

Pro Android Python
with SL4A

Paul Ferrill

Apress·

Pro Android Python with SIAA

Copyright© 2011 by Paul Ferrill

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 978-1-4302-3569-9

ISBN 978-1-4302-3570-5 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Tom Welsh
Technical Reviewer: Justin Grarnmens
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt
Wade, Tom Welsh

Coordinating Editors: Mary Tobin, Corbin Collins
Copy Editor: Nancy Sixsmith
Production Support: Patrick Cunningham
Indexer: SPI Global
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+ Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer
sbm. com, or visit www. springeronline. com.

For information on translations, please e-mail rights@apres s. com, or visit www. a press. com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at www. apress. com/bulk -sales.

The information in this book is distributed on an "as is" basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer questions

pertaining to this book in order to successfully download the code.

To my wife, Sandy, for your tireless support ofme and ourfamily. I could not have done this without you.
And to my wondeiful children who put up with a preoccupied daddy for way too long.

-Paul Ferrill

iv

Contents at aGlance

About the Author ••• xi

About the Technical Reviewer xii

Acknowledgments ••• xiii

Preface •• xiv

-Chapter 1: Introduction •••1

.f Chapter 2: Getting Started 27

'~Chapter 3: Navigating the Android SDK 57

i Chapter 4: Developing with Eclipse 83

Chapter 5: Exploring the Android APi •• 113

_Chapter 6: Background Scripting with Python 139

--;:,~ Chapter 7: Python Scripting Utilities ••• 165

-<~ Chapter 8: Python Dialog Box-based GUls 195

Chapter 9: Python GUls with HTML•• 221

-'8 Chapter 10: Packaging and Distributing 249

Index•••273

Contents

About the Author•....................••............................•.•.•.••......••••••.•xi

About the Technical Reviewer xii

Acknowledgments•..xiii

Preface•..xiv

Chapter 1: Introduction 1

Why SL4A? 1

The World of Android 2

Android Application Anatomy 2

Activities 3

Intents 3

SL4A History 4

SL4A Architecture 4

SL4A Concepts 6

JavaScript Object Notation (JSON) 6

Events 7

Languages 7

Beanshell 2.0b4 7

Lua 5.1.4 8

Perl 5.1 0.1 9

PHP 5.3.3 11

Rhino 1.7R2 11

v

"CONTENTS

JRuby 1.4 12

Shell 13

Python 13

Summary 26

",:Chapter 2: Getting Started 27

Installing SL4A on the Device 27

Installing the Android SDK 39

Linux 39

Mac as x 41

Windows 41

Installing Python 43

Remotely Connecting to the Device 45

Device Settings 49

Executing Simple Programs 51

Summary 55

;·}'Chapter 3: NaVigating the Android SDK 57

Wading Through the SDK Documentation 57

Examining the Different SDK Components 59

Testing With the Android Emulator 60

Android Debug Bridge...............................•...68

Dalvik Debug Monitor Service (DDMS) 79

Summary 81

~Chapter 4: Developing with Eclipse 83

Installing Eclipse on a Development Machine 83

Eclipse Basics 88

Perspectives 90

Projects 93

vi

sCONTENTS

Android Development Toolkit. 94

Using Pydev 99

Using MUltiple File Types in Eclipse 107

Summary 110

f Chapter 5: Exploring the Android APi 113

Exploring the Android APls 115

Android Facades 116

ActivityResultFacade 118

AndroidFacade 118

ApplicationManagerFacade 121

BatteryManagerFacade 121

BluetoothFacade 123

CameraFacade 123

CommonlntentsFacade 124

ContactsFacade 125

EventFacade '" 127

EyesFreeFacade 127

LocationFacade 127

MediaPlayerFacade 128

MediaRecorderFacade 128

PhoneFacade 128

PreferencesFacade 128

SensorManagerFacade 129

SettingsFacade 130

SignalStrengthFacade 130

SmsFacade 131

SpeechRecognitionFacade 132

TextToSpeechFacade 132

ToneGeneratorFacade 132

vii

~CONTENTS

UiFacade 132

WakeLockFacade 137

WebCamFacade 137

WifiFacade 137

Summary 138

-Chapter 6: Background Scripting with Python 139

Background Tasks 139

Triggers 141

Orientation-based Actions 142

Location-based Actions 145

Time-based Actions 146

Elapsed Time-based Triggers 148

FTP File Sync Tool. 150

Syncing Photos with Flickr 158

Syncing with Google Docs 160

AStartup Launcher 162

Summary 164

vqChapter 7: Python Scripting Utilities 165

Python Libraries 165

E-mail-Based Applications 168

Location-Aware Applications 172

Tweet My Location 172

Killing a Running App 186

URL File Retriever 188

Python FTP Server 190

Summary 194

viii

",-CONTENTS

Chapter 8: Python Dialog Box-based GUls 195

UI Basics 195

Book Title Search 199

Convenience Dialog Boxes 201

Progress Dialog Boxes 203

Modal versus Non-Modal Dialog Boxes 205

Options Menu 207

File Listing with dialogCreateAlert 207

Dialog Boxes as Python Objects 209

Podplayer App 213

Building the mysettings App 216

Summary 220

-'ill Chapter 9: Python GUls with HTML 221

HTML and Basic Information Display 221

HTML and JavaScript. 224

HTML GUI Form Basics 226

Simple HTML Forms 228

Cascading Style Sheets 230

SMS Merger 233

Summary 247

ill Chapter 10: Packaging and Distributing 249

QR Codes 249

Application Packages 251

Packaging Your Own Application 264

Building with Ant 264

Compiling SL4A 266

Finishing Touches 269

ix

x

[CONTENTS

Winding Down 271

Summary 271

Index..•.........•..273

About the Author

:Paul Ferrill has a BS and MS in electrical engineering and has been
writing about computers for more than 25 years. He currently serves as
CTO for Avionics Test and Analysis Corporation, working on multiple DoD
projects. Software development has been his primary focus, along with
architecting large-scale data management and storage systems. He also
serves on several DoD standards committees, providing input to the next
generation of data recording and transmission standards.

He has a long history with both Microsoft and open source
technologies. His two favorite languages are Visual Basic and Python. He's
had articles published in PC Magazine, PC Computing, InfoWorld,
Computer World, Network World, Network Computing, Federal Computer
Week, Information Week, and multiple web sites.

xi

xii

About the Technical Reviewer

Justin Grammens has been writing software for 12 years, holds a masters
degree in Software Systems, and has a patent pending on the process of a
system to collect and rate digital media. He has written applications for a
variety of mobile platforms in a number of different market sectors and is the
cofounder of Recursive Awesome, LLC; owner of Localtone, LLC; and founder
of Mobile Twin Cities.

Justin has built online e-commerce systems, real-time mapping
solutions, large-scale tax accounting software, and technology for Internet
radio stations. Having worked with Android since version l.0, Justin has
spoken on mobile technology at conferences and software development
groups since 2008.

Justin has developed Android applications for Best Buy, McDonald's,
BuzzFeed, and Consolidated Knowledge; and is co-creator of a cross-platform

streaming video service called Mobile Vidhub. Justin is employed by Code 42 as a Director of Mobile
Technology and lives in S1. Paul, MN, with his wife.

Acknowledgments

I would like to acknowledge the excellent staff at Apress who managed to get this book completed on
time through multiple delays and reworking of the original title. You've made the process much less
frightening for a first-time author than I expected.

A special thanks goes to coordinating editors Mary Tobin and Corbin Collins, and to Tom Welsh, the
lead editor.

I'd also like to thank Frank Pohlmann for convincing me to do this project in the first place.
Thank you to the technical reviewer, Justin Grammens, for a keen set of eyes and helpful comments.

A big thank you to Robbie Matthews, who has become one of the primary contributors to the SUA
project and provided help when things didn't make sense.

Thanks also to the folks at TechSmith, and Betsy Weber in particular, for their fantastic Snagit
product, without which the screenshots would have been so much harder.

Final thanks go to my son Micah Ferrill for his help with the Python code.

xiii

xiv

Preface

It's no secret that traditional computing patterns are undergoing a radical change. The proliferation of
smartphones with ever-increasing processing power will only accelerate the process. Tablet devices have
seen a much broader adoption as extensions of the smartphone platform where previous attempts to
downsize general-purpose computers failed. While the operating system of the most popular mobile
devices may be different from the user's perspective, it has more in common with a desktop system than
you might think.

Google's Android platform has seen a huge increase over the last year and is challenging Apple's iOS
for market share. Apple's wide lead in applications has been steadily dwindling although the jury is still
out when it comes to quality. Building those applications has, for the most part, been restricted to
Objective C for iOS and Java for Android. There are a few other options ifyou take into consideration the
MonoTouch and MonoDroid projects, but that's about it.

Mobile devices will probably never completely replace traditional computers, although the division
of activity will continue to swing toward the one you have access to the most. This book is about
bringing some of the flexibility you get with a desktop computer in the form of writing simple programs
or scripts to accomplish a specific task. I know I've learned a lot along the way, and it is my sincere hope
that through reading this book you will glean a thing or two as well.

CHAPTER 1

Introduction

This book is about writing real-world applications for the Android platform primarily using the Python
language and a little bit of JavaScript. While there is nothing wrong with Java, it really is overkill when all
you need to do is turn on or off a handful of settings on your Android device. The Scripting Layer for
Android (SUA) project was started to meet that specific need. This book will introduce you to SUA and
give you the power to automate your Android device in ways you never thought possible.

Why SL4A?
One of the first questions you probably have about this book is, "Why would I want to use SUA instead
of Java?" There are several answers to that question. One is that not everyone is a fan of Java. The Java
language is too heavyweight for some and is not entirely open source. It also requires the use ofan edit /
compile / run design loop that can be tedious for simple applications. An equally legitimate answer is
simply"I want to use X", where Xcould be any number of popular languages.

Google provides a comprehensive software development kit (SDK) aimed specifically at Java
developers, and most applications available from the Android market are probably written in Java. I'll
address the Android SDK in Chapter 3 and use a number of the tools that come with it throughout the
book.

illNote Sl4A currently supports Beanshell, JRuby, lua, Perl, PHP, Python, and Rhino.

SUA is really targeted at anyone looking for a way to write simple scripts to automate tasks on an
Android device using any of the supported languages, including Java through Beanshell. It provides an
interactive console in which you can type in a line of code and immediately see the result. It even makes
it possible, in many cases, to reuse code you've written for a desktop environment. The bottom line is
that SUA makes it possible both to write code for Android-based devices in languages other than Java
and to do it in a more interactive way.

1

CHAPTER 1 INTRODUCTION

The World of Android
Google jumped into the world of mobile operating systems in a big way when it bought Android, Inc. in
2005. It's really pretty amazing how far it has come in such a short time. The Android community is huge
and has spawned a wide range of conferences, books, and support materials that are easily available
over the Internet.

This is a good point to derme a few terms that you'll see throughout the rest of this book. Android
applications are typically packaged into. apk flIes. These are really just. zip files containing everything
needed by the application. In fact, ifyou rename an .apk file to. zip, you can open it with any archive
tool and examine the contents.

Most Android devices come from the manufacturer with the systems files protected to prevent any
inadvertent or malicious manipulation. The Android operating system (OS) is essentially Linux at the
core and provides much of the same functionality you would find on any Linux desktop. There are ways
to unlock the system areas and provide root, or unrestricted, access to the entire filesystem on an
Android device. This process is appropriately called rootingyour device, and once complete, the device
is described as rooted. SUA does not require a rooted device, but will work on one if you have chosen
this path.

Android Application Anatomy
Android is based on the Linux operating system (at the time of writing, version 2.6 of the Linux kernel).
Linux provides all the core plumbing such as device drivers, memory and process management, network
stack, and security. The kernel also adds a layer of abstraction between the hardware and applications.
To use an anatomical analogy. you might think of Linux as the skeleton, muscles, and organs of the
Android body.

The next layer up the Android stack is the Dalvik Virtual Machine (DVM). This piece provides the
core Java language support and most of the functionality ofthe Java programming language. The DVM is
the brains in which the majority of all processing takes place. Every Android application runs in its own
process space in a private instance of the DVM. The application framework provides all the necessary
components needed by an Android application. From the Google Android documentation:

"Developers have full access to the sameframework APls used by the core applications.
The application architecture is designed to simplify the reuse of components. Any
application can publish its capabilities, and any other application may then make
use of those capabilities (subject to security constraints enforced by the framework).
This same mechanism allows components to be replaced by the user.

Underlying all applications is a set ofservices and systems, including:

• A rich and extensible set of Views that can be used to build an application,
including lists, grids, text boxes, buttons, and even an embeddable web
browser

• Content Providers that enable applications to access data from other
applications (such as Contacts) or to share their own data

• A Resource Manager, providing access to non-code resources such as localized
strings, graphics, and layoutfiles

2

CHAPTER 1 INTRODUCTION

• A Notification Manager that enables all applications to display custom alerts
in the status bar

• An Activity Manager that manages the lifecycie ofapplications and provides a
common navigation backstack"

All Android applications are based on three core components: activities, services, and receivers.
These core components are activated through messages called intents. SUA gives you access to much of
the core Android functionality through its API facade, so it's a good idea to understand some of the
basics. Chapters 3 and 5 look at the Android SDK and Android application programming interface (API)
in detail, so I'll save the specifics for later. For now, I'll introduce you to activities and intents, as they will
be used extensively.

Activities
The Android documentation defines an activity as "an application component that provides a screen
with which users can interact in order to do something, such as dial the phone, take a photo, send an e
mail, or view a map. Each activity is given a window in which to draw its user interface. The window
typically fills the screen but may be smaller than the screen and float on top of other windows."

Android applications consist of one or more activities loosely coupled together. Each application
will typically have a "main" activity that can, in turn, launch other activities to accomplish different
functions.

Intents
From the Google documentation: "An intent is a simple message object that represents an intention to
do something. For example, if your application wants to display a web page, it expresses its intent to
view the URI by creating an intent instance and handing it off to the system. The system locates some
other piece of code (in this case, the browser) that knows how to handle that intent and runs it. Intents
can also be used to broadcast interesting events (such as a notification) system-wide."

An intent can be used with startActivity to launch an activity, broadcastIntent to send it to any
interested BroadcastReceiver components, and startService(Intent) or bindService(Intent,
ServiceConnection, int) to communicate with a background service. Intents use primary and
secondary attributes that you must provide in the form of arguments.

There are two primary attributes:

• action: The general action to be performed, such as VIEW_ACTION, EDIT_ACTION,
MAIN_ACTION, and so on

• data: The data to operate on, such as a person record in the contacts database,
expressed as a Uniform Resource Identifier (URI)

I http://developer.android.com/guide/basics/what-is-android.html

3

4

CHAPTER 1 INTRODUCTION

There are four types of secondary attributes:

• category: Gives additional information about the action to execute. For example,
LAUNCHER_CATEGORY means it should appear in the Launcher as a top-level
application, while ALTERNATIVE_CATEGORY means it should be included in a list of
alternative actions the user can perform on a piece of data.

• type: Specifies an explicit type (a MIME type) of the intent data. Normally, the
type is inferred from the data itself. By setting this attribute, you disable that
evaluation and force an explicit type.

• component: Specifies an explicit name of a component class to use for the intent.
Normally this is determined by looking at the other information in the intent (the
action, data/type, and categories) and matching that with a component that can
handle it. If this attribute is set, none of the evaluation is performed, and this
component is used exactly as is. By specifying this attribute, all the other intent
attributes become optional.

• extras: A bundle of any additional information. This can be used to provide
extended information to the component. For example, if we have an action to
send an e-mail message, we could also include extra pieces of data here to supply
a subject, body, and so on.

SL4A History
SUA was first announced on the Google Open Source blog in June of 2009 and was originally named
Android Scripting Environment (ASE). It was primarily through the efforts of Damon Kohler that this
project came to see the light of day. Others have contributed along the way as the project has continued
to mature. The most recent release as of this writing is r4, although you'll also fmd experimental versions
available on the SUA web site (http://code.google.com/p/android-scripting).

SL4A Architecture
At its lowest level, SUA is essentially a scripting host, which means that as an application it hosts
different interpreters each of which processes a specific language. Ifyou were to browse the SUA source
code repository, you would see a copy of the source tree of each language. This gets cross-compiled for
the ARM architecture using the Android Native Development Kit (NDK) and loads as a library when SUA
launches a specific interpreter. At that point, the script will be interpreted line by line.

The basic architecture of SUA is similar to what you would see in a distributed computing
environment. Figure 1-1 shows in pictorial form the flow of execution when you launch SUA and then
run a script (in this case, hello. py). Every SUA script must import or source an external fIle, such as
android. py for Python, which will define a number of proxy functions needed to communicate with the
Android API.

The actual communication between SUA and the underlying Android operating system uses a
remote procedure call (RPC) mechanism and JavaScript Object Notation USON). You normally find RPC
used in a distributed architecture in which information is passed between a client and a server. In the
case of SUA, the server is the Android OS, and the client is an SUA script. This adds a layer of separation
between SUA and the Android OS to prevent any malicious script from doing anything harmful.

CHAPTER 1 INTRODUCTION

Security is a concern and is one of the reasons that SUA uses the RPC mechanism. Here's how the
SUA wiki describes it:

"RPC Authentication: SL4A enforces per-script security sandboxing by requiring all
scripts to be authenticated by the corresponding RPC server. In order for the
authentication to succeed, a script has to send the correct handshake secret to the
corresponding server. This is accomplished by:

1. reading the AP_HANDSHAKE environment variable.

2. calling the RPC method _authenticate with the value of AP_HANDSHAKE as an
argument.

The _authenticate method must be the first RPC call and should take place during the
initialization of the Android library. For example, see Rhino's or Python's Android
module".2

SL4A

Executes
'----.~' hello.py

1':_-_..1

AndroIdProxy II(JSONRPC androId.py

~
.,

AndroidFacade

~
Android API

Toast
• Hello Wor1dl

Figure 1-1. SL4A execution flow diagram

2 http://code.google.com/p/android-scripting/wiki/lnterpreterDeveloperGuide

5

CHAPTER 1 INTRODUCTION

SL4A Concepts
There are a number of concepts used by SUA that need to be introduced before we actually use them. At
a very high level, SUA provides a number of functional pieces working in concert together. Each
supported language has an interpreter that has been compiled to run on the Android platform. Along
with the interpreters is an abstraction layer for the Android API. This abstraction layer provides a calling
interface in a form expected for each language. The actual communication between the interpreters and
the native Android API uses inter-process communication (IPC) as an extra layer of protection. Finally,
there is support for an on-device environment to test scripts interactively.

Although Figure 1-1 shows Python as the interpreter, the concept works pretty much the same for all
supported languages. Each interpreter executes the language in its own process until an API call is made.
This is then passed along to the Android DS using the RPC mechanism. All communication between the
interpreter and the Android API typically uses ISDN to pass information.

JavaScript Object Notation (JSON)
SUA makes heavy use ofJSDN to pass information around. You might want to visit the
http://www.json.org web site if you've never seen ISDN before. In its simplest form ISDN is just a way of
defining a data structure or an object in much the same way you would in the context of a program. For
the most part, you will see ISDN structures appear as a series of name/value pairs. The name part will
always be a string while the value can be any IavaScript object.

In SUA, you will find that many of the API calls return information using ISDN. Fortunately, there
are multiple options when it comes to creating, parsing, and using ISDN. Python treats ISDN as a first
class citizen with a full library of tools to convert from ISDN to other native Python types and back again.
The Python Standard Library pprint module is a convenient way to display the contents of a ISDN
response in a more readable format.

The Python Standard Library includes a ISDN module with a number of methods to make handling
ISDN much easier. Because ISDN objects can contain virtually any type of data, you must use encoders
and decoders to get native Python data types into a ISDN object. This is done with the json. JSONEncoder
and json.JSONDecoder methods. When you move aISDN object from one place to another, you must
serialize and then deserialize that object. This requires the j son .loadO and j son •loads0 functions for
decoding, and json.dumpO plus json.dumpsO for encoding.

There are a large number of web services that have adopted ISDN as a standard way to implement
an API. Here's one from Yahoo for images:

{
"Image": {

"Width": 800,
"Height":600,
"Title": "View from 15th Floor",
"Thumbnail" :
{

"Uri": "http: \/\/scd.mm-bl.yimg.com\/image\/481989943",
"Height": 125,
"Width": "100"

},
"IOs":[116, 943, 234, 38793]
}

}

6

CHAPTER 1 INTRODUCTION

Events
The Android OS uses an event queue as a means of handling specific hardware-generated actions such
as when the user presses one of the hardware keys. Other possibilities include any of the device sensors
such as the accelerometer, GPS receiver, light sensor, magnetometer, and touch screen. Each sensor
must be explicitly turned on before information can be retrieved.

The SUA API facade provides a number ofAPI calls that will initiate some type of action resulting in
an event. These include the following:

• startLocating()

• startSensing()

• startTrackingPhoneState()

• startTrackingSignalStrengths()

Each of these calls will begin gathering some type of data and generate an event such as a "location"
event or a "phone" event. Any of the supported languages can register an event handler to process each
event. The startLocatingO call takes two parameters, allowing you to specify the minimum distance
and the minimum time between updates.

Languages
One of the things that SUA brings to the table is lots of language choices. As of the writing of this book,
those choices include Beanshell, Lua, JRuby Perl, PHP, Python, and Rhino (versions given in the
following sections). You can also write or reuse shell scripts ifyou like. Without question, the most
popular of all these languages is Python. Support for the others has not been near the level of Python, up
to this point, but it is possible to use them if you're so inclined.

Beanshe1l2.0b4
Beanshell is an interesting language in that it's basically interpreted Java. It kind of begs the question of
why you would want an interpreted Java when you could just write native Java using the Android SDK.
The Beanshell interpreter does provide an interactive tool to write and test code. It's definitely not going
to be the fastest code, but you might find it useful for testing code snippets without the need to go
through the whole compile/deploy/test cycle.

Examining the android.bsh me shows the code used to set up the JSON data structures for passing
information to and receiving information from the Android OS. Here's what the basic call function
looks like:

call(String method, JSONArray params) {
JSONObject request =new JSONObject();
request.put("id", id);
request.put("method", method);
request.put("params", params);
out.write(request.toStringO + "\n");
out.flushO;
String data = in.readLine();

7

CHAPTER 1 INTRODUCTION

if (data == null) {
return null;

}
return new JSONObject(data);

}

Here's a simple hello_world. bsh script:

source("/sdcard/com.googlecode.bshforandroid/extras/bsh/android.bsh");
droid = Android();
droid.call("makeToast", "Hello, Android''');

Lua 5.1.4
Lua.org describes Lua as "an extension programming language designed to support general procedural
programming with data description facilities". 3 The term extension programming language means that
Lua is intended to be used to extend an existing program through scripting. This fits in well with the
concept of SlAA.

From a syntax perspective, Lua resembles Python somewhat in that it doesn't use curly braces to
wrap code blocks or require a semicolon for statement termination, although you can do this ifyou want
to. In the case of a function definition, Lua uses the reserved word function to begin the code block and
then the reserved word end to mark the end.

Lua has most of the standard data types you would expect in a modern language and also includes
the concept of a table. In Lua, a table is a dynamically created object that can be manipulated much like
pointers in conventional languages. Tables must be explicitly created before use. Tables can also refer to
other tables, making them well suited to recursive data types. The list of generic functions for
manipulating tables includes table. concat, •insert, •maxn, •remove, and •sort.

From the Lua web site, here's a short Lua code snippet that creates a circular linked list:

list ={} -- creates an empty table
current = list
i = 0
while i < 10 do

current.value = i
current. next = {}
current = current.next
i = i+1

end
current. value i
acurrent.next = list

3 http://www.lua.org/manual/s.1/manual.html

8

CHAPTER 1 INTRODUCTION

Here's the Lua code that implements the RPC call function:

function rpc(client, method, •••)
assert(method, 'method param is nil')
local rpc = {

[' id'] = id,
['method'] = method,
params = arg

}
local request = json.encode(rpc)
client:send(request •• '\n')
id = id + 1
local response = client:receive('*l')
local result = json.decode(response)
if result.error -= nil then

print(result.error)
end
return result

end

The obligatory Lua hello world script:

require "android"

name = android.getInput("Hellol", "What is your name?")
android.printDict(name) -- Aconvenience method for inspecting dicts (tables).
android.makeToast("Hello, II •• name.result)

The Lua wiki has links to sample code with a large number of useful snippets.

PerlS.lO.l
Perl probably qualifies as the oldest ofthe languages available in SUA ifyou don't count the shell. It
dates back to 1987 and has been used in just about every type of computing application you can think of.
The biggest advantage of using Perl is the large number ofcode examples to draw from. Coding the
hello_world. pI script looks a lot like that ofother languages:

use Android;
my $a = Android->new();
$a->makeToast("Hello, Android!");

Here's the Perl code needed to launch an SUA script:

Given a method and parameters, call the server with JSON,
and return the parsed the response JSON. If the server side
looks to be dead, close the connection and return undef.
sub do_rpc {

my $self = shift;
if ($self->trace) {

show_trace(qq[do_rpc: $self: @_]);
}

9

CHAPTER 1 INTRODUCTION

my $method = pop;
my $request = to~son({ id => $self->{id},

method => $method,
params => [@_] });

if (defined $self->{conn}) {
print { $self->{conn} } $request, "\n";
if ($self->trace) {

show_trace(qq[client: sent: "$request"]);
}
$self->{id}++;
my $response = readline($self->{conn});
chomp $response;
if ($self->trace) {

show_trace(qq[client: rcvd: "$response"]);
}
if (defined $response && length $response) {

my $result = from_json($response);
my $success = 0;
my $error;
if (defined $result) {

if (ref $result eq 'HASH') {
if (defined $result->{error}) {

$error = to_json({ error => $result->{error} });
} else {

$success ,. 1;
}

} else {
$error = "illegal JSON reply: $result";

}
}
unless ($success I I defined $error) {

$error = "unknown JSON error";
}
if (defined $error) {

printf STDERR "$0: client: error: %s\n", $error;
}
if ($Opt{trace}) {

print STDERR Data::Dumper->Dump([$result], [qw(result)]);
}
return $result;

}
}
$self->close;
return;

}

10

CHAPTER 1 INTRODUCTION

PHP 5.3.3
PHP is, without a doubt, one of the most successful general-purpose scripting languages for creating
dynamic web pages. From humble beginnings as the Personal Home Page, the acronym PHP now stands
for PHP: Hypertext Preprocessor. PHP is a free and open source language with implementations for
virtually every major operating system available free of charge.

Here's the PHP code needed to launch an SlAA script via an RPC:

public function rpc($method, $args)
{

$data = array(
'id'=>$this-> id,
'method'=>$method,
'params'=>$args

);
$request = json_encode($data);
$request .= "\n";
$sent = socket_write($this->_socket, $request, strlen($request»;
$response = socket_read($this->_socket, 1024, PHP_NORMAL_READ) or die("Could not ...

read input\n");
$this->_id++;
$result = json_decode($response);

$ret = array ('id' => $result->id,
'result' => $result->result,
'error' => $result->error

);
return $ret;

}

The PHP version of hello_world. php looks like this:

<?php
require_once("Android.php");
$droid = new Android();
$name = $droid->getlnput("Hi!", "What is your name?");
$droid->makeToast('Hello, , . $name['result']);

You get a number of other example scripts when you install PHP along with the basic
hello_world. php.

Rhino 1.7R2
The Rhino interpreter gives you a way to write stand-alone Javascript code. JavaScript is actually
standardized as ECMAScript under ECMA-262. You can download the standard from http://ww•ecma
international. org/publications/standards/Ecma-262. htm. The advantages of having a JavaScript
interpreter are many. Ifyou plan on building any type of custom user interface using HTML and
JavaScript, you could prototype the JavaScript part and test it with the Rhino interpreter.

11

CHAPTER 1 INTRODUCTION

The android. j s me for Rhino resembles that of the other languages in many aspects. Here's what
the RPC call definition looks like:

this.rpc = function(method, args) {
this.id += 1;
var request = JSON.stringify({'id': this.id, 'method': method,

'params': args});
this.output.write(request + '\n');
this.output.flush();
var response = this.input.readline();
return eval("(" + response + ")");

},
Here's a simple Rhino hello_world.js script:

load("/sdcard/sI4a/extras/rhino/android.js");
var droid =new Android();
droid.makeToast("Hello, Androidl");

JRuby 1.4
One of the potential hazards of any open source project is neglect. At the time of this writing, based on
SUA r4, the JRuby interpreter has suffered from neglect and doesn't even run the hello_world.rb script.
In any case, here's what that script looks like:

require "android"
droid = Android.new
droid.makeToast "Hello, Android!"

The JRuby interpreter does launch, and you can try out some basic JRuby code with it. Here's what
the Android class looks like in Ruby:

class Android

def initialize()
@client = TCPSocket.new('localhost', AP_PORT)
@id = 0

end

def rpc(method, *args)
@id += 1
request = {'id' => @id, 'method' => method, 'params' => args}.to-ison()
@client.puts request
response =@client.gets()
return JSON.parse(response)

end

def method_missing(method, *args)
rpc(method, *args)

end

end

12

CHAPTER 1 INTRODUCTION

Shell
Ifyou're a shell script wizard, then you'll feel right at home with SUA's shell interpreter. It's essentially
the same bash script environment you would see at a typical Unux terminal prompt. You'll find all the
familiar commands for manipulating files like cp, Is, mkdir, and my.

Python
Python has a wide usage and heavy following, especially within Google. In fact, its following is so
significant they hired the inventor of the language, Guido van Rossum. Python has been around for quite
a while and has many open source projects written in the language. It also has seen the most interest as
far as SUA is concerned, so you'll find more examples and discussions in the forums than for any of the
other languages. For that reason, I will spend a little more time introducing the language, trying to hit
the higWights of things that will be important from an SUA perspective.

language Basics
Knowing the Python language is not an absolute requirement for this book, but it will help. The first
thing you need to know about Python is that everything is an object. The second thing is that whitespace
is meaningful in Python. By that, I mean Python uses either tabs or actual spaces (ASCII 32) instead of
curly braces to control code execution (see Figure 1-2). Third, it's important to remember that Python is
a case-sensitive language.

b - 2

If a = 1:
print: I'1\. = :1 n

elif b ~ 2:
print: JrR =:- 7"

it", 1,Co~ 5

Figure 1-2. Example ofwhitespace usage in Python

Python is a great language to use when teaching an "introduction to computer programming"
course. Every installation of standard Python comes with a command-line interpreter where you can
type in a line of code and immediately see the result. To launch the interpreter, simply enter python at a
command prompt (Windows) or terminal window (Unux and Mac OS X). At this point, you should see a
few lines with version information followed by the triple arrow prompt (>>>),letting you know that
you're inside the Python interpreter as shown here:

13

CHAPTER 1 INTRODUCTION

C:\Users\paul>python
Python 2.6.6 (r266:84297, Aug 24 2010, 18:13:38) [MSC v.1500 64 bit (AMD64)] on
win32
Type "help", "copyright", "credits" or "license" for more information.
»>

Python uses a number of naming conventions that you will see ifyou examine much Python code.
The first is the double underscore, which is used in Python to "mangle" or change names as a way to
define private variables and methods used inside a class. You will see this notation used for "special"
methods such as _ init _ (self). If a class has the special_init _ method, it will be invoked whenever
a new instantiation of that class occurs.

For example:

»> class Point:
def init (self, x, y):

- self.x = x
self.y = y

»> xy = Point(1,2)
»> xy.x, xy.y
(1, 2)

As you can see from the example, self is used as a reserved word in Python and refers to the fust
argument of a method. It's actually a Python convention and, in reality, has no special meaning to
Python. However, because it's a widely accepted convention, you'll want to stick with it to avoid any
potential issues. Technically, self is a reference to the class or function itself. Methods within a class
may call other methods in the same class by using the method attributes of the self argument.

Python has a short list of built-in constants. The main ones you'll run into are False, True, and None.
False and True are of type bool and show up primarily in logical tests or to create an infinite loop.

One of the things that frequently confuses new users of the language is the variety of data types. The
following sections give quick overview of the key data types you'll need to use Python and SUA.

Dictionary: An Unordered Set ofKey/Value Pairs Requiring Unique Keys

APython dictionary maps directly to a JSON data structure. The syntax for defining a dictionary uses
curly braces to enclose entries and a colon between the key and value. Here's what a simple dictionary
definition looks like:

students = {'barney' : 1001, 'betty' : 1002, 'fred' : 1003, 'wilma' : 1004}

To reference entries, use the key, as shown here:

students['barney'] = 999
students['betty'] = 1000

You can also use the dictO constructor to build dictionaries. When the key is a simple string, you
can create a new dictionary using arguments passed to dict () such as the following:

students = dict(barney=1001, betty=1002, fred=1003, wilma=1004)

14

CHAPTER 1 INTRODUCTION

Because everything in Python is an object, you can expect to see methods associated with a
dictionary object. As you might expect, there are methods to return the keys and the values from a
dictionary. Here's what that would look like for the students dictionary:

>>> students
{'barney': 1001, 'betty': 1002, 'fred': 1003, 'wilma': 1004}
»> students.keys()
['barney', 'betty', 'fred', 'wilma']
»> students.values()
[1001, 1002, 1003, 1004]

The square bracket convention denotes a list. Evaluating the students. keys() statement returns a
list of keys from the students dictionary.

list: ABuilt-In Python Sequence Similar to an Array in Other Languages
In Python, a sequence is defined as "an iterable which supports efficient element access using integer
indices via the _getitem_O special method and defines a lenO method that returns the length of the
sequence." An iterableis defined as "a container object capable of returning its members one at a time."
Python provides direct language support for iteration because it's one of the more common operations
in programming. List objects provide a number of methods to make working with them easier. From the
Python documentation:

• list.append(x): Add an item to the end of the list; eqUivalent to a[len(a):] = [x].

• list.extend(L): Extend the list by appending all the items in the given list;
equivalent to a[len(a):] = l.

• list. insert(I,x): Insert an item at a given position. The first argument is the
index of the element before which to insert, so a. insert(0, x) inserts at the front
of the list, and a. insert(len(a), x) is equivalent to a.append(x).

• list.remove(x): Remove the first item from the list whose value is x.It is an error if
there is no such item.

• list.pop([i): Remove the item at the given position in the list and return it. Uno
index is specified, a. pop() removes and returns the last item in the list. (The
square brackets around the i in the method signature denote that the parameter is
optional, not that you should type square brackets at that position.) You will see
this notation frequently in the Python Library Reference.

• list. index(x): Return the index in the list of the fust item whose value is x. It is an
error if there is no such item.

• list.count(x): Return the number oftimes x appears in the list.

• list. sort: Sort the items of the list, in place.

• list. reverse(x): Reverse the elements of the list, in place.

15

