [Br] and Harrington [Ha]. 

Oded then developed a differentiable approach to the circle packing theorem. In [S3] he shows 

Theorem 2.6. (fS3), Theorem 1.1) Let P be a 3-dimensional convex polyhedron, and let K C R3 
be a smooth strictly convex body. Then there exists a convex polyhedron Q C R3 combinatorially 
equivalent to P which midscribes K. 

Here "Q midscribes K" means that all edges of Q are tangent to oK. He also shows that the 
space of such Q is a six-dimensional smooth manifold, if the boundary of K is smooth and has 
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positive Gaussian curvature. For K = 8 2 , Theorem 2.6 has been stated by Koebe [K02] and proved 
by Thurston [T] using Andreev's theorem [AI], [A2]. Oded notes that Thurston's midscribability 
proof based on the circle packing theorem can be reversed, so that Theorem 2.6 yields a new proof 
of the Circle Packing Theorem (given a triangulation, just take K = 8 2 , Q the midscribing convex 
polyhedron with the combinatorics of the packing, and for each vertex v E V, let Dv be the set of 
points on 8 2 that are visible from v). 

One defect of the continuity method in his thesis was that it did not provide a proof of uniqueness 
(see next section). In [S4] he presented a completely different approach to prove a far more general 
packing theorem, that had the added benefit of yielding uniqueness, too. A quote from [S4]: 

It is just about the most general packing theorem of this kind that one could hope for (it is more 
general than I have ever hoped for). 

A consequence of [S4] (Theorem 3.2 and Theorem 3.5) is 

Theorem 2.7. Let G be a planar graph, and for each vertex v E V, let:Fv be a proper 3-manifold 
of smooth topological disks in 8 2 , with the property that the pattern of intersection of any two sets 
in :Fv is topologically the pattern of intersection of two circles. Then there is a packing P whose 
nerve is G and which satisfies Pv E :Fv for v E v. 
The requirement that :Fv is a 3-manifold requires specification of a topology on the space of 
subsets of 8 2 : Say that subsets An C 8 2 converge to A if lim sup An = lim inf An = A and 
AC = int(limsupA~). An example is obtained by taking a smooth strictly convex set K in R3 and 
letting :F be the family of intersections H n oK, where H is any (affine) half-space intersecting the 
interior of K. Specializing to K = 8 2 , :F is the familiy of circles and the choice :Fv = :F for all v 
reduces to the circle packing theorem. 

The proof of Theorem 2.7 is based on his incompatibility theorem, described in the next section. 
It provides uniqueness of the packing (given some normalization), which is key to proving existence, 
using continuity and topology (in particular invariance of domains). 

2.4 Uniqueness of Packings 

I was always impressed by the flexibility of Oded's mind, in particular his ability to let go of a 
promising idea. If an idea did not yield a desired result, it did not take long for him to come up 
with a completely different, and in many cases more beautiful, approach. He once told me that 
if he did not make progress within three days of thinking about a problem, he would move on to 
different problems. 

Following Koebe and Schottky, uniqueness of finitely connected circle domains (up to Mobius 
images) is not hard to show, using the reflection principle: If two circle domains are conformally 
equivalent, the conformal map can be extended by reflection across each of the boundary circles, to 
obtain a conformal map between larger domains (that are still circle domains). Continuing in this 
fashion, one obtains a conformal map between complements of limit sets of reflection groups. As 
they are Cantor sets of area zero, the map extends to a conformal map of the whole sphere, hence 
is a Mobius transformation. Uniqueness of the (finite) circle packing can be proved in a similar 

9 



12

fashion. To date, the strongest rigidity result whose proof is based on this method is the following 
theorem of He and Schramm. See [Bo] for the related rigidity of Sierpinski carpets. 

Theorem 2.8 ([HS2], Theorem A). If n is a circle domain whose boundary has u-finite length, 
then n is rigid (any conformal map to another circle domain is Mobius). 

For finite packings, there are several technically simpler proofs. The shortest and most ele
mentary of them is deferred to the end of this section, since I believe it has been discovered last. 
Rigidity of infinite packings lies deeper. The rigidity of the hexagonal packing, crucial in the proof 
of the Rodin-Sullivan theorem as elaborated in Section 2.6 below, was originally obtained from 
deep results of Sullivan's concerning hyperbolic geometry. He's thesis [He] gave a quantitative and 
simpler proof, still using the above reflection group arguments and the theory of quasiconformal 
maps. In one of his first papers [S2], Oded gave an elegant combinatorial proof that at the same 
time was more general: 

Theorem 2.9 ([S2], Theorem 1.1). Let G be an infinite, planar triangulation and P a circle packing 
on the sphere 8 2 with nerve G. If 8 2 \ carrier(P) is at most countable, then P is rigid (any other 
circle packing with the same combinatorics is Mobius equivalent). 

The carrier of a packing {Dv : v E V(G)} is the union of the (closed) discs Dv and the 
"interstices" (bounded by three mutually touching circles) in the complement of the packing. The 
rigidity of the hexagonal packing follows immediately, since its carrier is the whole plane. 

The ingenious new tool is his Incompatibility Theorem, a combinatorial analog to the confor
mal modulus of a quadrilateral. To fully appreciate it, lets first look at its classical continuous 
counterpart, and defer the statement of the Theorem to Section 2.4.2 below. 

2.4.1 Extremal length and the conformal modulus of a quadrilateral 

If you conformally map a 3x1-rectangle to a disc, such that the center maps to the center, what 
fraction of the circle does the image of one of the two short sides occupy? Despite having known 
the effect of "crowding" in numerical conformal mapping, I was surprised to learn of the numerical 
value of 0.0114". from Don Marshall (see [MS].) Of course, the precise value can be easily computed 
as an elliptic integral, but if asked for a rough guess, most answers are around 1/10 (the uniform 
measure with respect to length would give 1/8). Oded's answer, after a moments thought (during a 
tennis match in the early 90's), was 1/64, reasoning that this is the probability of a planar random 
walker to take each of his first three steps "to the right". 

An important classical conformal invariant, masterfully employed by Oded in many of his papers, 
is the modulus of a quadrilateral. Let n be a simply connected domain in the plane that is bounded 
by a simple closed curve, and let Pl,P2,P3 and P4 be four consecutive points on an. Then there 
is a unique M > 0 such that there is a conformal map f : n --+ [0, M] x [0,1] and such that f 
takes the Pj to the four corners with f(Pl) = 0 (by a classical theorem of Caratheodory, f extends 
homeomorphic ally to the boundary of the domains). There are several quite different instructive 
proofs of uniqueness of M. Each of the following three techniques has a counterpart in the circle 
packing world that has been employed by Oded. Suppose we are given two rectangles and a 
conformal map f between them taking corners to corners. 
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One method to prove uniqueness is to repeatedly reflect J across the sides of the rectangles. 
The resulting extention is a conformal map of the plane, hence linear, and it follows that the aspect 
ratio is unchanged. This is similar to the aforementioned Schottky group argument. 

A second method is to explicitly define a quantity A depending on a configuration (D,Pl, ... ,P4) 
in such a way that it is conformally invariant and such that one can compute A for the rectangle 
[0, M] x [0,1]. This is achieved by the extremal length of the family r of all rectifiable curves 'Y 
joining two opposite "sides" [PI,p2] and [P3,p4] of D. The extremal length of a curve family r is 
defined as 

_ (inf'Y J'Y pldzl? 
A(r) - sup f 2d d ' 

P JCP x y 
(1) 

where the supremum is over all "metrics" (measurable functions) p: C --; [0,(0). For the family of 
curves joining the horizontal sides in the rectangle [0, M] x [0, 1], it is not hard to show A(r) = M. 
This simple idea is actually one of the most powerful tools of geometric function theory. See e.g. 
[Po2] or [GM] for references, properties and applications. 

Discrete versions of extremal length (or the "conformal modulus" I/A) have been around since 
the work of Duffin [Du~. In conformal geometry, they have been very succesfully employed be
ginning with the groundbreaking paper [Can]. Cannon's extremal length on a graph G = (V, E) 
is obtained from (1) by viewing non-negative functions p : V --; [0, (0) as metrics on G, defining 
the length of a "curve" 'Y C V as the sum I:vE'Y p( v), and the "area" of the graph as I: p( v? 
See [CFPI] for an account of Cannon's discrete Riemann mapping theorem, and for instance the 
papers [HK] and [BK] concerning applications to quasiconformal geometry. Oded's applications to 
square packings and transboundary extremal length are briefly discussed in Section 2.7 below. 

A third and very different method is topological in nature and is one of the key ideas in [HSI]. 
Suppose we are given two rectangles D, D' with different aspect ratio and overlapping as in Fig. 5, 
and a conformal map J between them mapping corners to corners. Then the difference J(z) - z is 
i= ° on the boundary aD. Traversing aD in the positive direction, inspection of Fig. 5 shows that 
the image curve under J(z) - z winds around ° in the negative direction. But a negative winding 
is impossible for analytic functions (by the argument principle, the winding number counts the 
number of preimages of 0). 

2.4.2 The Incompatibility Theorem 

Again consider the overlapping rectangles D, D' of Fig. 5, and two combinatorially equivalent pack
ings P, P' whose nerves triangulate the rectangles, as in Fig. 6. Assume for simplicity that the sets 
Dv and D~ of the packings are closed topological discs (except for the four sides Dl, ... D 4, Di, ... , D~ 
of the rectangles, which are considered to be sets of the packing). Intuitively, two topological discs 
D and D' are called incompatible if they intersect as in Fig. 5. More formally, say that D cuts D' 
if there are two points in D' \ interior(D) that cannot be connected by a curve in interior(D' \ D). 
Then Oded calls D and D' incompatible if D cuts D' or D' cuts D. As he notes, the motivation 
Jor the definition comes from the simple but very important observation that the possible patterns 
oj intersection oj two circles are very special, topologically. Indeed, any two circles are compatible. 

Theorem 2.10 ([S2], Theorem 3.1). There is a vertex v Jor which Dv and D~ are incompatible. 
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