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Preface

In the summer of 2003 the Department of Mathematics and Statistics of the University of
Montreal was fortunate to host the NATO Advanced Study Institute “Structural theory of
Automata, Semigroups and Universal Algebra” as its 42nd Séminaire des mathématiques
supérieures (SMS), a summer school with a long tradition and well-established reputation.
This book contains the contributions of most of its invited speakers.

It may seem that the three disciplines in the title of the summer school cover too wide an
area while its three parts have little in common. However, there was a high and surprising
degree of coherence among the talks. Semigroups, algebras with a single associative binary
operation, is probably the most mature of the three disciplines with deep results. Universal
Algebra treats algebras with several operations, e.g., groups, rings, lattices and other classes
of known algebras, and it has borrowed from formal logics and the results of various classes
of concrete algebras. The Theory of Automata is the youngest of the three. The Structural
Theory of Automata essentially studies the composition of small automata to form larger
ones. The role of semigroups in automata theory has been recognized for a long time but
conversly automata have also influenced semigroups. This book demonstrates the use of
universal algebra concepts and techniques in the structural theory of automata as well as the
reverse influences.

J. Almeida surveys the theory of profinite semigroups which grew from finite semigroups
and certain problems in automata. There arises a natural algebraic structure with an interplay
between topological and algebraic aspects. Pseudovarieties connect profinite semigroups to
universal algebras. L. N. Shevrin surveys the very large and substantial class of special
semigroups, called epigroups. He presents them as semigroups with the unary operator of
pseudo-inverse and studies some nice decompositions and finiteness conditions.

A. Letichevsky studies transition systems, an extension of automata, behaviour algebras
and other structures. He develops a multifaceted theory of transition systems with many as-
pects. J. Dassow studies various completeness results for the algebra of sequential functions
on {0, 1}, essentially functions induced by automata or logical nets. In particular, he investi-
gates completeness with respect to an equivalence relation on the algebra. V. B. Kudryavt-
sev surveys various completeness and expressibility problems and results starting from the
completeness (primality) criterion in the propositional calculus of many-valued logics (finite
algebras) to delayed algebras and automata functions. T. Hikita and I. G. Rosenberg study
the week completeness of finite delayed algebras situated between universal algebras and
automata. The relational counterpart of delayed clones is based on infinite sequences of re-
lations. All the corresponding maximal clones are described except for those determined by
sequences of equivalence relations or by sequences of binary central relations.

In the field of Universal Algebra J. Berman surveys selected results on the structure of
free algebraic systems. His focus is on decompositions of free algebras into simpler compo-
nents whose interactions can be readily determined. P. Idziak studies the G-spectrum of a
variety, a sequence whose k-th term is the number of k-generated algebras in the variety.
Based on commutator and tame congruence theory the at most polynomial and at most
exponential G-spectra of some locally finite varieties are described. M. Jackson studies the
syntactic semigroups. He shows how to efficiently associate a syntactic semigroup (monoid)
with a finite set of identities to a semigroup (monoid) with a finite base of identities and finds
a language-theoretic equivalent of the above finite basis problem. K. Kaarli and L. Márki
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survey endoprimal algebras, i.e. algebras whose term operations comprise all operations ad-
mitting a given monoid of selfmaps as their endomorphism monoid. First they present the
connection to algebraic dualisability and then characterize the endoprimal algebras among
Stone algebras, Kleene algebras, abelian groups, vector spaces, semilattices and implica-
tion algebras. A. Krokhin, A. Bulatov and P. Jevons investigate the constraint satisfaction
problem arising in artificial intelligence, databases and combinatorial optimization. The al-
gebraic counterpart of this relational problem is a problem in clone theory. The paper studies
the computational complexity aspects of the constraint satisfaction problem in clone terms.
R. McKenzie and J. Snow present the basic theory of commutators in congruence modular
varieties of algebras, an impressive machinery for attacking diverse problems in congruence
modular varieties.

It is fair to state that we have met our objective of bringing together specialists and
ideas in three neighbouring and closely interrelated domains. To all who helped to make
this SMS a success, lecturers and participants alike, we wish to express our sincere thanks
and appreciation. Special thanks go to Professor Gert Sabidussi for his experience, help and
tireless efforts in the preparation and running of the SMS and, in particular, to Ghislaine
David, its very efficient and charming secretary, for the high quality and smoothness with
which she handled the organization of the meeting. We also thank Professor Martin Goldstein
for the technical edition of this volume.

Funding for the SMS was provided in the largest part by NATO ASI Program with addi-
tional support from the Centre de recherches mathématiques of the Université de Montréal
and from the Université de Montréal. To all three organizations we would like to express our
gratitude for their support.

Ivo G. Rosenberg
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Profinite semigroups and applications

Jorge ALMEIDA

Departamento de Matemática Pura, Faculdade de Ciências
Universidade do Porto

Rua do Campo Alegre, 687, 4169-007 Porto
Portugal

Notes taken by Alfredo COSTA

Abstract

Profinite semigroups may be described briefly as projective limits of finite semigroups.
They come about naturally by studying pseudovarieties of finite semigroups which in
turn serve as a classifying tool for rational languages. Of particular relevance are rela-
tively free profinite semigroups which for pseudovarieties play the role of free algebras
in the theory of varieties. Combinatorial problems on rational languages translate into
algebraic-topological problems on profinite semigroups. The aim of these lecture notes is
to introduce these topics and to show how they intervene in the most recent developments
in the area.

1 Introduction

With the advent of electronic computers in the 1950’s, the study of simple formal models
of computers such as automata was given a lot of attention. The aims were multiple: to
understand the limitations of machines, to determine to what extent they might come to
replace humans, and later to obtain efficient schemes to organize computations. One of the
simplest models that quickly emerged is the finite automaton which, in algebraic terms, is
basically the action of a finitely generated free semigroup on a finite set of states and thus
leads to a finite semigroup of transformations of the states [48, 61].

In the 1960’s, the connection with finite semigroups was first explored to obtain com-
putability results [79] and in parallel a decomposition theory of finite computing devices
inspired by the theory of groups and the complexity of such decompositions [51, 52], again
led to the development of a theory of finite semigroups [21], which had not previously merited
any specific attention from specialists on semigroups.

In the early 1970’s, both trends, the former more combinatorial and more directly con-
cerned with applications in computer science, the latter more algebraic, continued to flourish
with various results that nowadays are seen as pioneering. In the mid-1970’s, S. Eilenberg,
in part with the collaboration of M. P. Schützenberger and B. Tilson [35, 36] laid the foun-
dations for a theory which was already giving signs of being potentially quite rich. One of
the cornerstones of their work is the notion of a pseudovariety of semigroups and a corre-
spondence between such pseudovarieties and varieties of rational languages which provided a
systematic framework and a program for the classification of rational languages.

1
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The next ten years or so were rich in the execution of Eilenberg’s program [53, 64, 65]
which in turn led to deep problems such as the identification of the levels of J. Brzozowski’s
concatenation hierarchy of star-free languages [29] while various steps forward were taken in
the understanding of the Krohn-Rhodes group complexity of finite semigroups [73, 71, 47].

In the beginning of the 1980’s, the author was exploring connections of the theory of pseu-
dovarieties with Universal Algebra to obtain information on the lattice of pseudovarieties of
semigroups and to compute some operators on pseudovarieties (see [3] for results and refer-
ences). The heart of the combinatorial work was done by manipulating identities and so when
J. Reiterman [70] showed that it was possible to define pseudovarieties by pseudoidentities,
which are identities with an enlarged signature whose interpretation in finite semigroups is
natural, this immediately appeared to be a powerful tool to explore. Reiterman introduced
pseudoidentities as formal equalities of implicit operations, and defined a metric structure
on sets of implicit operations but no algebraic structure. There is indeed a natural algebraic
structure and the interplay between topological and algebraic structure turns out to be very
rich and very fruitful.

Thus, the theory of finite semigroups and applications led to the study of profinite semi-
groups, particularly those that are free relative to a pseudovariety. These structures play the
role of free algebras for varieties in the context of profinite algebras, which already explains
the interest in them. When the first concrete new applications of this approach started to
appear (see [3] for results and references), other researchers started to consider it too and
nowadays it is viewed as an important tool which has found applications across all aspects
of the theory of pseudovarieties.

The aim of these notes is to introduce this area of research, essentially from scratch, and
to survey a significant sample of the most important recent developments. In Section 2 we
show how the study of finite automata and rational languages leads to study pseudovarieties
of finite semigroups and monoids, including some of the key historical results.

Section 3 explains how relatively free profinite semigroups are found naturally in trying
to construct free objects for pseudovarieties, which is essentially the original approach of B.
Banaschewski [26] in his independent proof that pseudoidentities suffice to define pseudovari-
eties. The theory is based here on projective limits but there are other alternative approaches
[3, 7]. Section 3 also lays the foundations of the theory of profinite semigroups which are fur-
ther developed in Section 4, where the operational aspect is explored. Section 4 also includes
the recent idea of using iteration of implicit operations to produce new implicit operations.
Subsection 4.3 presents for the first time a proof that the monoid of continuous endomor-
phisms of a finitely generated profinite semigroup is profinite so that implicit operations on
finite monoids also have natural interpretations in that monoid.

The remaining sections are dedicated to a reasonably broad survey, without proofs, of how
the general theory introduced earlier can be used to solve problems. Section 5 sketches the
proof of I. Simon’s characterization of piecewise testable languages in terms of the solution of
the word problem for free pro-J semigroups. Section 6 presents an introduction to the notion
of tame pseudovarieties, which is a sophisticated tool to handle decidability questions which
extends the approach of C. J. Ash to the “Type II conjecture” of J. Rhodes, as presented
in the seminal paper [22]. The applications of this approach can be found in Sections 7
and 8 in the computation of several pseudovarieties obtained by applying natural operators
to known pseudovarieties. The difficulty in this type of calculation is that it is known that
those operators do not preserve decidability [1, 72, 24]. The notion of tameness came about
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precisely in trying to find a stronger form of decidability which would be preserved or at least
guarantee decidability of the operator image [15].

Finally, Section 9 introduces some very recent developments in the investigation of con-
nections between free profinite semigroups and Symbolic Dynamics. The idea to explore such
connections eventually evolved from the need to build implicit operations through iteration
in order to prove that the pseudovariety of finite p-groups is tame [6]. Once a connection
with Symbolic Dynamics emerged several applications were found but only a small aspect is
surveyed in Section 9, namely that which appears to have a potential to lead to applications
of profinite semigroups to Symbolic Dynamics.

2 Automata and languages

An abstraction of the notion of an automaton is that of a semigroup S acting on a set Q, whose
members are called the states of the automaton. The action is given by a homomorphism
ϕ : S → BQ into the semigroup of all binary relations on the set Q, which we view as acting
on the right. If all binary relations in ϕ(S) have domain Q, then one talks about a complete
automaton, as opposed to a partial automaton in the general situation. If all elements of
ϕ(S) are functions, then the automaton is said to be deterministic. The semigroup ϕ(S) is
called the transition semigroup of the automaton. In some contexts it is better to work with
monoids, and then one assumes the acting semigroup S to be a monoid and the action to be
given by a monoid homomorphism ϕ.

Usually, a set of generators A of the acting semigroup S is fixed and so the action homo-
morphism ϕ is completely determined by its restriction to A. In case both Q and A are finite
sets, the automaton is said to be finite. Of course the restriction that Q is finite is sufficient
to ensure that the transition semigroup of the automaton is finite.

To be used as a recognition device, one fixes for an automaton a set I of initial states
and a set F of final states. Moreover, in Computer Science one is interested in recognizing
sets of words (or strings) over an alphabet A, so that the acting semigroup is taken to be the
semigroup A+ freely generated by A, consisting of all non-empty words in the letters of the
alphabet A. The language recognized by the automaton is then the following set of words:

L = {w ∈ A+ : ϕ(w) ∩ (I × F ) �= ∅}. (2.1)

If the empty word 1 is also relevant, then one works instead in the monoid context and
one considers the free monoid A∗, the formula (2.1) for the language recognized being then
suitably adapted. Whether one works with monoids or with semigroups is often just a
matter of personal preference, although there are some instances in which the two theories
are not identical. Most results in these notes may be formulated in both settings and we
will sometimes switch from one to the other without warning. Parts of the theory may be
extended to a much a more general universal algebraic context (see [3, 7] and M. Steinby’s
lecture notes in this volume).

For an example, consider the automaton described by Fig. 1 where we have two states,
1 and 2, the former being both initial and final, and two acting letters, a and b, the action
being determined by the two partial functions associated with a and b, respectively ā : 1 �→ 2
and b̄ : 2 �→ 1. The language of {a, b}∗ recognized by this automaton consists of all words of
the form (ab)k with k ≥ 0 which are labels of paths starting and ending at state 1. This is
the submonoid generated by the word ab, which is denoted (ab)∗.
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Figure 1

In terms of the action homomorphism, the language L of (2.1) is the inverse image of
a specific set of binary relations on Q. We say that a language L ⊆ A+ is recognized by a
homomorphism ψ : A+ → S into a semigroup S if there exists a subset P ⊆ S such that
L = ψ−1P or, equivalently, if L = ψ−1ψL. We also say that a language is recognized by a
finite semigroup S if it is recognized by a homomorphism into S. By the very definition of
recognition by a finite automaton, every language which is recognized by such a device is also
recognized by a finite semigroup.

Conversely, if L = ψ−1ψL for a homomorphism ψ : A+ → S into a finite semigroup,
then one can construct an automaton recognizing L as follows: for the set of states take S1,
the monoid obtained from S by adjoining an identity if S is not a monoid and S otherwise;
for the action take the composition of ψ with the right regular representation, namely the
homomorphism ϕ : A+ → BS1 which sends each word w to right translation by ψ(w), that
is the function s �→ sψ(w). This proves the following theorem and, by adding the innocuous
assumption that ψ is onto, it also shows that every language which is recognized by a finite
automaton is also recognized by a finite complete deterministic automaton with only one
initial state (the latter condition being usually taken as part of the definition of deterministic
automaton).

2.1 Theorem (Myhill [61]) A language L is recognized by a finite automaton if and only
if it is recognized by a finite semigroup.

In particular, the complement A+ \ L of a language L ⊆ A+ recognized by a finite
automaton is also recognized by a finite automaton since a homomorphism into a finite
semigroup recognizing a language also recognizes its complement.

A language L ⊆ A∗ is said to be rational (or regular) if it may be expressed in terms
of the empty language and the languages of the form {a} with a ∈ A by applying a finite
number of times the binary operations of taking the union L ∪ K of two languages L and
K or their concatenation LK = {uv : u ∈ L, v ∈ K}, or the unary operation of taking the
submonoid L∗ generated by L; such an expression is called a rational expression of L. For
example, if letters stand for elementary tasks a computer might do, union and concatenation
correspond to performing tasks respectively in parallel or in series, while the star operation
corresponds to iteration. The following result makes an important connection between this
combinatorial concept and finite automata. Its proof can be found in any introductory text
to automata theory such as Perrin [63].

2.2 Theorem (Kleene [48]) A language L over a finite alphabet is rational if and only if
it is recognized by some finite automaton.
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An immediate corollary which is not evident from the definition is that the set of rational
languages L ⊆ A∗ is closed under complementation and, therefore it constitutes a Boolean
subalgebra of the algebra P(A+) of all languages over A.

Rational languages and finite automata play a crucial role in both Computer Science
and current applications of computers, since many very efficient algorithms, for instance for
dealing with large texts use such entities [34]. This already suggests that studying finite semi-
groups should be particularly relevant for Computer Science. We present next one historical
example showing how this relevance may be explored.

The star-free languages over an alphabet A constitute the smallest Boolean subalgebra
closed under concatenation of the algebra of all languages over A which contains the empty
language and the languages of the form {a} with a ∈ A. In other words, this definition
may be formulated as that of rational languages but with the star operation replaced by
complementation. Plus-free languages L ⊆ A+ are defined similarly.

On the other hand we say that a finite semigroup S is aperiodic if all its subsemigroups
which are groups (in this context called simply subgroups) are trivial. Equivalently, the cyclic
subgroups of S should be trivial, which translates in terms of universal laws to stating that
S should satisfy some identity of the form xn+1 = xn.

The connection between these two concepts, which at first sight have nothing to do with
each other, is given by the following remarkable theorem.

2.3 Theorem (Schützenberger [79]) A language over a finite alphabet is star-free if and
only if it is recognized by a finite aperiodic monoid.

Eilenberg [36] has given a general framework in which Schützenberger’s theorem becomes
an instance of a general correspondence between families of rational languages and finite
monoids. To formulate this correspondence, we first introduce some important notions.

The syntactic congruence of a subset L of a semigroup S is the largest congruence ρL

on S which saturates L in the sense that L is a union of congruence classes. The existence of
such a congruence may be easily established even for arbitrary subsets of universal algebras
[3, Section 3.1]. For semigroups, it is easy to see that it is the congruence ρL defined by
u ρL v if, for all x, y ∈ S1, xuy ∈ L if and only if xvy ∈ L, that is if u and v appear as factors
of members of L precisely in the same context. The quotient semigroup S/ρL is called the
syntactic semigroup of L and it is denoted SyntL; the natural homomorphism S → S/ρL is
called the syntactic homomorphism of L.

The syntactic semigroup SyntL of a rational language L ⊆ A+ is the smallest semigroup S
which recognizes L. Indeed all semigroups of minimum size which recognize L are isomorphic.
To prove this, one notes that a homomorphism ψ : A+ → S recognizing L may as well be taken
to be onto, in which case S is determined up to isomorphism by a congruence on A+, namely
the kernel congruence ker ψ which identifies two words if they have the same image under ψ.
The assumption that ψ recognizes L translates in terms of this congruence by stating that
ker ψ saturates L and so ker ψ is contained in ρL. Noting that rationality really played no
role in the argument, this proves the following result where we say that a semigroup S divides
a semigroup T and we write S ≺ T if S is a homomorphic image of some subsemigroup of T .

2.4 Proposition A language L ⊆ A+ is recognized by a semigroup S if and only if SyntL
divides S.
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The syntactic semigroup of a rational language L may be effectively computed from
a rational expression for the language. Namely, one can efficiently compute the minimal
automaton of L [63], which is the complete deterministic automaton recognizing L with the
minimum number of states; the syntactic semigroup is then the transition semigroup of the
minimal automaton.

Given a finite semigroup S, one may choose a finite set A and an onto homomorphism
ϕ : A+ → S: for instance, one can take A = S and let ϕ be the homomorphism which extends
the identity funtion A → S. For each s ∈ S, let Ls = ϕ−1s. Since ϕ is an onto homomorphism
which recognizes Ls, there is a homomorphism ψs : S → SyntLs such that the composite
function ψs ◦ ϕ : A+ → SyntLs is the syntactic homomorphism of Ls. The functions ψs

induce a homomorphism ψ : S →
∏

s∈S SyntLs which is injective since ψs(t) = ψs(s) means
that there exist u, v ∈ A+ such that ϕ(u) = s, ϕ(v) = t and u ρLs v, which implies that
v ∈ Ls since u ∈ Ls and so t = s. As we did at the beginning of the section, we may turn
ϕ : A+ → S into an automaton which recognizes each of the languages Ls and from this any
proof of Kleene’s Theorem will yield a rational expression for each Ls. Hence we have the
following result.

2.5 Proposition For every finite semigroup S one may effectively compute rational lan-
guages L1, . . . , Ln over a finite alphabet A which are recognized by S and such that S divides∏n

i=1 SyntLi.

It turns out there are far too many finite semigroups for a classification up to isomorphism
to be envisaged [78]. Instead, from the work of Schützenberger and Eilenberg eventually
emerged [36, 37] the classification of classes of finite semigroups called pseudovarieties. These
are the (non-empty) closure classes for the three natural algebraic operators in this context,
namely taking homomorphic images, subsemigroups and finite direct products. For example,
the classes A, of all finite aperiodic semigroups, and G, of all finite groups, are pseudovarieties
of semigroups.

On the language side, the properties of a language may depend on the alphabet on which
it is considered. To take into account the alphabet, one defines a variety of rational languages
to be a correspondence V associating to each finite alphabet A a Boolean subalgebra V(A+)
of P(A+) such that

(1) if L ∈ V(A+) and a ∈ A then the quotient languages a−1L = {w : aw ∈ L} and
La−1 = {w : wa ∈ L} belong to V(A+) (closure under quotients);

(2) if ϕ : A+ → B+ is a homomorphism and L ∈ V(B+) then the inverse image ϕ−1L
belongs to V(A+) (closure under inverse homomorphic images).

For example, the correspondence which associates with each finite alphabet the set of all
plus-free languages over it is a variety of rational languages. The correspondence between
varieties of rational languages and pseudovarieties is easily described in terms of the syntactic
semigroup as follows:

• associate with each variety of rational languages V the pseudovariety V generated by
all syntactic semigroups SyntL with L ∈ V(A+);
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• associate with each pseudovariety V of finite semigroups the correspondence

V : A �→ V(A+) = {L ⊆ A+ : SyntL ∈ V}
= {L ⊆ A+ : L is recognized by some S ∈ V}

Since intersections of non-empty families of pseudovarieties are again pseudovarieties,
pseudovarieties of semigroups constitute a complete lattice for the inclusion ordering. Sim-
ilarly, one may order varieties of languages by putting V ≤ W if V(A+) ⊆ W(A+) for every
finite alphabet A. Then every non-empty family of varieties (Vi)i∈I admits the infimum V

given by V(A+) =
⋂

i∈I Vi(A+) and so again the varieties of rational languages constitute a
complete lattice.

2.6 Theorem (Eilenberg [36]) The above two correspondences are mutually inverse iso-
morphisms between the lattice of varieties of rational languages and the lattice of pseudova-
rieties of finite semigroups.

Schützenberger’s Theorem provides an instance of this correspondence, but of course this
by no means says that that theorem follows from Eilenberg’s Theorem. See M. V. Volkov’s
lecture notes in this volume and Section 5 for another important “classical” instance of Eilen-
berg’s correspondence, namely Simon’s Theorem relating the variety of so-called piecewise
testable languages with the pseudovariety J of finite semigroups in which every principal
ideal admits a unique element as a generator. See Eilenberg [36] and Pin [65] for many more
examples.

2.7 Example An elementary example which is easy to treat here is the correspondence
between the variety N of finite and cofinite languages and the pseudovariety N of all finite
nilpotent semigroups. We say that a semigroup S is nilpotent if there exists a positive integer
n such that all products of n elements of S are equal; the least such n is called the nilpotency
index of S. The common value of all sufficiently long products in a nilpotent semigroup
must of course be zero. If the alphabet A is finite, the finite semigroup S is nilpotent with
nilpotency index n, and the homomorphism ϕ : A+ → S recognizes the language L, then
either ϕL does not contain zero, so that L must consist of words of length smaller than n
which implies L is finite, or ϕL contains zero and then every word of length at least n must
lie in L, so that the complement of L is finite.

Since N is indeed a pseudovariety and the correspondence N associating with a finite al-
phabet A the set of all finite and cofinite languages L ⊆ A+ is a variety of rational languages,
to prove the converse it suffices, by Eilenberg’s Theorem, to show that every singleton lan-
guage {w} over a finite alphabet A is recognized by a finite nilpotent semigroup. Now, given
a finite alphabet A and a positive integer n, the set In of all words of length greater than n
is an ideal of the free semigroup A+ and the Rees quotient A+/In, in which all words of In

are identified to a zero element, is a member of N. If w /∈ In, that is if the length |w| of w
satisfies |w| ≤ n, then the quotient homomorphism A+ → A+/In recognizes {w}. Hence we
have N ↔ N via Eilenberg’s correspondence.

Eilenberg’s correspondence gave rise to a lot of research aimed at identifying pseudovari-
eties of finite semigroups corresponding to combinatorially defined varieties of rational lan-
guages and, conversely, varieties of rational languages corresponding to algebraically defined
pseudovarieties of finite semigroups.
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Another aspect of the research is explained in part by the different character of the two
directions of Eilenberg’s correspondence. The pseudovariety V associated with a variety V

of rational languages is defined in terms of generators. Nevertheless, Proposition 2.5 shows
how to recover from a given semigroup S ∈ V an expression for S as a divisor of a product of
generators so that a finite semigroup S belongs to V if and only if the languages computed
from S according to Proposition 2.5 belong to V.

On the other hand, if we could effectively test membership in V, then we could effectively
determine if a rational language L ⊆ A+ belongs to V(A+): we would simply compute the
syntactic semigroup of L and test whether it belongs to V, the answer being also the answer
to the question of whether L ∈ V(A+). This raises the most common problem encountered
in finite semigroup theory: given a pseudovariety V defined in terms of generators, determine
whether it has a decidable membership problem. A pseudovariety with this property is said
to be decidable. Since for instance for each set P of primes, the pseudovariety consisting of all
finite groups G such that the prime factors of |G| belong to P determines P , a simple counting
argument shows that there are too many pseudovarieties for all of them to be decidable. For
natural constructions of undecidable pseudovarieties from decidable ones see [1, 24].

For the reverse direction, given a pseudovariety V one is often interested in natural and
combinatorially simple generators for the associated variety V of rational languages. These
generators are often defined in terms of Boolean operations: for each finite alphabet A a
“natural” generating subset for the Boolean algebra V(A+) should be identified. For instance,
a language L ⊆ A+ is piecewise testable if and only if it is a Boolean combination of languages
of the form A∗a1A

∗ · · · anA∗ with a1, . . . , an ∈ A. We will run again into this kind of question
in Subsection 3.3 where it will be given a simple topological formulation.

3 Free objects

A basic difficulty in dealing with pseudovarieties of finite algebraic structures is that in general
they do not have free objects. The reason is quite simple: free objects tend to be infinite.

As a simple example, consider the pseudovariety N of all finite nilpotent semigroups. For
a finite alphabet A and a positive integer n, denoting again by In the set of all words of length
greater than n, the Rees quotient A+/In belongs to N. In particular, there are arbitrarily
large A-generated finite nilpotent semigroups and therefore there can be none which is free
among them. In general, there is an A-generated free member of a pseudovariety V if and
only if up to isomorphism there are only finitely many A-generated members of V, and most
interesting pseudovarieties of semigroups fail this condition.

In universal algebraic terms, we could consider the free objects in the variety generated
by V. This variety is defined by all identities which are valid in V and for instance for N
there are no such nontrivial semigroup identities: in the notation of the preceding paragraph,
A+/In satisfies no nontrivial identities in at most |A| variables in which both sides have
length at most n. This means that if we take free objects in the algebraic sense then we lose
a lot of information since in particular all pseudovarieties containing N will have the same
associated free objects.

Let us go back and try to understand better what is meant by a free object. The idea is
to take a structure which is just as general as it needs to be in order to be more general than
all A-generated members of a given pseudovariety V. Let us take two A-generated members
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of V, say given by functions ϕi : A → Si such that ϕi(A) generates Si (i = 1, 2). Let T be the
subsemigroup of the product generated by all pairs of the form (ϕ1(a), ϕ2(a)) with a ∈ A.
Then T is again an A-generated member of V and we have the commutative diagram

A
ϕ1

����
��

��
�

��

ϕ2

���
��

��
��

S1 Tπ1
��

π2
�� S2

where πi : T → Si is the projection on the ith component. The semigroup T is therefore more
general than both S1 and S2 as an A-generated member of V and it is as small as possible
to satisfy this property. We could keep going on doing this with more and more A-generated
members of V but the problem is that we know, by the above discussion concerning N, that in
general we will never end up with one member of V which is more general than all the others.
So we need some kind of limiting process. The appropriate construction is the projective (or
inverse) limit which we proceed to introduce in the somewhat wider setting of topological
semigroups.

3.1 Profinite semigroups

By a directed set we mean a poset in which any two elements have a common upper bound.
A subset C of a poset P is said to be cofinal if, for every element p ∈ P , there exists c ∈ C
such p ≤ c.

By a topological semigroup we mean a semigroup S endowed with a topology such that
the semigroup operation S × S → S is continuous. Fix a set A and consider the category of
A-generated topological semigroups whose objects are the mappings A → S into topological
semigroups whose images generate dense subsemigroups, and whose morphisms θ : ϕ → ψ,
from ϕ : A → S to ψ : A → T , are given by continuous homomorphisms θ : S → T such
that θ ◦ ϕ = ψ. Now, consider a projective system in this category, given by a directed set I
of indices, for each i ∈ I an object ϕi : A → Si in our category of A-generated topological
semigroups and, for each pair i, j ∈ I with i ≥ j, a connecting morphism ψi,j : ϕi → ϕj such
that the following conditions hold for all i, j, k ∈ I:

• ψi,i is the identity morphism on ϕi;

• if i ≥ j ≥ k then ψj,k ◦ ψi,j = ψi,k.

The projective limit of this projective system is an A-generated topological semigroup Φ :
A → S together with morphisms Φi : Φ → ϕi such that for all i, j ∈ I with i ≥ j, ψi,j◦Φi = Φj

and, moreover, the following universal property holds:

For any other A-generated topological semigroup Ψ : A → T and morphisms
Ψi : Ψ → ϕi such that for all i, j ∈ I with i ≥ j, ψi,j ◦ Ψi = Ψj there exists a
morphism θ : Ψ → Φ such that Φi ◦ θ = Ψi for every i ∈ I.

The situation is depicted in the following two commutative diagrams of morphisms and
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mappings respectively:

The uniqueness up to isomorphism of such a projective limit is a standard diagram chasing
exercise. Existence may be established as follows.

Consider the subsemigroup S of the product
∏

i∈I Si consisting of all (si)i∈I such that,
for all i, j ∈ I with i ≥ j,

ϕi,j(si) = sj (3.1)

endowed with the induced topology from the product topology. To check that S provides
a construction of the projective limit, we first claim that the mapping Φ : A → S given by
Φ(a) = (ϕi(a))i∈I is such that Φ(A) generates a dense subsemigroup T of S. Indeed, since
the system is projective, to find an approximation (ti)i∈I ∈ T to an element (si)i∈I of S given
by tij ∈ Kij for a clopen set Kij ⊆ Sij containing sij with j = 1, . . . , n, one may first take
k ∈ I such that k ≥ i1, . . . , in. Then, by the hypothesis that the subsemigroup Tk of Sk

generated by ϕk(A) is dense, there is a word w ∈ A+ which in Tk represents an element of
the open set

⋂n
j=1 ψ−1

k,ij
Kij since this set is non-empty as sk belongs to it. This word w then

represents an element (ti)i∈I of T which is an approximation as required.
It is now an easy exercise to show that the projections Φi : S → Si have the above universal

property. Note that since each of the conditions (3.1) only involves two components and ϕi,j is
continuous, S is a closed subsemigroup of the product

∏
i∈I Si. So, by Tychonoff’s Theorem,

if all the Si are compact semigroups, then so is S. We assume Hausdorff’s separation axiom
as part of the definition of compactness.

Recall that a topological space is totally disconnected if its connected components are
singletons and it is zero-dimensional if it admits a basis of open sets consisting of clopen
(meaning both closed and open) sets. See Willard [93] for a background in General Topology.

A finite semigroup is always viewed in this paper as a topological semigroup under the
discrete topology. A profinite semigroup is defined to be a projective limit of a projective
system of finite semigroups in the above sense, that is for some suitable choice of generators.
The next result provides several alternative definitions of profinite semigroups.

3.1 Theorem The following conditions are equivalent for a compact semigroup S:

(1) S is profinite;

(2) S is residually finite as a topological semigroup;

(3) S is a closed subdirect product of finite semigroups;
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(4) S is totally disconnected;

(5) S is zero-dimensional.

Proof By the explicit construction of the projective limit we have (1) ⇒ (2) while (2) ⇒ (3) is
easily verified from the definitions. For (3) ⇒ (1), suppose that Φ : S →∏

i∈I Si is an injective
continuous homomorphism from the compact semigroup S into a product of finite semigroups
and that the factors are such that, for each component projection πj :

∏
i∈I Si → Sj the

mapping πj ◦ Φ : S → Sj is onto. We build a projective system of S-generated finite
semigroups by considering all onto mappings of the form ΦF : S → SF where F is a finite
subset of I and ΦF = πF ◦ Φ where πF :

∏
i∈I Si →

∏
i∈F Si denotes the natural projection;

the indexing set is therefore the directed set of all finite subsets of I, under the inclusion
ordering, and for the connecting homomorphisms we take the natural projections. It is now
immediate to verify that S is the projective limit of this projective system of finite S-generated
semigroups.

Since a product of totally disconnected spaces is again totally disconnected, we have
(3) ⇒ (4). The equivalence (4) ⇔ (5) holds for any compact space and it is a well-known
exercise in General Topology [93].

Up to this point in the proof, the fact that we are dealing with semigroups rather than
any other variety of universal algebras really makes no essential difference. To complete
the proof we establish the implication (5) ⇒ (2), which was first proved by Numakura [62].
Given two distinct points s, t ∈ S, by zero-dimensionality they may be separated by a clopen
subset K ⊆ S in the sense that s lies in K and t does not. Since the syntactic congruence ρK

saturates K, the congruence classes of s and t are distinct, that is the quotient homomorphism
ϕ : S → SyntK sends s and t to two distinct points. Hence, to prove (2) it suffices to show
that SyntK is finite and ϕ is continuous, which is the object of Lemma 3.3 below. �

As an immediate application we obtain the following closure properties for the class of
profinite semigroups.

3.2 Corollary A closed subsemigroup of a profinite semigroup is also profinite. The product
of profinite semigroups is also profinite.

The following technical result has been extended in [2] to a universal algebraic setting in
which syntactic congruences are determined by finitely many terms. See [32] for the precise
scope of validity of the implication (5) ⇒ (1) in Theorem 3.1 and applications in Universal
Algebra.

We say that a congruence ρ on a topological semigroup is clopen if its classes are clopen.

3.3 Lemma (Hunter [44]) If S is a compact zero-dimensional semigroup and K is a clopen
subset of S then the syntactic congruence ρK is clopen, and therefore it has finitely many
classes.

Proof The proof uses nets, sequences indexed by directed sets which play for general topo-
logical spaces the role played by usual sequences for metric spaces [93]. Let (si)i∈I be a
convergent net in S with limit s. We should show that there exists i0 ∈ I such that, when-
ever i ≥ i0, we have si ρK s. Suppose on the contrary that for every j ∈ I there exists i ≥ j
such that si is not in the same ρK -class as s. The set Λ consisting of all i ∈ I such that


