Store and retrieve your Apps data
accurately and efficiently

Pro
Core Data for i0S

Data Access and Persistence Engine for iPhone, iPad, and iPod touch

Michael Privat | Robert Warner

ApPress®

Pro Core Data for iOS

Data Access and Persistence Engine for iPhone, iPad,
and iPod touch

Michael Privat
and Rob Warner

Apress*

Pro Core Data for i0S: Data Access and Persistence Engine for iPhone, iPad, and iPod touch
Copyright © 2011 by Michael Privat and Rob Warner

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 978-1-4302-3355-8
ISBN 978-1-4302-3356-5 (eBook)

Printed and bound in the United States of America987654321

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin

Development Editor: Douglas Pundick

Technical Reviewer: Robert Hamilton

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,
Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Jennifer L. Blackwell

Copy Editor: Kim Wimpsett

Indexer: BIM Indexing & Proofreading Services

Compositor: Richard Ables

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC.,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at waw.apress.com/info/bulksales.

The source code for this book is availale to readers at www.apress.com.

To my loving wife, Kelly, and our children, Matthieu and Chloé.
—NMichael Privat

To my beautiful wife Sherry and our wonderful children: Tyson, Jacob, Mallory, Camie, and
Leila.

—Rob Warner

iv

Contents at a Glance

ADbout the AUTNOLS.......cciiciisninsi s ————————————————_ Xii
About the Technical ReVIEWETcusssessesssmssssssmssssssssssssssssssssssssssssssssmssssssssssnssnsssssssmssnsssnnssnsnnssnnnanss Xiii
ACKNOWIEAGMENLScceiieeriemiiamiisniisnsssnssssssasssnsnsnsssnsssmsnsasasasasasssasssnsssnsssnssnsssnnssnnssnsssnnsnnssnnsnnnssnnssans xiv
INtrOAUCTION ..cvvvesesssss s s s s s Xvi
Chapter 1: Getting Startedc.ccicinimninnimnnnnsns e 1
Chapter 2: Understanding Core Datac..ccusrssesssesssmsmsesssassesaness 27
Chapter 3: Storing Data: SQLite and Other Oplionsc.ccccvicmnsmnsnnsnisnisemsmssss s ———————— 57
Chapter 4: Creating a Data Model........cccccusemsmmsmmmsesmsnsmsnsssnsssesssssssssssssssssssssssssssssssssssnsssnsssnsssnssnssnnns 107
Chapter 5: Working with Data Objectsc..ccucuimmimmsmmsmmsnmsnssnsessesssssss s sssssssssssssnn 129
Chapter 6: Refining ReSult Setsccuumimmimmsammsasmsasssanssasssasssasssanssassssnssssssssssssssnsssssssnsssssssssssssssnssans 181
Chapter 7: Tuning Performance and Memory USAge.......ccuusssrssssmsssssssssssssanssssnssssnsssanssssnssssansssansssans 203
Chapter 8: Versioning and Migrating Datacccuciismismismismismismismismssessssssssssassssssasssasssas 251
Chapter 9: Using Core Data in Advanced Applications.........cccusmmsenmmssssmsssssssssssssssssasssssnsssssssssssnssans 283
1T 359

Contents

T T LT (] xii
About the TechniCal REVIBWETcusssemssnssassassassssssassassasssssssssassassassssssnssassasssssssssnssassnssssssassassassassans Xiii
ACKNOWIEAGMENLScceiieeriemiiamiisniisnsssnssssssasssnsnsnsssnsssmsnsasasasasasssasssnsssnsssnssnsssnnssnnssnsssnnsnnssnnsnnnssnnssans xiv
L1110 T (] T, Xvi
Chapter 1: Getting Startedc.ccicinimninnimnnnnsns e 1
What IS Core DAta?ccueemseemsmmsnnmsnnmssnmssnsssnsssnssssssssssnsssnsssasssnssssssssssssssssssssssssssnsssnsssnsssnsssnsssnssnanssn 1
History of Persistence in i0Sccocvimrsmmsmmssmsasmsasmsasssasssasssnsssasssssssssssssssssssssssssssnsssssssnsssnsssnsssnsssns 2
Creating a Basic Core Data Application........cccuseuumssnmmsssmssssssssssssssssssansssssssssnssssnssssnsssssnssssssssansssansanas 3
Understanding the Core Data COmMpPONents...........cccccuismmimmssmismissmsssssssssssssssssssssssssssasssasssasnsasnsns 3
Creating a New Projectccccusmiemismmssmmssmsssmsssmsssmssssssssssssssnsssnsssnsssnsssnssssssssnssnsssnsssnsssnsssnsssnsnnns 5
Running Your New Project.........ccuucuusemmsammsasssasmsasssasnsnsssnsssnsssnsssnsssssssasssssssssssnsssnsssnsssnsssnsssnsssnsnnns 6
Understanding the Application’s COmMpPoNents..........cccummsmmismismssmssmsssssssessesssessssssnsssasssnssnns 7
FetChing RESUIScccuimiimiimmsanmisnmisnsssnnssnssssssasssmsssmsssnsssnsssasssnsssssssnssssssnsssnsssnsssnsssnsssnssnnsnnnsnnns 9
Inserting New ODjectS........cccuuimimmimmsnmsanminsmssmsmsnsnsssnsssnsssesssesssesssssssnsssnsssnsssnsssnsssnsssnssnssnsnnnssn 1
Initializing the Managed Contextccuimmimmsmmnsemnsmmssemssemssemsssssssssssssssssssssnsssnsssnsssnsssnsssnnsnnsas 13
Adding Core Data to an EXisting Project.........c.ccucumimmsemrsnmsansssnssanssnnssasssasssasssasssmsssasssssssssssnssnsssnnns 15
Adding the Core Data FrameWOrK.......cucuusrsssmsasssasssasssnssssssssssssssssssasssasssasssnsssssssssssssssssssssssassnnss 15
Creating the Data Modelccoorismmismmsnnsssmsnmsnsmsssssnsssnsssnsssnsssnsssnsssnsssnsssnsssssssnsssnsssasssnsssnsssnnes 16
Initializing the Managed Object Context.........ccuirmimrmsmmmsesmsesssesssesssesssssssssssnsssnsssnsssnsssnsssnsssnssaness 21

L1111 T 25

WCONTENTS

Chapter 2: Understanding Core Dataccscuviesmmsnnmsssmsssssssssssssssssnssssnsssssssssssssssssssanssssssssnnsssanssssnnss 27
Core Data FrameWOrK ClaSSS.....uuusursamssmssersassassasssnssassassasssnssassassasssnssassassassasssnssnssassasssnssnssassassanssns 27
The Model Definition ClaSSeSuueussersserssssssnrssnrssnsssasssnsssnsssnsssnssssssasssasssasssnsssasssnsssnsssssssssssnnsnns 30

The Data ACCESS ClaSSES...uuuurrsermsurmsurssnnssasssasssasssasssasssnsssasssnssssssssssssssssssnsssnsesnsssnsssnsssssssssssassnns 38
Key-Value ODSerViNg....ccuosrssrsssrssssssnsssnssasssnsssnsssnsssnsssnsesssssssssssssssssssssssssssssnsssnsssnsssnsssnsssnsssnsssnsss 42

THe QUETY ClaSS@S .uuusurrsurrsurrsusrsnsrsnsssnsssnssssnssssssasssnsssnsssnssssssssssssssssssnsssssssssssasssasssssssnssssssnsssnnssnnss 43
How the Classes INtEract........ccusrssemssesssesssnsssnssssssssssnsssnsssnsssnsssnsssssssnsssssssssssanssnsssnsssnsssnsssnsnnesnness 46
SQLITE PriMEr ..ciciisinseisemsasssnssnssassassssssssssssasssssssssnssnssassnssssssnssassassnsssnssnssassassnsssnssnssassnssnnssnssassns 51
Reading the Data Using Core Dataccccusuumsenmmsssmsssnsmsssssssssssssssssanssssnsssssssssnsessanssssssssansssansanss 53
SUIMIMIAIY c.uuuiueiessassnsssnssnssassnssssssnssnssassnssssssnssnssnssnssssssnssnssnssnssssssnssnssnssssssnssnssnssnssssssnssnssnssnsssnssnssassnns 55
Chapter 3: Storing Data: SQLite and Other OprioNScccuimnsmnsemssemssemssemssmmsssmsssssssssssssssssssssassanass 57
Using SQLite as the Persistent STOre..........cocuersemssmssnmssmsasssssssasssasssasssssssasssssssssssssssssssssssssssnssnnss 57
Configuring the One-to-Many Relationship..........ccicmnimmimninninmnmnmemmemssesssssm——s 61
Building the User INterfacecucccimmsmmsmssenssmssamsssmsssnsssssnsssnsssnanns 63
Configuring the Table........cciciimiimnimnnnsrsnsssssss s 66

L 1] T T T T 1 66

The Player User INterface.......cocuumuismssnsssmsssmsssmssnmsssmssnsssssssnsssssssnssssssasssssssnsssnsssnsssnsssnsssnsssnssnns 76
Adding, Editing, and Deleting Players..........ccucumismssmssmssmssmsesssesssmsssmssssssssssssssssssssssssssasssnsssanas 79
Seeing the Data in the Persistent Store...... N 85
Using an In-Memory Persistent STorecccuuemememsmmemamemsmssmemememassmamemamssamnamamamma 88
Creating Your Own Custom Persistent STOre.........ccuensmsmsmmsensamsemsenssnsssssassansansssssassassassasssassassassans 90
Initializing the CuSIOM STOKEcuccrierserssmrssmmssmsssasssnsssssssnsssnsssnssssssnsssnsssasssnsssnsssnsssnsssnsssnnsnnnssn 92
Mapping Between NSManagedObject and NSAtomicStoreCacheNode.........ccccussemrssenrsssnssssannsss 95
Serializing the Data........c.cccimmsmmsmmsnmsnmsnsmssnmsssssssssssssasssasssasssasssasssasssnsssasssnsssnsssnsssnsssnnssnesnsnsnnss 97
Using the Custom STOre.........ccuerimrsmrsnmsssmssnmsssssssssssssasssnsssasssnsssasssssssnsssssssssssnssssssnsssnsssnsssnsnsas 101
What About XML Persistent StOres?......ccucusmmsemssamssasssasssasssssssassssssssssssssssssssssssssnsssssssssssssessnsss 103
SUMIMIAIY tuueteisnnesssnessssessassssssssssssessssessssessssesssssssssesssssssssssssssessssssssssssssssssssssssssssnssssssssssnessansnsanss 106
Chapter 4: Creating a Data Model.......coccumsnmmsnmmsssnmsssssssasssssnsssssssssnsssanssssnsssssssssnssssansssansssnnsssansssanns 107
Designing Your Database.........ccuuuusmmsmmsesmsanssasssasssasssasssnsssnsssnsssnsssssssssssssssssssssssnssnnsssnssnnssnnssnnsnnns 107
Relational Database Normalization..........cuccuuserssemssmsssasssasssasssesssesssessssnssssssssssssssnsssnsssnsssnsssnsans 108

vi

MCONTENTS

Using the Xcode Data Modeler.......c.ccuursmmsammsasssasmsasssnsssnsssnsssnsssnsssssssssssssssnsssssssasssasssnsssnsssnsssnssnns 109
Viewing and Editing Attribute Details...........cccucrismiimnisnisniinsns s s 114
Viewing and Editing Relationship Detailsccccunimniinimnmmsmnmsmsss s ssssssassenns 115
Using Fetched Properties.........ccuimiimmismismssmismismssmsssssssessss s ssssssssssssssssssssssssssssssnssssnsnns 116

Creating Entitiesccuccuimnsmismnsmimissesnsesse s s s s s s ssss s s s s s s s smnsnannnnnnnn 118

Creating ARKIDULESccccemimmimminnisnisnssnsssesse s s s s s a s s s sm s s sm s s s s n s nsnmnnnnnsnn 120

Creating RelationShips.......ccuccuimiimmismmismmssmmssmsssmsssesssasssnsssnssssssssssssssssssnsssnsssnsssnsssnssnsssnssnssnansnnnsss 122
. 1, 123
L1 01 1 124
TrANSIENT uesvesiersssssmsss s s ————— 124
Destination and INVEISecuusssssessssssssssssnsssssssssssssssssssssssssssssmsssssssns s sssnssnssnsssnmssmssnnnsnnssmnanan 124
To-Many RelationShip ..cuvceuussrmssssmssesmmssmmsssssssssssssssssssssssssssssssnsessssssssssssansssanssssnsssssssssnnsssansansn 125
Min Count and Max Count........ccucuiemssmsssmssmsssmssssssmssssssssssnsssssssnssnssssnssmssnnnssassnssnnsssnssnsssnnssnssnnasns 125
Delete RUIRccuverieriesssmsssnssmssasssssssssm s s ssssssn s sm s s s s s s s s s 125

RYTT11]1 1] o/ NN EEREE AR ERREERRR RSN EE AR EE RN RRREERRRRERRRRERRERRRRERRRRRRRRRREE 126

Chapter 5: Working with Data ODJectscccucmsmmssmsmmsmsssmssssesssesssesssesssensssnssasssasssnsssnsssnsssnsssnssnns 129

Understanding CRUD..........ccoccumrsssmsssmsssssssssssssssssssssssssasssnsssassssssssssssssssssssssssssnssssssssnsssnsssnssnnsssnsssns 129
Creating the Shape Application Data Modelcccccinimninnisnninnsnmsmssessesesses———. 132
Building the Shape Application User Interfacecccuicmmimminmsnmsnmsssssssssssssssssasssasssasssasssnsnsns 138
Enabling User Interactions with the Shapes Application.........c..ccimmmmemmemmsemmesasm. 149

GENEIratiNg CIASSES .uuvursersarsasssssssrsarsanssnsssssassanssnssssssssasssnssssssnsassassssssssssssassansssssnssassassanssnssansanssnssans 151

Modifying Generated ClaSSeSccsussmsssssersassssssessassasssnssnssassassassssssnssassasssssssssassassassssssassansanssnssnsss 160

Using the Transformable Type........... NS EEEEEEASEEEAEEENAEEEEREEEAREERARENNRRENNRRENEREEERRRENRRRERRRRERRRREE 165

Validating Dataccuccussemssemssmsssmsssmsssmsssssssssssssssssssssnsssasssnsssasssnssssssssssssssssssssssnsssnsessnssnnesssssansnnnsss 168
Custom Validation..........cuouissmsmmmimmsmmsesissse s s sassass 170
Invoking Validationcccuuumenmmssnmmsssmmsssnmsssnmsssnmsssnmsssnmsssnsssssnssssnsssnssssanssssnssssnsssanssssnssssnnssnnnnss 174
Default ValUesccuveiiessssessmssnsssssssnssnssssssssssnsssssssnssssssssssssssssssnssnssssnssnssssnssnssnnsssnssnsssnnssnssnnsnnasnn 174

Undoing and Redoing.......ccuermssessssnssssanss R, 175
UNOO GrOUPS ..ciiueiiserssnsssnsssnssssmssnsssnsssnssasssnsssssssssssssssssssssssnsssnssnssssnsssn 176
Limiting the Undo STacK.........cccuemimmimmiemmsmmssmsesssesssesssessssssssssssssnsssnsssnsssnsssnssnssssssssssssssssnsnans 176

vii

WCONTENTS

Disabling UNdo TracCKiNg uuusuussssesssssssssssnsssssssssanssssnsssssssssnssssanssssnsssnssssanssssnsssssssssnssssnnsssansssansss 176
Adding Undo t0 SNAPES ...cuurieermssmsmssanmsssnmsssssssssssssanssssnssssssssssssssassssanssssnsssanssssnssssanssssssssansssansanan 177
11 1] 180
Chapter 6: Refining Result Sets.........ccoumimmimmimmismismssmismssmssmesmessessesssssasssssassasssmssssasnns 181
Building the Test APPlication.......ccucurssrssmssssassssmsssssasssnsssnsssnsssnsssssssssssasssnsssssssnsssnsssnsssnsssnsssnsssns 181
Creating the Org Chart Data........c.ccomemmminmmmnsmmsssmmsssmmssmssssssmsssmssssssssssssanssssssssssssssnsessansssansssnns 183
Reading and Outputting the Data........c.cccimsmmmmenmmmsmmmemmmsemmmesmssmssssss s ——————— 186

T -]] 187
Expressions for a Single Valuecccccuimmimmsmmismssmssmsssssmsesssesmessssmsssssssssmssmsssssssssssssnn 188
Expressions for @ COleCtionccuuuuemmsemmsmssesmsesmsemmsmsssesssesssesssesssssssssssssssnsssnsssnsssnsssnsssnssans 189
Comparison PrediCates......ccuimismismismssmsssmssnsssnssssssanssasssasssasssasssasssnsssnsssasssnsssnsssnsssnsssnssnnnsns 189
CompOouNd PrediCatesccuuuiemismissmssmssnmssnssssmssnssssssssssssssssssnsssnsssnsssnsssnsssnsssnsssnsssnssnnssnnnsnassns 192
SUDQUEKIS -.uueiieriseriserssmsssmsssasssmsssssssnsssssssssssssssnssssssssssssssssssssssasssasssasssnsssnsssnsssnsssnsssnsssnsssnnssnnssn 194

L 0T L 197
821 (] T 199
Returning Unsorted Data 199
Sorting Data on One Criterioncccccuvirusmnsmmssnmssnmssnssssssasssasssasssasssasssasssasssasssasssnsssnsssnsssassnnsns 200
Sorting on Multiple Criteriacccciesrisminmssnmssnssnmsanssanssasssasssasssasssasssasssnsssasssnsssnsssnsssnsssnsssnnns 201
117 11] 202
Chapter 7: Tuning Performance and Memory USage........c.ccuuerssmmssnsssnsssnssanssasssanssnsssasssasssasssnsssasssns 203
Building the Application for TeSHiNGcucxiesmssmssmssssanssasssasssasssasssasssanssanssasssasssnsssnsssnsssnsssnsssnsnns 203
Creating the Core Data Projectccuccuusmssmsssmsssmsssmsssmssssssssssssssssssssssnsssnssssssssssssssasssnsssnsssnssnns 204
Creating the Data Model and Dataccccusmnsmnsmnsemnssmssmssmssmssmsssssssssssssssssssssssesssssasssnsssnsesns 206
Creating the Testing VIEWccccicurimminmssnmssnmsssmsssmsssnsssssssnsssnnsnns 208
Building the Testing Framework........cccuumuemmmsnmmsssmmsssmssssmsssanmsssnssssssssasssssnssssssssssssssnssssansssannss 211
Adding the Testing Framework to the Applicationcccconmmmmmmnmmsmmemmessssmesanmmm. 213
Running Your First Testccouvinieinsesiansns ...215
a1] (] T 218
FiriNg FAUIESccvierieersnnrsnnrssnmssssssnsssnssssssssssnsssnsssnsssnsssnsesnsssnssssssssssnsssnsssssnssssssnsssnssnnssnnssnnsssnssnns 218
Faulting and CACKINGccxsrrsrmsemssanmsasssasssnsssasssasssasssnsssasssssssssssssssssssssssssssssssnssnnssnnssnnssnnssnnensns 219

viii

MCONTENTS

] £ 1T 219
Building the Faulting Testcccuermmmmmmsmmmssmmsssmmsssmmmssmmmsssmssansssssssssssssssssssnssssssssssssssansssansssnnnss 220
Taking Control: Firing Faults 0N PUrPOSEccuuseemmssssmssasmsssnssssssssssssssanssssssssssssssnssssnsssssnsssnnenss 224
PrefetChiNg. i e sessesiisessssnsssnsssnsssssnsssssassnnsssansssnnnssnnassanssssnnsssnssssnsessanessansssnnessansnssnsessnnssnannss 225

L T 111 228
o] 1T 231
Memory CONSUMPLIONcccierisrsnmsssssssmsssssssssasssnsssnsesnsesnsssnsssssssnsssssssssssnsssnsssnsssnsssnsssnsssnsssnssnns 232
Brute-Force Cache EXPiration......c.ccuirusesssasssasssasssasssassssssssssssssssssssssssssssssnsssnssssssssssssssssnsssnnsas 232
Expiring the Cache Through Faulting.......ccuccussmssmssmsnsmssssnsssssssnsssssssssssssssssssasssnsssasssnsssasssasnsns 232
UNE QUM cerunnrnnrsnsssssesnsssnsesnsssnsssnsesnsesssesssesssesssssssssssssnsssssssmassssssssssmasssssssasssssssssnssasssanssnsssnsssnsssnsssns 233
Improve Performance with Better Predicates.......c.ccouerserssrsssmsssssssssnsssssssasssssssasssnsssasssasssasssnsnses 237
Using Faster COmMParatorsc.ccuuuemmemmemmemmemmemmsmmesmessssssssssssssssssssssnsssnsssnsssnsssnsnns 238
USING SUDQUETTES .ueriersamssnssersamsansssssnssassasssssssssssssssssssssssssassssssssssssssssssssssnssassassasssnssassassassssssnssass 239
Analyzing PerfOrManCeccuccuiserisrsnmssnmssnmssnsssnsssnssssssssssasssnsssssssnsssnsssnsssnesssesasesnsssasssnssnnssnnesnnssns 242
Launching INStrUMENLSccceussemssmmssmmssnmsnsmsnsssnsssnsssnsssnsssnssssssssssssssnssssssssnsssssssnsssnssnnssnnsssnssans 243
Understanding the ReSUIS.......ccuirmsemmsemmssmmsssmsssssssssasssasssasssassssssssssssssssssssssssssssssnsssasssasssnsssnsssns 246

£ 111111 248
Chapter 8: Versioning and Migrating Dataccuccmimmmsenmmssmmssmmsssmsssssssssssssssmsssssssssssssssssssssssssssan 251
VO STONMING creusenissennssnnnssannsssnnssssnsssssnsssssssssnesssnsssssnsssssssssnssssnssssssssssssssnssssssssssssssnsssssnssssnsssnnsssanssssnnss 252
Switching from Unversioned t0 Versionedccueussemmsemssemssemsssmsssmsssmssssssssssssssssssssssssssssssnsss 255
Lightweight Migrations.........cccccuemmsemmemmsemmsemmsemmssmsssmsssmssmsssmsssmsssmsssssssssssssssssssssasssasssasssasssnsssnssses 255
Migrating a Simple Change.....cccuserussrmsssmssssmssanssssnssssssssssssssnssssssssssssssnssssanssssnssssnssssnssssnnsssaness 256
Migrating More Complex CHANgeS......ccuiurusemmsammsasssnsmsanssassssnsssssssssssssssnssssssssssasssasssasssnsssnsssnsssns 258
Renaming Entities and Propertiesccciueeemmnnsesmmmmsessmmmssssmsssssmesssssmsssssessssssessssssnssnnn 258
Creating a Mapping Model......c..ccunsenmmssnnessnssssnnnsns e 261
Understanding Entity Mappings.......cccuemmisemmisnmmssnmmssssmssssmsssssssssssssssssssnssssnssssssssansssanssssanssnsnnss 261
Understanding Property Mappings ...ccuueeicisemmsssmssssnmsssnssssssssansssssssssnssssnssssnsssssnssssssssansssanssnsnnss 263
Creating a New Model Version That Requires a Mapping Model............cccummmenmmssnmnssanmssannssen 264
Creating a Mapping Model...........ccuccuuimismmsmmsemmsensasssasssesssesssmsssesssassssssssssssssssssnsssnsssnsssnsnsnsnsns 268
Migrating Datacccuemiimmnimmnsminmsinsinsisssssssssssssssss s s n e n e 275

ix

WCONTENTS

Running Your Migrationcccueeeusesmmsssmmsssssssssmssssssssssssssssssssssssssssssssssssssanssssnssssssssanssssnssssnnsssnnnss 276
CUSTOM MIQratioNS...cicuuisesmssesmssssnssnsssssssssasssssnsesssssssnsessnsessanssssssssanssssnsessnssssssessansssanssssnsssnsessanssnsn 279
Making Sure Migration Is Needed........c.cccummmsmmmsnmmssmmsssmmsssnmssssmsssmsssmssssssssssssssssssasssssnsssnnas 279
Setting Up the Migration Managerccuecuummimmssmsssmmsnsssssssnssnsssnsssnsssnsssnsssnsssnsssnssssssnassnanss 280
Running the Migrationcccccninninnsennsennaes O 280
SUIMMMIATY ccueeiiuniinnisnnssssssnnsssnssssssanasnsasa s a s a s m s e a SRR AR AR AR AR AR A AR A AR AR R AR SR RE AR RR A RE AR RR AR RR AR RR AR RN AR RN AR R AR RN R RS 281
Chapter 9: Using Core Data in Advanced Applications.......cccucursermsesmsesmsssssssssssssssssssssasssasssasssasssasssns 283
Creating an Application for Note and Password Storage and Encryption.......c.ccouseemmssnssssnssssnsnsss 283
Setting Up the Data Modelccocciimiimmismmismmssnmssmsssssssssssssssssnsssnsssnsssnsssnsssasssnsssasssasssanssansss 284
Setting Up the Tab Bar Controllercccccuumimmimmsnmsnssssmsesmsnsmsnsmsssssnsssnsssesssssssssssssssassnanns 287
Adding the Tabccccieimisnminmienmmssmsasssssssaa s r e an e aa e s an e sannsan 291
Managing Table Views Using NSFetchedResultsControllercccuccmnemmnsenmmsenmmsenmsssssssssnsssassssan 297
Understanding NSFetchedResultsSController.......couuussmmssmmmssansssssssssnsssanssssnsssssssssassssansssanssssnnas 298
The Fetch ReqUeSt......c.cuvmsersessmsmmsmsssssmssssusssssssasssssssssssssnsssssssnssssssssssnsssssssnssnssnssssnssnssnnssnssnnsnnss 298
The Managed Object Contextccuccuissrmsnsmsssnssanssssnsssssssssnssssansssanssssnsssanssssnssssnnssssnsssansssansanan 298
The Section Name Key Path.......ccciimnenmmenmisnmmssmmssmmssmmsssmssssmssssssssmssssssssssssssssssssssassssansanss 299
The Cache NAME.......ccusersemsmmnmsamsamsasssnsssmsassasssssssssassassassssssnssnssassassssssnssassassnsssnssnsassassnsssnnsnssns 299
Understanding NSFetchedResultsController Delegatesc.ucuuuermmsenmssnssssnssssssssssnsssanssssnssssnnes 299
Using NSFetchedReSultSCONtrollericcuiesmssenmssnssssssssssnsssansssanssssnssssnssssnssssansssnnsssansssanssnsnnss 300
Incorporating NSFetchedResultsGontroller into MyStashc.cciummmenmmsnmmmsssmmsssmsssmsssmmsnn 300
Creating the Fetched Results CONtroller.......cccussrmmsmsmssanssssnssssssssssssssansssanssssnsssssssssnssssansssansssans 302
Implementing the NSFetchedResultsControllerDelegate Protocolccscruseersssnsnssanas .303
Incorporating the Fetched Results Controllers into the Tablescccusmmsmmmsssnssesnssassssanssssnnes 305
Creating the Interface for Adding and Editing Notes and Passwordscc.ccuusesmssssssssssssssnsssnns 308
Splitting Data Across Multiple Persistent STOresccurumsmmssnmssssmsssssssssssssssnsssanssssssssssssssnnasse 323
Using Model Configurations............ccuuceuimmimmismismismismsssssssessesse s sssmssmsssmsssnsssnsssnssnns 324
Adding ENCrYPHION ...ciiicinisemmisenmissnmmsnmsissmmsssmmsssmmsssnmsssnmssssmsssssssssmssssmsssssssssnssssnssssssssansssanssssnnsssnnsss 329
Persistent Store Encryption Using Data Protectioncccuerssmsssssssssssssssssasssssssasssasssasssassses 329
Data ENCryPliON.....cicciierimrssmsssssssnssssssssnsssssssssssssnsssnsesnsesnsssnssssssssssnsssnsnssnsssnnssnsssnsssnsssnssnnessnssnns 332

USiNg ENCryplionccccusemimsmmssmsssssmsesssmsssssnsssssssssssssssassssssssssssnssnssnssssssassnssnsnnsssnssnssnssnsnsnnsnnsnss 333

MCONTENTS

Automatically Encrypting FIEIUScccuussmmssssssnssssanssssnssssssssssssssasssssnssssnsssssssssnssssanssssnsssnnsssansanss 334
Changing the User Interface to Use the text Aftribute........cccusrmnnmmsnnmsnmmnsmmsssmsssmsesmesme. 335
Testing the ENCrypltioncccueiissumsssmmssssmssssmssssmsssssssssssssssssssssssssssssnssssssssanssssnssssnsssssssssansssansansn 338
Sending Notifications When Data Changes......ccuuusesrssssmmssssssssssssanssssnssssnsssssssssassssanssssnsssssssssnsenss 339
Registering an ODSEIVENcccucuiimmiemmiemminsmsnsmsnsmsnsmsnsssnsssnsssnsssssssssssssssssssnsssnsssnsssnsssnsssnsssnssnns 339
Receiving the Notificationscccccumiimmimnisnismismsnsssssssesse s sssasssssssssssssssnsnns 340
Seeding Data..........cc.ccunsmrsnmssnmsinnnns EaE RS EEEEEEAEEENAREENREENEREENRRENRREARRRENRAREERAREENRRENNREERAREERRREERRRRE 342
Adding Categories t0 PASSWOIUScuusrssersserssasssasssasssasssasssnsssasssssssssssssssssssssssnssnssssnsssnsssnsansss 342
Creating a New Version of Seeded Dataccueerssemssenssenssensssmssnsss 345
Error Handling.......ccuserssemssmmssssssnsssssssnssssssssssssssssssssssssssnsssnsssnsssnsssnsssnsssnsensssnsssnsssnssssanssasssas .. 346
Handling Core Data Operational ErrorsS.......ccisuismssmssmsssmsssmssnmssssssssssnsssnssssssasssssssasssasssnsssnsssns 346
Handling Validation Errors......ccceemussmmssmmmssmmsssnmssssmsssmssssmssssnsssssssssssssanssssssssssssssnssssnssssansssnnnss 349
Handling Validation Errors in MyStash........ccussmsmssmsemsamsssssassensasssssssssassansasssnssassassasssnssassassans 352
Implementing the Validation Error Handling Routine............cccvcnicmmimnimmismssnsesssasssesssasssasnnns 353
3T 1 1111 358
111 359

xii

About the Authors

Michael Privat is the president and CEO of Majorspot, Inc., developer of several
iPhone and iPad apps:

B Ghostwriter Notes
B My Spending

B jBudget

B Chess Puzzle Challenge

He is also an expert developer and technical lead for Availity, LLC, based in
Jacksonville, Florida. He earned his master’s degree in computer science from
the University of Nice in Nice, France. He moved to the United States to develop
software in artificial intelligence at the Massachusetts Institute of Technology. He now lives in
Jacksonville, Florida, with his wife, Kelly, and their two children.

Rob Warner is a senior technical staff member for Availity, LLC, based in
Jacksonville, Florida, where he works with various teams and technologies to
deliver solutions in the healthcare sector. He coauthored The Definitive Guide to
SWT and JFace (Apress, 2004), and he blogs at www.grailbox.com. He earned his
bachelor’s degree in English from Brigham Young University in Provo, Utah. He
lives in Jacksonville, Florida, with his wife, Sherry, and their five children.

About the Technical
Reviewer

Robert Hamilton is a seasoned information technology director for Blue Cross
Blue Shield of Florida (BCBSF). He is experienced in developing apps for iPhone
and iPad, most recently, Ghostwriter Notes.

Before entering his leadership role at BCBSF, Robert excelled as an application
developer, having envisioned and created the first claims status application used
by its providers through Avality.

A native of Atlantic Beach, Florida, Robert received his bachelor’s of science
degree in information systems from the University of North Florida. He supports
the First Tee of Jacksonville and the Cystic Fibrosis Foundation. He is the proud
father of two daughters.

xiii

Xiv

Acknowledgments

There is no telling how many books never had a chance to be written because the potential authors had
other family obligations to fulfill. I thank my wife, Kelly, and my children, Matthieu and Chloé, for
allowing me to focus my time on this book for a few months and accomplish this challenge. Without the
unconditional support and encouragement they gave me, I would not have been able to contribute to
the creation of this book.

Working on this book with Rob Warner has also been enlightening. I have learned a lot from him
through this effort. His dedication to getting the job done right carried me when I was tired. His
technical skills got me unstuck a few times when I was clueless. His gift for writing so elegantly and his
patience have made my engineer jargon sound like nineteenth-century prose.

I also thank the friendly and savvy Apress team who made the whole process work like a well-oiled
machine. Jennifer Blackwell challenged us throughout the project with seemingly unreasonable
deadlines that we always managed to meet. Douglas Pundick shared his editorial wisdom to keep this
work readable, well organized, and understandable; Steve Anglin, Kim Wimpsett, and the rest of the
Apress folks were always around for us to lean on.

Finally, I thank the incredibly talented people of Availity who were supportive of this book from the very
first day and make this company a great place to work at. I thank Trent Gavazzi, Geoff Packwood, Ben
Van Maanen, Taryn Tresca, Herve Devos, and all the others for their friendship and encouragement.

—Michael Privat

Thank you to my wife, Sherry, for her support and to my children for their patience. This book represents
sacrifice from all of them. May one of them, one day, be bit by the programming bug.

Working with Michael Privat on this project has been an amazing experience. He is, indeed, tireless and
brilliant, and this book couldn’t have happened without him.

Apress is a terrific publisher to work with, and I thank them for the opportunity to write again.
Publishing a book requires a team of folks, and I thank Steve Anglin, who brought such great energy and
ideas; Jennifer Blackwell, who always kept us on task; Douglas Pundick, who had great insight and
understanding; Kim Wimpsett, who clarified and corrected; and the rest of the Apress team. Robert
Hamilton kept us technically correct throughout, and I'm glad we had him on board.

I have the opportunity to work with some amazing people in my day job at Availity—far too many to
name—and I thank all of them for their support and friendships. Trent Gavazzi, Jon McBride, Mary Anne
Orenchuk, and the rest of the senior leadership team were extremely supportive as we embarked on this

WACKNOWLEDGMENTS

project, and so many others offered kind words and encouragement. I also thank Geoff Packwood for
helping me rekindle my passion and find my way.

Finally, I thank my parents for the love of learning they instilled in me. They pre-ordered this book
despite their inability to decipher a word of it. They are great people.

—Rob Warner

XVi

Introduction

Once you've learned the basics of iOS development and you're ready to dig deeper into how to write
great iOS applications, Pro Core Data for iOS leads you through the important topic of data persistence.
Storing and retrieving customers’ data is a task you must pull off flawlessly for your application to
survive and be used. Introductory texts give you introductory-level understanding of the Core Data
framework, which is fine for introductory-level applications but not for applications that cross the
chasm from toys to real-life, frequently used applications. This book provides you with the deeper levels
of information and understanding necessary for developing killer apps that store and retrieve data with
the performance, precision, and reliability customers expect and require.

What to Expect from This Book

This book starts by setting a clear foundation for what Core Data is and how it works and then takes you
step-by-step through how to extract the results you need from this powerful framework. You'll learn
what the components of Core Data are and how they interact, how to design your data model, how to
filter your results, how to tune performance, how to migrate your data across data model versions, and
many other topics around and between these that will separate your apps from the crowd.

This book combines theory and code to teach its subject matter. Although you can take the book to your
Barcalounger and read it cover to cover, you'll find the book is more effective if you're in front of a
computer, typing in and understanding the code it explains. We also hope that, after you read the book
and work through its exercises, you'll keep it handy as a reference, turning to it often for answers and
clarification.

How This Book Is Organized

We've tried to arrange the material so that it grows in complexity, at least in a general sense, as the book
progresses. The topics tend to build on each other, so you'll likely benefit most by working through the
book front to back, rather than skipping around. If you're looking for guidance on a specific topic—

MINTRODUCTION

versioning and migrating data, say, or tuning performance and memory usage—skip ahead to that
chapter. Most chapters focus on a single topic, indicated by that chapter’s title. The final chapter covers
an array of advanced topics that didn’t fit neatly anywhere else.

Source Code and Errata

You can (and should!) download the source code from the Apress web site at www.apress.com. Feel free to
use it in your own applications, whether personal or commercial. We tried to keep the text and code
error-free, but some bug or typos might be unveiled over time. Corrections to both text and code can be
found in this book’s errata section on the Apress web site.

How to Contact Us

We’d love to hear from you. Please send any questions or comments regarding this book or its
accompanying source code to the authors. You can find them here:

Michael Privat:

E-mail: mprivat@mac.com
Twitter: @michaelprivat

Blog: http://michaelprivat.com

Rob Warner:

E-mail: rwarner@grailbox.com
Twitter: @hoop33

Blog: http://grailbox.com

xvii

Chapter

Getting Started

If you misread this book’s title, thought it discussed and deciphered core dumps, and
hope it will help you debug a nasty application crash, you got the wrong book. Get a
debugger, memory tools, and an appointment with the optometrist. Otherwise, you
bought, borrowed, burglarized, or acquired this book somehow because you want to
better understand and implement Core Data in your iOS applications. You got the right
book.

You might read these words from a paper book, stout and sturdy and smelling faintly of
binding glue. You might digitally flip through these pages on a nook, iPad, Kindle, Sony
Reader, Kobo eReader, or some other electronic book reader. You might stare at a
computer screen, whether on laptop, netbook, or monitor, reading a few words at a time
while telling yourself to ignore your Twitter feed rolling CNN-like along the screen’s
edge. Regardless, as you read, you know that not only can you stop at any time but that
you can resume at any time. These words persist on paper and digital page and, with
proper care and timely transformation to future media, can survive your grandchildren’s
grandchildren. Any time you want to read this book, you pick up book, electronic reader,
or keyboard, and if you marked the spot where you were last reading, you can even start
from where you last stopped. We take this for granted with books.

Users take it for granted with applications.

Users expect to find their data each time they launch their applications. Apple’s Core
Data framework helps you ensure that they will. This chapter introduces you to Core
Data, explaining what it is, how it came to be, and how to build simple Core Data-based
applications for iOS. This book walks through the simpleness and complexities of Core
Data. Use the information in the book to create applications that store and retrieve data
reliably and efficiently sothatuserscandepend ontheirdata. C ode carefully, though—
you don’t want to write buggy code and have to deal with nasty application crashes.

What Is Core Data?

When people use computers, they expect to preserve any progress they make toward
completing their tasks. Saving progress, essential to office software, code editors, and

games involving small plumbers, is what programmers call persistence. Most software
requires persistence, or the ability to store and retrieve data, to be useful so that users
don’t have to reenter all their data each time they use the applications. Some software
can survive without any data storage or retrieval; calculators, carpenter’s levels, and
apps that make annoying or obscene sounds spring to mind. Most useful applications,
however, preserve some state, whether configuration-oriented data, progress toward
achieving some goal, or mounds of related data that users create and care about.
Understanding how to persist data to iDevices is critical to most useful iOS
development.

Apple’s Core Data provides a versatile persistence framework. Core Data isn’t the only
data storage option, nor is it necessarily the best option in all scenarios, but it fits well
with the rest of the Cocoa Touch development framework and maps well to objects.
Core Data hides most of the complexities of data storage and allows you to focus on
what makes your application fun, unique, or usable.

Although Core Data can store data in a relational database (such as SQLite), it is not a
database engine. It doesn’t even have to use a relational database to store its data.
Though Core Data provides an entity-relationship diagramming tool, it is not a data
modeler. It isn’t a data access layer like Hibernate, though it provides much of the same
object-relational mapping functionality. Instead, Core Data wraps the best of all these
tools into a data management framework that allows you to work with entities,
attributes, and relationships in a way that resembles the object graphs you’re used to
working with in normal object-oriented programming.

Early iPhone programmers didn’t have the power of the Core Data framework to store
and retrieve data. The next section shows you the history behind persistence in iOS.

History of Persistence in i0S

Core Data evolved from a NeXT technology called Enterprise Objects Framework (EOF)
by way of WebObjects, another NeXT technology that still powers parts of Apple’s web
site. It debuted in 2005 as part of Mac OS X 10.4 (“Tiger”), but didn’t appear on iPhones
until version 3.0 of the SDK, released in June 2009. Before Core Data, iPhone
developers had a few persistence options:

B Use property lists, which contain nested lists of key/value pairs of
various data types.

Serialize objects to files using the SDK’s NSCoding protocol.

B Take advantage of the iPhone’s support for the relational database
SQLite.

B Persist data to the Internet cloud.

Developers used all these mechanisms for data storage as they built the first wave of
applications that flooded Apple’s App Store. Each one of these storage options remains
viable, and developers continue to employ them as they build newer applications using
newer SDK versions.

None of these options, however, compares favorably to the power, ease of use, and
Cocoa-fitness of Core Data. Despite the invention of frameworks like FMDatabase or
ActiveRecord to make dealing with persistence on iOS easier in the pre—Core Data days,
developers gratefully leapt to Core Data when it became available.

Although Core Data might not solve all persistence problems best and you might serve
some of your persistence scenarios using other means like the options listed earlier,
you’ll turn to Core Data more often than not. As you work through this book and learn
the problems that Core Data solves and how elegantly it solves them, you'll likely use
Core Data any time you can. As new persistence opportunities arise, you won’t ask
yourself, “Should | use Core Data for this?” but rather, “Is there any reason notto use
Core Data?”

The next section shows you how to build a basic Core Data application using Xcode’s
project templates. Even if you’ve already generated an Xcode Core Data project, though,
and know all the buttons and check boxes to click, don’t skip the next section. It
explains the Core Data—related sections of code that the templates generate and forms
a base of understanding on which the rest of the book builds.

Creating a Basic Core Data Application

The many facets, classes, and nuances of Core Data merit artful analysis and deep
discussions to teach you all you need to know to gain mastery of Core Data’s
complexities. Building a practical foundation to support the theory, however, is just as
essential to mastery. This section builds a simple Core Data—based application, using
one of Xcode’s built-in templates, and then dissects the most important parts of its Core
Data-related code to show what they do and how they interact. At the end of this
section, you will understand how this application interacts with Core Data to store and
retrieve data.

Understanding the Core Data Components

Before building this section’s basic Core Data application, you should have a high-level
understanding of the components of Core Data. Figure 1-1 illustrates the key elements
of the application we build in this section. Review this figure for a bird’s-eye view of
what this application accomplishes, where all its pieces fit, and why you need them.

As a user of Core Data, you should never interact directly with the underlying persistent
store. One of the fundamental principles of Core Data is that the persistent store should
be abstracted from the user. A key advantage of that is the ability to seamlessly change
the backing store in the future without having to modify the rest of your code. You
should try to picture Core Data as a framework that manages the persistence of objects
rather than thinking about databases. Not surprisingly, the objects managed by the
framework must extend NSManagedObject and are typically referred to as, well, managed
objects. Don’t think, though, that the lack of imagination in the naming conventions for
the components of Core Data reveals an unimaginative or mundane framework. In fact,
Core Data does an excellent job at keeping all the object graph interdependencies,

optimizations, and caching in a predictable state so that you don’t have to worry about
it. If you have ever tried to build your own object management framework, you
understand all the intricacies of the problem Core Data solves for you.

User
Program\

Managed Object Context

=~

" iVIanaged\ Y
'+ Object _-

- - <

+" Managed ,

.---=-<_ '_Object _-

Managed \, """~
'\ Object _-

I

Persistent Store Coordinator

A Data
Model

Y

Storage

(e.g., SQLite,
XML, ...)

Figure 1-1. Overview of Core Data’s components

Much like we need a livable environment to subsist, managed objects must live within an
environment that’s livable for them, usually referred to as a managed object context, or
simply context. The context keeps track of the states of not only the object you are
altering but also all the objects that depend on it or that it depends on. The
NSManagedObjectContext object in your application provides the context and is the key
property that your code must always be able to get a handle to. You typically
accomplish exposing your NSManagedObjectContext object to your application by having
your application delegate initialize it and expose it as one of its properties. Your
application context often will give the NSManagedObjectContext object to the main view
controller as well. Without the context, you will not be able to interact with Core Data.

Creating a New Project

To begin, launch Xcode, and create a new project by selecting File » New Project... from
the menu. Note that you can also create a new project by pressing 14+ +8+N. From the
list of application templates, select the Application item under iPhone OS on the left, and
pick Navigation-based Application on the right. Check Use Core Data for storage. See
Figure 1-2. Click the Choose... button. On the ensuing screen, type BasicApplication in
the Save As field, and change the parent directory for your project’s directory as you see
fit. See Figure 1-3. Click the Save button to set Xcode into motion. Xcode creates your
project, generates the project’s files, and opens its IDE window with all the files it
generated, as Figure 1-4 shows.

fNe New Project

Choose a template for your new project:

! i0S 4
[Application | W =
Library
Navigation-based OpenGL ES Split View-based Tab Bar
L User Templates Application Application Application Application
MacFUSE
ﬂ; Mac OS X [-_a - N
Application ﬂ
Framework & Library Utility Application View-based Window-based
Application Plug-in Application Application
System Plug-in
Other
Product iPhone

@ Use Core Data for storage

Navigation-based Application

This template provides a starting point for a Core Data-based application that uses a
navigation controller. It provides a user interface configured with a navigation controller to
display a list of items managed by a fetched results controller.

Cancel) (Choose...)

Figure 1-2. Creating a new project with Core Data

Save As: BasicApplication i

Where: | (] Development .

Cancel " Save

Figure 1-3. Choosing where to save your project

ene | BasicApplication (@)
[Simulator - 4.2 | Debu... ~| | &~ | (| Jgk _ @ Q- Str
Overview Action Breakpoints Build and Run Tasks Info Search
Groups & Files | File Name A A Code o A @
¥ & BasicApplication = BasicApplication-Info.plist =
Classes 4 BasicApplication.app
Other Sources 2 BasicApplication.xcdatamodel -
Resources |u| BasicApplication_Prefix.pch
Frameworks w| BasicApplicationAppDelegate.h
Products M BasicApplicationAppDelegate.m v o
(©) Targets N= CoreData.framework L]
Executables N= CoreGraphics.framework L
-4, Find Results §= Foundation.framework L
| ¥ Bookmarks [i1_main m v w Y
SCM v

W Project Symbols
|4 Implementation Files
| Interface Builder Files

Figure 1-4. Xcode showing your new project

Running Your New Project

Before digging into the code, run it to see what it does. Launch the application by
clicking the Build and Run button. The iPhone Simulator opens, and the application
presents a navigation-based interface with a table view occupying the bulk of the
screen, an Edit button in the top-left corner, and the conventional Add button, denoted
by a plus sign, in the upper-right corner. The application’s table shows an empty list
indicating that the application isn’t aware of any events. Create a new event stamped
with the current time by clicking the plus button in the top-right corner of the application.

Now, stop the application by clicking the Tasks button in the Xcode IDE, which is the
one to the right of the Build and Run button. If the application hadn’t used persistence, it

would have lost the event you just created as it exited. Maintaining a list of events with
thisapplicationand nopersistence would be a Sisypheantask—you’d have to re-create
the events each time you launched the application. Because the application uses
persistence, however, it stored the event you created using the Core Data framework.
Relaunching the application shows that the event is still there, as Figure 1-5
demonstrates.

L)

2010-12-06 11:11:18 +0000

Figure 1-5. The basic application with a persisted event

Understanding the Application’s Components

The anatomy of the application is relatively simple. It has a data model that describes
the entities in the data store, a view controller that facilitates interactions between the
view and the data store, and an application delegate that helps initialize and launch the
application. Figure 1-6 shows the classes involved and how they relate to each other.
Note how the RootViewController class, which is in charge of managing the user
interface, has a handle to the managed object context so that it can interact with Core

Data. As we go through the code, we see that the RootViewController class obtained
the managed object context from the application delegate’s initialization.

BasicApplicationAppDelegate

NSManagedObjectContext* managedObjectContext
NSManagedObjectModel* managedObjectModel
NSPersistentStoreCoordinator* persistentStoreCoordinator

RootViewController

NSManagedObjectContext* managedObjectContext
NSFetchedResultsController* fetchedResultsController

-(void) insertNewObject:(id)sender

Figure 1-6. Classes involved in the BasicApplication example

The entry under the project’s Resources group called BasicApplication.xcdatamodeld,
which is actually a directory on the file system, contains the data model,
BasicApplication.xcdatamodel. The data model is central to every Core Data
application. This particular data model defines only one entity, named Event, for the
application. Events are defined as entities that contain only one attribute named
timeStamp of type Date, as shown in Figure 1-7.

ane BasicApplication.xcdatamodel - BasicApplication

| Simulator - 4.2 | Debug | BasicApplication = | | & | | - ’(‘:‘\ a_‘ U Q-
Overview Action Breakpoints Build and Run Tasks Info Search
Groups & Files I File Name A% Code © & ©®
B BasicApplication B | | BasicApplication xcdatamode!
Classes 2
Other Sources] L | N
Resources “ BasicApplication.xcdatamedel & Event 2 v | ™ Col #e Y
BasicApplication.xcdatamodeld Entity & Abs Clas Property & Kind Tyee or Antribute CF BN
[P sasicappication xcaaramode IS S NSk tmestams Aurbute oate
RootViewController xib
MainWindow.xib # Optional [} Transient [Indexed

Name: timeStamp

BasicApplication-Info.plist Type: | Date v
Frameworks =
Products il ntve:

9 Tuget Max Value
4 Executables

4, Find Results Default Value

[Bookmarks
SCM o

@ Project Symbols BRI ——— I RC o = w| € B e > ?

il Implementation Files

gl Interface Builder Files

¥ Attributes 1
[timeStamp
LY Relationships

s
v

i
a0 100%
BasicApplication launched @ Succeeded

Figure 1-7. The Xcode-generated data model

Note also that the Event entity is of type NSManagedObject, which is the basic type for all
entities managed by Core Data. Chapter 2 explains the NSManagedObject type in more
detail.

Fetching Results

The next class of interest is the RootViewController. Opening its header file
(RootViewController.h) reveals two properties:

@property (nonatomic, retain) NSManagedObjectContext *managedObjectContext;

@property (nonatomic, retain) NSFetchedResultsControllerws
*fetchedResultsController;

These properties are defined using the same syntax as the definitions of any Objective-C
class properties. The NSFetchedResultsController is a type of controller provided by the
Core Data framework that helps manage results from queries. NSManagedObjectContext
is a handle to the application’s persistent store that provides a context, or environment,
for the managed objects to exist in.

The implementation of the RootViewController, found in RootViewController.m, shows
how to interact with the Core Data framework to store and retrieve data. The
RootViewController implementation provides an explicit getter for the
fetchedResultsController property that preconfigures it to fetch data from the data
store.

The first step in creating the fetch controller consists of creating a request that will
retrieve Event entities, as shown in this code:

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

NSEntityDescription *entity = [NSEntityDescription entityForName:@"Event"ws
inManagedObjectContext:self.managedObjectContext];
[fetchRequest setEntity:entity];

The result of the request can be ordered using the sort descriptor from the Cocoa
Foundation framework. The sort descriptor defines the field to use for sorting and
whether the sort is ascending or descending. In this case, we sort by descending
chronological order:

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:ws
@"timeStamp" ascending:NOJ;

NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor, nil];
[fetchRequest setSortDescriptors:sortDescriptors];

Once we define the request, we can use it to construct the fetch controller. Because the
RootViewController implements NSFetchedResultsControllerDelegate, it can be set as
the NSFetchedResultsController’s delegate so that it is automatically notified as the
result set changes and so that it updates its view appropriately. We could get the same
results by invoking the executeFetchRequest of the managed object context, but we
would not benefit from the other advantages that come from using the
NSFetchedResultsController such as the seamless integration with the UITableView, as

we’ll see later in this section and in Chapter 9. Here is the code that constructs the fetch
controller:

NSFetchedResultsController *aFetchedResultsController = [[NSFetchedResultsControllerw

alloc] initWithFetchRequest:fetchRequest managedObjectContext:ws
self.managedObjectContext sectionNameKeyPath:nil cacheName:@"Root"];
aFetchedResultsController.delegate = self;
self.fetchedResultsController = aFetchedResultsController;

Note: You may have noticed that the initWithFetchRequest shown earlier uses a
parameter called cacheName. We could pass nil for the cacheName parameter to prevent
caching, but naming a cache indicates to Core Data to check for a cache with a name
matching the passed name and see whether it already contains the same fetch request
definition. If it does find a match, it will reuse the cached results. If it finds a cache entry by
that name but the request doesn’t match, then it is deleted. If it doesn’t find it at all, then the
request is executed, and the cache entry is created for the next time. This is obviously an
optimization that aims to prevent executing the same request over and over. Core Data
manages its caches intelligently so that if the results are updated by another call, the cache is
removed if impacted.

Finally, you tell the controller to execute its query to start retrieving results. To do this,
use the performFetch method:

NSError *error = nil;

if (![fetchedResultsController performFetch:8error]) {
NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
abort();

}

The entire getter method for fetchedResultsController looks like this:
- (NSFetchedResultsController *)fetchedResultsController {

if (fetchedResultsController != nil) {
return fetchedResultsController ;

}

/*
Set up the fetched results controller.
*/
// Create the fetch request for the entity.
NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
// Edit the entity name as appropriate.
NSEntityDescription *entity = [NSEntityDescription entityForName:@"Event"ws
inManagedObjectContext:self.managedObjectContext];
[fetchRequest setEntity:entity];

// Set the batch size to a suitable number.
[fetchRequest setFetchBatchSize:20];

// Edit the sort key as appropriate.
NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:ws

@"timeStamp"” ascending:NOJ;
NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor, nil];

[fetchRequest setSortDescriptors:sortDescriptors];

// Edit the section name key path and cache name if appropriate.

// nil for section name key path means "no sections".

NSFetchedResultsController *aFetchedResultsController = [[NSFetchedResultsControllerw
alloc] initWithFetchRequest:fetchRequest managedObjectContext:ws
self.managedObjectContext sectionNameKeyPath:nil cacheName:@"Root"];

aFetchedResultsController.delegate = self;

self.fetchedResultsController = aFetchedResultsController;

[aFetchedResultsController release];
[fetchRequest release];
[sortDescriptor release];
[sortDescriptors release];

NSError *error = nil;
if (![fetchedResultsController performFetch:8error]) {
/*
Replace this implementation with code to handle the error appropriately.

abort() causes the application to generate a crash log and terminate. You shouldw
not use this function in a shipping application, although it may be useful duringwe

development. If it is not possible to recover from the error, display an alert panelw
that instructs the user to quit the application by pressing the Home button.

*/

NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

abort();

return fetchedResultsController ;

}

NSFetchedResultsController behaves as a collection of managed objects, similar to an
NSArray, which makes it easy to use. In fact, it exposes a read-only property called
fetchedObjects that is of type NSArray to make things even easier to access the objects
it fetches. The RootViewController class, which also extends UITableViewController,
demonstrates just how suited the NSFetchedResultsController is to manage the table’s

content.

Inserting New Objects

A quick glance at the insertNewObject method shows how new events (the managed
objects) are created and added to the persistent store. Managed objects are defined by
the entity description from the data model and can live only within a context. The first
step is to get a hold of the current context as well as the entity definition. In this case,

instead of explicitly naming the entity, we reuse the entity definitions that are attached to
the fetched results controller:

NSManagedObjectContext *context = [fetchedResultsController managedObjectContext];
NSEntityDescription *entity = [[fetchedResultsController fetchRequest] entity];

Now that we’ve gathered all the elements needed to bring the new managed object to
existence, we create the Event object and set its timeStamp value.

NSManagedObject *newManagedObject = [NSEntityDescriptionws
insertNewObjectForEntityForName: [entity name] inManagedObjectContext:context];
[newManagedObject setValue:[NSDate date] forKey:@"timeStamp"];

The last step of the process is to tell Core Data to save changes to its context. The
obvious change is the object we just created, but keep in mind that calling the save
method will also affect any other unsaved changes to the context.

NSError *error = nil;

if (![context save:8error]) {
NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
abort();

}

The complete method for inserting the new Event object is as follows:

- (void)insertNewObject {

// Create a new instance of the entity managed by the fetched results controller.

NSManagedObjectContext *context = [self.fetchedResultsControllerw
managedObjectContext];
NSEntityDescription *entity = [[self.fetchedResultsController fetchRequest] entity];

NSManagedObject *newManagedObject = [NSEntityDescriptionw
insertNewObjectForEntityForName:[entity name] inManagedObjectContext:context];

// If appropriate, configure the new managed object.
[newManagedObject setValue:[NSDate date] forKey:@"timeStamp"];

// Save the context.
NSError *error = nil;
if (![context save:8error]) {
/*
Replace this implementation with code to handle the error appropriately.

abort() causes the application to generate a crash log and terminate. You shouldws
not use this function in a shipping application, although it may be useful duringwe

development. If it is not possible to recover from the error, display an alert panelw
that instructs the user to quit the application by pressing the Home button.

*/

NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

abort();

