


Stereo Scene Flow for 3D Motion Analysis





Andreas Wedel � Daniel Cremers

Stereo Scene Flow
for 3D Motion
Analysis



Dr. Andreas Wedel
Group Research
Daimler AG
HPC 050–G023
Sindelfingen 71059
Germany
andreas.wedel@daimler.com

Prof. Daniel Cremers
Department of Computer Science
Technical University of Munich
Boltzmannstraße 3
Garching 85748
Germany
cremers@tum.de

ISBN 978-0-85729-964-2 e-ISBN 978-0-85729-965-9
DOI 10.1007/978-0-85729-965-9
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011935628

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: VTeX UAB, Lithuania

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:andreas.wedel@daimler.com
mailto:cremers@tum.de
http://www.springer.com
http://www.springer.com/mycopy


Preface

The estimation of geometry and motion of the world around us from images is at
the heart of Computer Vision. The body of work described in this book arose in the
context of video-based analysis of the scene in front of a vehicle from two front-
facing cameras located near the rear view mirror. The question examined of where
things are in the world and how they move over time is an essential prerequisite for
a higher-level analysis of the observed environment and for subsequent driver assis-
tance. At the origin of this work is the combination of a strong interest in solving the
real-world challenges of camera-based driver assistance and a scientific background
in energy minimization methods. Yet, the methods we describe for estimating highly
accurate optical flow and scene flow are a central prerequisite in other domains of
computer vision where accurate and dense point correspondence between images or
between geometric structures observed in stereo-videos is of importance.

Step by step we introduce variational methods which allow us to enhance the im-
age data acquired from two cameras by spatially dense information on the geomet-
ric structure and 3D motion of the observed structures. In particular, we introduce
variational approaches to optic flow estimation and present a variety of techniques
which gave rise to the world’s most accurate optic flow method. We introduce a
variational approach to estimate scene flow, i.e. the motion of structure in 3D. We
discuss metrics for evaluating the accuracy of scene flow estimates. We will also
show extensions of scene flow, including flow-based segmentation and the track-
ing of 3D motion over multiple frames. The latter employs Kalman filters for every
pixel of an image assuming linear object motion which results in a stable and dense
3D motion vector field.

The book is written for both novices and experts, covering both basic concepts
such as variational methods and optic flow estimation, and more advanced concepts
such as adaptive regularization and scene flow analysis.

Much of the work described in this book was developed during the Ph.D. thesis of
the first author, both at the University of Bonn and at Daimler Research, Böblingen.
Many of these results would not have been possible without the enthusiastic support
of a number of researchers. We are particularly indebted to Uwe Franke, Clemens
Rabe, and Stefan Gehrig for their work on 6D vision and disparity estimation, to
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vi Preface

Thomas Pock in the context of efficient algorithms for optic flow estimation, to
Thomas Brox in the parts on variational scene flow estimation, and to Tobi Vaudrey
and Reinhard Klette for their research support on residual images and segmentation.
We are grateful to our collaborators for their support.

With lane departure warning systems and traffic sign recognition, camera-based
driver assistance is gradually becoming a reality. Latest research deals with intel-
ligent systems such as autonomous evasive maneuvers and emergency situation
takeover assistance. We hope that this book will help to lay the foundations for
higher-level traffic scene understanding, object motion detection, and the develop-
ment of advanced driver assistance.

Andreas Wedel
Daniel Cremers

Böblingen and Munich, Germany
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Chapter 1
Machine Vision Systems

Everything used to measure time really measures space.
J. Deshusses

Accurate, precise and real-time capable estimation of three-dimensional motion vec-
tor fields remains one of the key tasks in computer vision. Different variants of
this problem arise inter alia in the estimation of ego motion [4], object motion [8],
human motion [77], and motion segmentation [106]. The knowledge of the sur-
rounding motion field is a key enabler for a wide range of applications such as
driver assistance systems and modern surveillance systems. Especially in security
relevant applications robustness, accuracy, and real-time capability are of utmost
importance.

Estimating this three-dimensional motion vector field from stereo image se-
quences has drawn the attention of many researchers. Due to the importance of this
problem, numerous approaches to image based motion field estimation have been
proposed in the last three decades. Most of them can be classified into the following
main strategies:

• model based approaches,
• sparse feature tracking methods using multiple image frames,
• dense scene flow computation from two consecutive frames.

A. Wedel, D. Cremers, Stereo Scene Flow for 3D Motion Analysis,
DOI 10.1007/978-0-85729-965-9_1, © Springer-Verlag London Limited 2011
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2 1 Machine Vision Systems

The estimation of motion vectors involves both the reconstruction of the three-
dimensional scene via stereo matching and the solving of a point correspondence
problem between two or more consecutive images. Both problems are classical ill-
posed problems1 in the sense that merely imposing matching of similar intensities
will typically not give rise to a unique solution. The three aforementioned strategies
choose different ways to overcome this ill-posedness.

In model based approaches such as [77] and [8] parameterized models of objects
or humans are used to constraint the solution space and overcome the ill-posedness
of the problem. However, the absence of appropriate models for generic applications
disqualifies model based approaches in a multitude of situations.

Many researchers therefore circumvent specific object models and employ reg-
ularization techniques for feature tracking and scene flow approaches in order to
formulate the motion estimation problem in a well-posed way. This regularization
is either formulated in the time domain for the tracking of features, as done in [54]
or [74], or in the spatial domain, imposing smoothness of the motion field between
two consecutive frames like in [103] and [108].

The latter is known as variational scene flow estimation from stereo sequences.
Algorithmically variational scene flow computation methods build up on the sem-
inal optical flow algorithm of Horn and Schunck [42]. In what is often considered
the first variational method in computer vision, Horn and Schunck suggested to
compute the flow field between two consecutive images of a video as the mini-
mizer of an energy functional which integrates a brightness constancy assumption
with a smoothness assumption on the flow field. This framework has been im-
proved in [60] to cope with flow discontinuities and outliers and in [13] to cope
with large flow vectors. In recent years, several real-time optical flow methods
have been proposed—see for example [16] and [119]. In Chaps. 2 and 3 we re-
view the classical optic flow estimation and discuss a series of improvements [91,
102, 105–107, 110], including median filtering of flow vectors, decomposition of
the input images, and considering optical flow estimation as an iterative refine-
ment process of a flow vector field accompanied by outlined implementation de-
tails.

We continue in Chap. 4 to introduce scene flow estimation as an extension of
the optical flow estimation techniques. Joint motion and disparity estimation for the
scene flow computation was introduced in [69]. In [108] the motion and disparity es-
timation steps were decoupled in order to achieve real-time capability without loos-
ing accuracy. Subsequent publications have focused on improving the accuracy, the
formulation of uncertainties, and establishing motion metrics for scene flow [105,
109, 112] and are handled in Chap. 5. Implementation details on the scene flow
algorithm are found in the Appendices of this book.

We additionally include Chap. 6 on recent developments in the research field
of scene flow estimation described in [75, 111]. These include scene flow seg-
mentation and using Kalman filters for scene flow estimation. The latter approach

1Following Hadamard [37], a mathematical model is called well-posed if there exists a solution, if
the solution is unique and if it continuously depends upon the data. Otherwise it is called ill-posed.
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combines the aforementioned strategies of feature tracking over multiple frames
and scene flow computation from two consecutive frames. This allows a dense
and robust reconstruction of the three-dimensional motion field of the depicted
scene.



Chapter 2
Optical Flow Estimation

Abstract In this chapter we review the estimation of the two-dimensional apparent
motion field of two consecutive images in an image sequence. This apparent motion
field is referred to as optical flow field, a two-dimensional vector field on the image
plane. Because it is nearly impossible to cover the vast amount of approaches in
the literature, in this chapter we set the focus on energy minimization approaches
which estimate a dense flow field. The term dense refers to the fact that a flow vector
is assigned to every (non-occluded) image pixel. Most dense approaches are based
on the variational formulation of the optical flow problem, firstly suggested by Horn
and Schunk. Depending on the application, density might be one important property
besides accuracy and robustness. In many cases computational speed and real-time
capability is a crucial issue. In this chapter we therefore discuss the latest progress
in accuracy, robustness and real-time capability of dense optical flow algorithms.

Space is a still of time, while time is space in motion.
Christopher R. Hallpike

2.1 Optical Flow and Optical Aperture

This chapter is about optical flow and its estimation from image sequences. Before
we go into details on optical flow estimation, we review the definition of optical
flow and discuss some of the basic challenges of optical flow estimation.
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