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Preface

1. The beginning of a new century provides a good moment for looking back.
Number theory has changed its appearance during the last hundred years. At the
end of the 19th century it was regarded as a collection of dispersed results deal-
ing with various old and newer problems, obtained by people who were mostly
specializing in other subjects. After one hundred years number theory became a
well-established part of mathematical sciences, having close relations to commuta-
tive algebra, homological algebra, algebraic geometry, function theory, real analysis,
functional analysis, group theory and topology.

2. The aim of this book is to give a short survey of the development of the classical
part of number theory between the proof of the Prime Number Theorem (PNT) and
the proof of Fermat’s Last Theorem (FLT), covering thus the twentieth century.
Results obtained earlier or later will be also quoted, as far as they are connected
with our main topics.

Actually it is now difficult to indicate the borders of number theory, as it tends
to acquire grounds reserved earlier to analysis, algebra or geometry. It seems that
A. Weil thought about limiting the possessions of number theory, when he wrote:
“To the best of my understanding, analytic number theory is not number theory,”
[6630, p. 8] but nowadays it is fashionable to believe that number theory encom-
passes more and more of mathematical research.

The word “rational” in the title indicates that we shall concentrate on that part of
number theory which deals with properties of integers and rational numbers, hence
the theory of algebraic numbers will be excluded. This is motivated by the fact that
its inclusion would enormously increase the size of the book, and, moreover, a large
bibliography covering this part of number theory is available in my previous book
[4543]. Nevertheless, some exceptions will be made, as we shall consider the class-
number problems for quadratic and cyclotomic fields. The first of them coincides
with the class-number problem for binary quadratic forms, and the second is in-
timately connected with the earlier approach to Fermat’s Last Theorem. We shall
also comment on the generalization of the Waring problem to algebraic number
fields and describe the creation of class-field theory because of its influence on the
reciprocity laws.

v
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The history of the theory of modular forms which played a decisive role in the
proof of Fermat’s Last Theorem, and which underwent great progress in the last
century, deserves a book of its own. Therefore we shall describe only those parts of
its development which had a direct influence on number theory proper. This applies
also to other branches of mathematics providing tools for arithmetical research. In
particular we will not touch the more advanced topics in Diophantine geometry.

In consecutive chapters we shall present the main achievements of the relevant
period, accompanied by comments about the development occurring in the next
periods. An exception will be made for Fermat’s Last Theorem, to which the last
chapter is devoted. Our exposition will be concise, sometimes imitating the style of
the celebrated Dickson’s History of the Theory of Numbers [1545], although there
is neither the possibility nor need to comment on all number-theoretical production.
We have tried to list all the main achievements, quote many important papers, but
restrain from including technical details in order to make the text available to non-
specialists also. More attention will be paid to earlier work, in the hope that this will
help to save it from falling into oblivion.

3. The first chapter contains a very short summary of the development of number
theory in the 19th century, starting with Gauss’s book Disquisitiones Arithmeticae
[2208], and ending with the proof of the Prime Number Theorem by Hadamard and
de la Vallée-Poussin and Hilbert’s talk at the 1900 Congress of Mathematicians in
Paris. The second chapter begins with a survey of some famous old problems (per-
fect numbers, Mersenne and Fermat primes, primality, . . . ), and then brings the story
of our subject at the begin of the century (solution of the Waring problem, Brun’s
sieve, theorem of Thue, . . . ). In the next chapter the development up to 1930 will
be covered (the inventing of the circle method by Hardy and Ramanujan, progress
in the theory of Diophantine equations starting with Siegel’s thesis, Mordell’s finite
basis theorem in the theory of elliptic curves). The most important events in the
thirties, covered in Chap. 4, were Vinogradov’s proof of the ternary Goldbach con-
jecture for large numbers, the solution of Hilbert’s problem about transcendence of
numbers αβ (with algebraic α �= 0,1 and algebraic irrational β) obtained by Gelfond
and Schneider, and the revival of the theory of modular forms by Hecke. The next
two chapters report on later development, including the creation of the large sieve,
and Chen’s theorem on the binary Goldbach problem. The last chapter is devoted to
Fermat’s Last Theorem.

Information about results obtained after the period considered in each particular
chapter is set in a smaller font.
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Notation

We will use the standard notation utilized in modern texts on number theory. In
particular we shall denote by Z, Q, R and C the ring of rational integers, the fields
of rational, real and complex numbers, respectively. The field of p-adic numbers
and its ring of integers will be denoted by Qp and Zp , respectively.

The number of divisors, Euler’s phi-function, the sum of divisors and the sum
of kth powers of divisors of an integer n will be denoted by d(n), ϕ(n), σ(n) and
σk(n), respectively. By ω(n) we shall denote the number of prime divisors of n, and
by �(n) the number of prime factors of n, counted with their multiplicities. The
symbol

(
n
p

)
will denote the quadratic residue symbol of Legendre.

By μ(n) we shall denote the Möbius function, defined by

μ(n)=
{
(−1)ω(n) if n is square-free,
0 otherwise.

The number of representations of n as a product of k factors > 1 will be denoted
by dk(n). By ζn we shall denote the primitive nth root of unity exp(2πi/n).

The letter p in formulas will always denote a prime. By Pk we shall denote
a number having at most k prime factors (i.e., Ω(Pk) ≤ k), and π(x) will be the
number of primes p ≤ x.

By li(x) we shall denote the logarithmic integral defined by

li(x)=
∫ x

2

dt

log t
,

and �(z) will be the usual Gamma-function.
We shall use Landau’s o-notation, writing

f (x)= o(g(x))

when the ratio |f (x)|
g(x)

tends to 0, when x tends to infinity, and the O-notation

f (x)=O(g(x)),

introduced on p. 225 in [2520], to mean the existence of a constant C with

|f (x)| ≤ Cg(x)

xiii
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holding for large x. In particular f (x) = o(1) means that f (x) tends to 0, and
f (x)=O(1) implies that the function f (x) is bounded. Instead of f (x)=O(g(x))

we shall also use Vinogradov’s notation f � g and g � f . If the implied con-
stant depends on some parameters a, b, . . . , then we shall write Oa,b,..., �a,b,..., or
�a,b,..., respectively.

The notation

f (x)=Ω(g(x))

stands for the falsity of the relation f (x)= o(g(x)), and

f (x)=Ω+(g(x)), f (x)=Ω−(g(x))

means that for a sequence xn tending to infinity one has

f (xn)≥ Cg(xn), f (xn) <−Cg(xn)
respectively, with a suitable positive constant C, assuming g(x) to be positive.

The letter ε will usually be reserved for arbitrarily small positive numbers.
By �z, �z we denote the real and imaginary part of the complex number z. The

distance of a real number x from the nearest integers will be denoted by ‖x‖, and
by {x} we shall denote the fractional part of x. The number of elements of a set A
will be denoted by #A.

For an algebraic integer a we shall denote by |a| the house of a, defined as the
product of all conjugates of a, lying outside the unit circle.



Chapter 1
The Heritage

The 19th century brought essential progress in all branches of mathematics and
number theory was no exception. The biggest steps in its development are connected
with the names of three eminent mathematicians: C.F. Gauss1, P.G.L. Dirichlet2 and
B. Riemann3.

The book Disquisitiones Arithmeticae [2208] by the young Gauss, published in
1801, gave a solid basis for the subsequent development, presenting for the first time
proofs of such fundamental results as the unique factorization property of positive
integers and the quadratic reciprocity law. Its main subject was the theory of binary
quadratic forms with integral coefficients. Gauss considered the action of the group
Γ = SL2(Z) of unimodular 2 × 2 matrices with integral entries on the set of primi-
tive binary forms f (X,Y )= aX2 + bXY + cY 2 with even middle coefficient (this
restriction turned out later to be unnecessary) and a fixed discriminant, defining the
action of

M =
[
α β

γ δ

]
∈ Γ

by

M · f = f (αX+ βY,γX+ δY ). (1.1)

He introduced a composition in the set of resulting orbits inducing the structure
of a finite Abelian group. He did not have yet the notion of a group which arose later,
but several of his results in [2208] have a group-theoretical meaning. In particular
his comments at the end of art. 306 indicate that he guessed the decomposition of
the group formed by classes in the principal genus into a product of cyclic factors.

P.G.L. Dirichlet was the first who, in the thirties, applied analytical tools to arith-
metical questions. This brilliant idea allowed him [1584, 1585] to prove the infini-

1Carl Friedrich Gauss (1777–1855), professor in Göttingen. See [1653, 3285].
2Peter Gustav Lejeune Dirichlet (1805–1859), professor in Breslau, Berlin and Göttingen. See
[4327].
3Bernhard Riemann (1826–1866), professor in Göttingen. See [3722].
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2 1 The Heritage

tude of primes in arithmetical progressions ax + b with co-prime integers a, b, and
to give an analytical formula for the number of classes of binary quadratic forms
[1586, 1587] studied by Gauss. For this aim Dirichlet introduced L-functions by the
formula

L(s,χ)=
∞∑

n=1

χ(n)

ns
,

where χ is a character of the group G(k) = {a mod k : (a, k) = 1} of reduced
residue classes mod k, and s is a positive real number.

One should point out that Dirichlet followed Gauss in the style of presentation,
giving very precise and flawless arguments, which was rather a rarity at that time.

Another revolutionary idea came from B. Riemann who in 1860 related in [5224]
analytical properties of the series

ζ(s)=
∞∑

n=1

1

ns
(1.2)

to the properties of prime numbers4. It had been known since L. Euler5 that this
series converges for s > 1 and its sum is connected with prime numbers due to the
formula

ζ(s)=
∏

p

1

1 − p−s , (1.3)

but Riemann was the first to consider ζ(s) for complex arguments. He obtained its
analytical continuation to a meromorphic function in the plane with a single simple
pole at s = 1 and showed that it satisfies the functional equation

�

(
s

2

)
π−s/2ζ(s)= �

(
1 − s

2

)
π−(1−s)/2ζ(1 − s) (1.4)

for all complex s �= 0,1. He stated several properties of ζ(s) and the counting func-
tion of primes,

π(x)=
∑

p≤x
1,

for which complete proofs were later obtained, except for the assertion that every
non-real zero of ζ(s) lies on the line �s = 1/2. This is the famous Riemann Hy-
pothesis (RH).

The only previous result about π(x) was obtained by P.L. Čebyšev6, who proved
in 1850 [970] that for large x one has

0.92129
x

logx
< π(x) < 1.1055

x

logx
· (1.5)

4For an analysis of Riemann’s memoir see the book by H.M. Edwards [1691].
5Leonhard Euler (1752–1833), professor in St. Petersburg and Berlin. See [852, 1986].
6Pafnutiı̆ Lvovič Čebyšev (1821–1894), professor in St. Petersburg. See [5015].
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To the list of outstanding personalities of that time one should also add C.G.J. Ja-
cobi7, whose main achievement in number theory consisted of applying the theory
of elliptic functions to various arithmetical questions. In that way he obtained several
identities in the theory of partitions and gave explicit formulas for the determination
of rk(n), the number of representations of an integer n as the sum of k squares for
k = 2,4,6 and 8 [3075, 3077].

The theory of algebraic numbers, which started with Gauss’s study [2211] of
the complex integers a + bi (a, b ∈ Z), was further developed by P.G. Dirichlet
(see [1593, 1594]) and E.E. Kummer8 (see [3583]), who utilized it in his work
on Fermat’s Last Theorem, and reached adult status in the hands of R. Dedekind9

(see [1423]).

The leading French mathematicians interested in number theory at that time were
J. Liouville10, who constructed the first transcendental numbers and produced sev-
eral important results in the theory of Diophantine equations, and C. Hermite11 who,
among other deep results, established the transcendence of the number e, the basis
of natural logarithms.

In the second half of the century two great personalities, J. Hadamard12 and
H. Poincaré13, became interested in number theory. Hadamard [2426] confirmed
a conjecture of Gauss’s by proving in 1896 the Prime Number Theorem as a by-
product of his theory of entire functions, and Poincaré, whose main interest was
rather far away from number theory, published two papers in our subject. In the
first [4935] he generalized Čebyšev’s bound (1.5) to the case of primes congruent
to unity mod 4, and in the second [4936] he considered rational points on elliptic
curves defined by an equation of the form y2 = f (x), where f is a cubic polynomial
without multiple roots.

One should also mention here E. Cahen14, E. Maillet15, H. Padé16 and T. Pépin17.
Maillet showed [4108] that for sufficiently large k, depending on the prime p, Fer-
mat’s equation

Xp
k + Yp

k = Zp
k

7Carl Gustav Jacob Jacobi (1804–1851), professor in Königsberg and Berlin. See [3438, 3439].
8Ernst Eduard Kummer (1810–1893), professor in Breslau and Berlin.
9Richard Dedekind (1831–1916), professor in Zürich and Braunschweig.
10Joseph Liouville (1809–1882), professor in Paris. See [4035].
11Charles Hermite (1822–1901), professor in Paris. See [4624, 4849].
12Jacques Salomon Hadamard (1865–1963), professor in Bordeaux and Paris. See [3868, 4221].
13Jules Henri Poincaré (1854–1912), professor in Paris. See [4850].
14Eugéne Cahen (1865–1941), teacher at Collège Rolin in Paris.
15Edmond Maillet (1865–1938), engineer, president of the Société Mathématique de France in
1918.
16Henri Padé (1863–1953), professor in Poitiers and Bordeaux.
17Jean François Théophile Pépin (1826–1904), catholic priest, Jesuit, teacher of mathematics.
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has no solution in positive integers not divisible by p, and in [4107] studied repre-
sentations of integers as sums of values of polynomials of small degree.

Cahen [878] made the first systematic study of general Dirichlet series and pub-
lished in 1900 a textbook on number theory [879]. Padé introduced in [4714] a new
kind of continued fractions which later played an important role in analysis and
number theory, and Pépin [4775] studied various Diophantine equations, providing
in particular a description of all integral solutions of X4 + 35Y 4 = Z2.

At the end of the 19th century several bright young mathematicians interested
in number theory started their careers, Most of them came from Germany. One
should list here first of all A. Hurwitz18, a student of F. Klein19. He got his de-
gree in 1881 in Leipzig, next year made his habilitation in Göttingen20, became in
1884 extraordinary professor at the University of Königsberg21, and stayed there un-
til 1892 when he switched to ETH22 in Zürich. In Königsberg he had two extremely
bright students, D. Hilbert23 and H. Minkowski24. Hilbert obtained his doctorate in
1886 at Königsberg, got an extraordinary professorship, and in 1893 became ordi-
narius there. In 1895 he left Königsberg for Göttingen which at that time was, in the
hands of Klein, the center of mathematical life. Minkowski, a close friend of Hilbert,
got his doctorate in 1885, in 1892 became professor in Bonn, returned in 1895 to
Königsberg University, in 1896 went to ETH, and in 1902 settled in Göttingen. In
1899 E. Landau25, a student of G. Frobenius26, got his doctorate in Berlin, and after
the early death of Minkowski became in 1909 his follower in Göttingen. To this
list one should also add K. Hensel27 who studied in Berlin and obtained his degree
in 1884 under L. Kronecker28. Two years later he made his habilitation there, be-
came professor in Berlin, and in 1901 switched to Marburg. He invented the p-adic
numbers, which would play an important role in algebra and number theory in the
coming century. Most of the work in number theory in Germany at the beginning of
the 20th century was done by these men and their students.

18Adolf Hurwitz (1859–1919). See [2791, 6794].
19Christian Felix Klein (1849–1925), studied in Bonn under Plücker, passed his doctorate at the
age of 19, professor in Erlangen, Munich, Leipzig and Göttingen. See [1259].
20He was unable to do this in Leipzig, since he pursued his secondary education at a Realgymna-
sium, considered unacceptable by Leipzig University [2791].
21Called now Kaliningrad, in honor of a Soviet official Mikhail Kalinin.
22Eidgenössische Technische Hochschule in Zürich.
23David Hilbert (1862–1943), professor in Königsberg and Göttingen. See [5149].
24Hermann Minkowski (1864–1909), professor in Bonn, Königsberg, Zürich and Göttingen. See
[2790].
25Edmund Landau (1877–1938), professor in Göttingen. See [2518, 3418].
26Ferdinand Georg Frobenius (1849–1917), professor in Zürich and Berlin.
27Kurt Hensel (1861–1941), edited the Journal für reine und angewandte Mathematik from 1901
on. See [2603, 5533].
28Leopold Kronecker (1823–1891), professor in Berlin. See [3403].
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The English mathematicians at the brink of the 20th century were not particu-
larly keen on number theory. Among the few who produced papers on our subject
one should point out H.J.S. Smith29, who for the proof of his formula for r5(n)
shared with Minkowski the prize of the Paris Academy in 1887, J.J. Sylvester30,
who after his return from America considered the problem of odd perfect numbers
(see [2239]), J.W.L. Glaisher31, who at that time was the editor of the journal Mes-
senger of Mathematics, and A. Cunningham32, whose interest encompassed the el-
ementary theory of numbers, in particular factorization, and primality tests of large
integers. Knowledge of foreign literature was not particularly high, so, for example,
Glaisher devoted two papers to the series

∑∞
n=0(−1)n/(2n)2, not noticing its rela-

tion to ζ(2), and rediscovered [2245] Dirichlet’s class-number formula in the case
of discriminant equal to 7, writing “I do not know whether the following series for
π√

7
has been remarked before.” This was followed by a paper by N.M. Ferrers33

[1996], who found Dirichlet’s formula for discriminants 11 and 19, and only in
[2246] Glaisher acknowledged Dirichlet’s priority. Glaisher also wrote a series of
papers [2242–2244, 2247] dealing with Bernoulli, Eulerian and related numbers,
and later studied representations of integers by sums of squares (see Sect. 2.4.1).

The situation changed drastically when G.H. Hardy34 became interested in arith-
metical problems. In his first paper [2504] on this subject, published in 1906, he
presented an analytical formula giving the maximal prime divisor θ(N) of a posi-
tive integer N :

θ(N)= lim
r→∞ lim

m→∞ lim
n→∞

m∑

j=0

(
1 − cos

(
π(j !)r
N

))2n

.

This was not a very serious result, but soon Hardy found out that the analytical
tools at his possession could be used for the proof of important arithmetical appli-
cations, and this resulted in a series of path-breaking papers, co-authored in a later
period by J.E. Littlewood35 and S. Ramanujan36.

In America there was increased interest in number theory at the time when
Sylvester was professor at Johns Hopkins University from 1877 until 1883. Dur-
ing that time he published several papers in the American Journal of Mathematics,

29Henry John Stephen Smith (1826–1883), professor in Oxford. See [5659].
30James Joseph Sylvester (1814–1897), professor in Baltimore and Oxford. See [4748].
31James Whitbread Lee Glaisher (1848–1928), Fellow of Trinity College, Cambridge. See [2042].
32Allan Joseph Champneys Cunningham (1842–1928), military engineer, Fellow of King’s Col-
lege, London. In his obituary [6638] A.E. Western wrote: “It is probably true that no single person
has ever before calculated and printed so large an amount of numerical work in this subject.”
33Norman Macleod Ferrers (1829–1903), Fellow of Gonville and Caius College, Cambridge.
34Godfrey Harold Hardy (1877–1947), professor in Oxford and Cambridge. See [6181, 6370,
6663].
35John Edensor Littlewood (1885–1977), professor in Cambridge. See [865].
36Srinivasa Aiyangar Ramanujan (1887–1920), Fellow of Trinity College, Cambridge. See [84,
2512, 2516, 3237]. Cf. also [456, 457].
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which he founded and edited until 1884. Among them was a paper [6008] in which
he improved Čebyšev’s bounds for the number of primes in the interval [2, x]. He
published also an important treatise on partitions [6009]. Browsing through early
issues of Sylvester’s journal one also finds other papers written by J.C. Fields37

[1998], A.S. Hathaway [2613], O.H. Mitchell38 [4339] and others, in which various
elementary and algebraic aspects of number theory were treated. After the return of
Sylvester to Britain that interest weakened.

The list of prominent mathematicians doing number theory in other countries
at the end of the 19th century is rather short. One should mention N.V. Bugaev39,
A.A. Markov40, G.F. Voronoı̆41, A.N. Korkin42 and E.I. Zolotarev43 in Russia44,
L. Gegenbauer45 and F. Mertens46 in Austria, and E. Césaro47 and A. Genocchi48

in Italy.

There were very few books on number theory at that time. After Gauss’s [2208]
came two editions of A.M. Legendre’s49 [3767] book (in 1808 and 1830), and
in 1863 there appeared the first edition of Dirichlet’s lectures [1592], edited and
provided with several appendices by Dedekind. These lectures covered divisibil-
ity properties, congruences, the quadratic reciprocity law and the theory of binary
quadratic forms. In Dedekind’s appendices one finds i.a. the proof of Dirichlet’s
theorem on the infinitude of primes in progressions, the theory of Pell’s equation,
composition of binary quadratic forms and the principal results of the theory of al-
gebraic numbers. Surprisingly this book aged quite well and can be read even today.

37John Charles Fields (1863–1932), professor in Toronto. Initiator of the Fields Medal. See [6015].
38Oscar Howard Mitchell (1851–1889), teacher of mathematics in Marietta College, Springfield,
student of C.S. Peirce, worked mainly in mathematical logic. He introduced the English term power
residue, writing in a footnote in [4338]: “Power residues is a term not used, I believe, but a needed
translation of ‘Potenz-Reste’.” See [1580].
39Nikolaı̆ Vasilievič Bugaev (1837–1903), professor in Moscow. See [5667].
40Andreı̆ Andreevič Markov (1856–1922), professor in St. Petersburg. See [2349].
41Georgiı̆ Fedoseevič Voronoı̆ (1868–1908), professor in Warsaw. His name is sometimes spelt
“Voronoï”. See [5940].
42Aleksandr Nikolaevič Korkin (Korkine) (1837–1908), professor in St. Petersburg. See [4998].
43Egor Ivanovič Zolotarev (1847–1878), professor in St. Petersburg. See [3594].
44For a very detailed survey of the development of number theory in Russia before 1918 see the
book by E.P. Ožigova [4711].
45Leopold Gegenbauer (1849–1903), professor in Czernowitz, Innsbruck and Vienna. See [5960].
46Franz Carl Josef Mertens (1840–1927), professor in Cracow, Graz and Vienna. See [1533].
47Ernesto Césaro (1859–1906), professor in Palermo and Naples. See [42].
48Angelo Genocchi (1817–1889), professor in Turin.
49Adrien-Marie Legendre (1752–1833), worked in Paris.
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The exposition [198] of number theory written by P. Bachmann50 also played
an important role. In five volumes, appearing between 1892 and 1905, he treated
elementary, analytical and algebraic number theory. Bachmann wrote also a survey
of Gauss’s achievements in number theory [200].

An introduction to the theory of algebraic numbers formed a part of the monu-
mental treatise on algebra, published in 1894–1908 by H. Weber51 [6602].

The list of other books dealing with our subject is rather short: one has to mention
two books by V.A. Lebesgue52 [3754, 3755], a textbook by P.L. Čebyšev [969], and
the book [4030] by É. Lucas53, published in 1891. In the last book one finds a simple
primality test, which works fine for numbers which are not too large.

The end of the century brought certain important events, which may even suggest
the idea that for number theory the 20th century actually began a few years earlier.

In 1891 Minkowski published his first paper [4321] in a subject which later ac-
quired the name Geometry of Numbers. He showed there that geometrical consider-
ations essentially simplify the study of reduction and extremal values of quadratic
forms.

Two years later two independent proofs were given of the Prime Number Theo-
rem, a statement conjectured already by Legendre [3767] and Gauss, asserting that
for the number π(x) of primes in the interval [2, x] the asymptotic formula

π(x)= (1 + o(1))
x

logx
(1.6)

holds. These proofs were discovered in 1896 by Hadamard [2426] and C. de la
Vallée-Poussin54 [6263]. They both utilized the non-vanishing of Riemann’s zeta-
function ζ(s) on the line �s = 1. Hadamard established the inequality ζ(1+ it) �= 0
by a short argument based on the behavior of the series

S(σ + it)=
∑

p

cos(t logp)

pσ

to the right of the presumed zero of the zeta-function. He then deduced the Prime
Number Theorem by considering the integral

1

2πi

∫ a+i∞

a−i∞
ζ ′(s)
ζ(s)

xs

s2
ds (1.7)

50Paul Gustav Heinrich Bachmann (1837–1920), student of Kummer, professor in Breslau and
Münster. See [2749].
51Heinrich Weber (1842–1913), professor in Heidelberg, Zürich, Königsberg, Charlottenburg,
Marburg, Göttingen and Strassburg. See [6477].
52Victor Amédée Lebesgue (1791–1875), professor in Bordeaux.
53François Édouard Anatole Lucas (1842–1891), teacher in Moulins and Paris. See [1419].
54Charles de la Vallée-Poussin (1866–1962), professor in Louvain.
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for a > 1, and applying the formula

∑

n≤x
an log(x/n)= 1

2πi

∫ a+i∞

a−i∞

( ∞∑

n=1

an

ns

)
xs

s2
ds, (1.8)

for non-integral x. To be valid, it suffices to have the absolute convergence55 of the
series

∞∑

n=1

an

ns

on the line �s = a. This resulted in the formula
∑

p≤x
logp · log(x/p)= (1 + o(1))x,

from which an easy elementary argument led to

θ(x) :=
∑

p≤x
logp = (1 + o(1))x. (1.9)

The usual form of the Prime Number Theorem, given by (1.6), is obtainable from
(1.9) by a simple argument.

De la Vallée-Poussin, who at that time was interested in a class of real functions
which later became known as almost periodic functions, based his proof on the
uniqueness of the Fourier expansion of functions from this class. His arguments56

as well as the deduction of (1.9) from the non-vanishing of ζ(1 + it) were rather
cumbersome. At the end of his paper he gave a very simple proof of the last fact,
whose modification, due to Mertens [4259], found its way into most textbooks.

The third big event was the publication in 1897 of Hilbert’s report on the theory
of algebraic numbers, the famous Zahlbericht [2783]. In it Hilbert recapitulated and
partially simplified the results of previous research. The presented topics included
the theory of quadratic and Abelian fields, and Kummer extensions, i.e., extensions
of the form k( p

√
a)/k, where p is an odd prime, k is the field generated by pth roots

of unity, and a ∈ k is not a pth power. Hilbert’s work had a great influence on subse-
quent researchers, although in later times some aspects of his approach underwent
severe criticism (see the highly interesting introduction to the English translation of
[2783] written by F. Lemmermeyer and N. Schappacher). An exposition of Hilbert’s
results was presented a few years later in the book [5846] by J. Sommer.

Shortly afterwards Hilbert published an important paper [2786] containing his
theory of quadratic extensions of arbitrary algebraic number fields. In it the Hilbert
norm-residue symbol was introduced, which led to the quadratic reciprocity law in
number fields, and later played an important role in several problems of algebraic
number theory. A generalization of these results to Abelian extensions led to the

55Later O. Perron [4784] showed that this formula can also be used under much weaker assump-
tions.
56For details of the proofs of de la Vallée-Poussin and Hadamard see, e.g., [4542].
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notion of the class-field (H. Weber [6603–6605], D. Hilbert [2785]; for a modern
description of Weber’s ideas see G. Frei [2072]). This notion led later, due to the
work of T. Takagi57, E. Artin58, N.G. Čebotarev59, P. Furtwängler60 and H. Hasse61

to class-number theory, which dominated algebraic number theory in the first half
of the coming century.

The Dedekind zeta-function

ζK(s)=
∑

I

1

N(I)s
(1.10)

(where I runs over all non-zero ideals of the ring of integers of a fixed algebraic
number field K) was studied in 1900 by Dedekind [1422] in the case when K =
Q( 3

√
D) is a pure cubic extension of the rationals. He showed that in this case one

can write

ζK(s)= ζ(s)H(s),

where ζ(s) is the Riemann zeta-function, andH(s) is a certain well-behaved Dirich-
let series. A similar result in the case of an arbitrary algebraic number field was later
established by E. Landau [3624].

The main mathematical event of the last year of the 19th century was certainly
the International Congress of Mathematicians held in Paris. On that occasion Hilbert
[2788] gave his famous talk on open mathematical problems. Among the 23 prob-
lems presented by him, six (7–12) were devoted entirely to number theory, and the
18th problem also contained a question related to the geometry of numbers (Kepler’s
conjecture).

The seventh problem dealt with transcendence proofs. Hilbert stated here his
belief that in general a transcendental entire function should assume transcendent
values at algebraic arguments, although he knew of examples of such functions as-
suming rational values at all algebraic arguments. In particular he asked for a proof
of transcendence of values of the exponential function eiπx at irrational algebraic
arguments x, and posed the question of transcendence, or at least irrationality, of
numbers of the form αβ with algebraic62 α, and algebraic irrational β , like 2

√
2 and

eπ = i−2i . Both problems were solved in the nineteen thirties (see Sect. 4.3.1).
The eighth problem dealt with prime numbers and contained a long list of ques-

tions commencing with the celebrated Riemann Hypothesis (RH), also called the
conjecture of Riemann.

57Teiji Takagi (1875–1960), professor in Tokyo. See [2852, 4345].
58Emil Artin (1898–1962), student of Herglotz, professor in Hamburg, Princeton and at Notre
Dame University and Indiana University. See [1051].
59Nikolai Grigorievič Čebotarev (Tschebotareff) (1894–1947), professor in Kazan.
60Philipp Furtwängler (1869–1940), professor in Bonn, Aachen and Vienna. See [2846, 2942].
61Helmut Hasse (1898–1979), studied in Göttingen and Marburg and got his doctorate in 1920
under K. Hensel. Professor in Halle (1925–1930), Marburg (1930–1934), Göttingen (1934–1939),
Berlin (1949–1950) and Hamburg (1950–1966). See [2071].
62He did not state the obvious necessary condition α �= 0,1.
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The Riemann Hypothesis Prove that all non-real zeros of the Riemann zeta-
function lie on the line �s = 1/2.

The next question asked for the evaluation of the difference R(x) between the
number π(x) of primes p ≤ x and the integral logarithm li(x), defined by

li(x)= lim
ε→0

(∫ 1−ε

0

dt

log t
+
∫ x

1+ε
dt

log t

)
. (1.11)

In particular Hilbert asked whether this difference is not of higher order than
√
x.

This can be interpreted either as R(x) � √
x or as R(x) = O(x1/2+ε) for every

positive ε. It is now known that the second bound is equivalent to the Riemann
Hypothesis (H. von Koch63 [3433]), and the fate of the first is still undecided.

Next came two old questions: the first was the binary Goldbach conjecture, which
goes back to an exchange of letters in June 1742 between Euler and Goldbach64 (see
P.H. Fuss65 [1909; 2168, I, letter 43]), and states that every even integer ≥ 6 is the
sum of two primes. The second dealt with twin primes, asking whether there are
infinitely many primes p,p′ with p−p′ = 2. Next came a generalization of the last
question.

Show that if (a, b, c) = 1, then the equation66 ax + by + c = 0 is solvable with
prime x, y.

The last problem of this sequence asked for a generalization of results on the
distribution of prime numbers to the case of prime ideals in algebraic number fields.

In his ninth problem Hilbert asked for reciprocity laws of power residues modulo
prime powers in arbitrary algebraic number fields. He expressed the belief that its
solution would follow from a generalization of the theory of cyclotomic fields (i.e.,
fields of the form Q(ζ ), where ζ is a root of unity) and quadratic extensions of
arbitrary algebraic number fields developed earlier by him in [2783, 2786]. This
problem later found a solution as a consequence of class-field theory.

The tenth problem dealt with the question of existence of a finite algorithm for
checking the solvability of Diophantine equations in rational integers. A negative
solution was found in the second half of the next century (see Sect. 6.6).

In the eleventh problem Hilbert asked for a theory of quadratic forms having
coefficients in an arbitrary algebraic number field. In particular he proposed find-
ing a method of solving quadratic Diophantine equation in several variables. This
problem was solved later by H. Hasse and C.L. Siegel67.

63Niels Fabian Helge von Koch (1870–1924), professor in Stockholm.
64Christian Goldbach (1690–1764), lived in St. Petersburg, where he served as an official respon-
sible for code breaking.
65Paul Heinrich Fuss (1796–1855), great-grandson of Euler, worked in St. Petersburg.
66Hilbert omitted the necessary assumption 2|a + b+ c.
67Carl Ludwig Siegel (1896–1981), professor in Frankfurt, Göttingen and Princeton. See [2835,
5543].
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The twelfth problem was the last concerning number theory. Here Hilbert asked
for a description of finite Abelian extensions of arbitrary algebraic number fields.
In the case of the field of rational numbers such a description is provided by the
Kronecker–Weber theorem stating that every such extension is contained in a cyclo-
tomic field. It was stated by Kronecker [3524] and the first proof (by an incomplete
argument68) was presented by Weber [6599, 6600]. The first correct proof appeared
in Hilbert’s paper [2782] and in his report [2783]. Hilbert asked for a similar result
in the case of an arbitrary algebraic number base field, and expressed the belief that
a proof of Kronecker’s conjecture asserting that Abelian extensions of an imaginary
quadratic field are generated by certain values of elliptic functions could be obtained
on the basis of the theory of complex multiplication69, developed by Weber [6601].
He pointed out that the key to the solution may lie in the construction of reciprocity
laws governing power residues in algebraic number fields.

In the eighteenth problem, devoted to geometry, Hilbert mentions the question of
the maximally dense arrangement of spheres and tetrahedrons in three-dimensional
space.

For surveys of Hilbert’s problems and the following development see [46, 744,
3250]. For the seventh problem see N.I. Feldman70 [1982], and for the twelfth see
R.-P. Holzapfel [2849] and N. Schappacher [5422].

A survey of the main achievements of the 19th century in number theory has
been presented by H. Opolka and W. Scharlau [4686]. It is noteworthy that in the
two volumes of the classical work of Klein [3354, 3355] devoted to the history
of mathematics in the 19th century one finds only a few mentions of arithmetical
results.

A list of all papers dealing with the theory of numbers in that period, except those
related to various reciprocity laws, can be found in L.E. Dickson’s71 History of the
Theory of Numbers [1545] and the Report on Algebraic Numbers [1569]. An early
survey was published in 1859–1865 by H.J.S. Smith [5831].

68See O. Neumann [4579].
69For the history of complex multiplication see the book [6450] of S.G. Vlăduţ.
70Naum Il’ič Feldman (1918–1994), professor in Moscow. See [3489].
71Leonard Eugene Dickson (1874–1954), professor in Chicago. See [43].



Chapter 2
The First Years

2.1 Elementary Problems

2.1.1 Perfect Numbers

1. One of the oldest mathematical problems concerns perfect numbers. A posi-
tive integer N is called perfect, if it equals the sum of its proper divisors, i.e., the
equality σ(N)= 2N holds1. It had been noted already by Euclid that if the numbers
2p − 1 and p are both prime, then 2p−1(2p − 1) is perfect. After 2000 years Euler
[1907] proved that every even perfect number is of this form. Therefore the prob-
lem of the existence of infinitely many even perfect numbers is equivalent to the
question of whether there are infinitely many Mersenne primes, i.e., primes of the
form Mp = 2p − 1. The first four such primes, corresponding to p = 2,3,5 and 7,
were known already to the ancient Greeks, and the next three, M13,M17 and M19,
were found, according to L.E. Dickson [1545], in the 15th and 16th centuries. To
this list M. Mersenne2 (see [1545, pp. 12–13]) added M31 and M127, and asserted
incorrectly the primality of M67 and M257.

A factorization of M67 was given by F.N. Cole3 in 1903 [1174], and the fact that
M257 is composite was established in 1932 by D.H. Lehmer4 [3774].

Mersenne also stated that for every other prime p ≤ 257 the number Mp is com-
posite. Mersenne did not indicate any proofs of his assertions, and the first proofs of
the primality of M31 and M127 were obtained by Euler [1902] and É. Lucas [4025,
4028], respectively. Lucas formulated two primality tests of Mp (the first working
only for p ≡ 3 mod 4) but it seems that he never published complete proofs of them.

1As pointed out by F. Acerbi [11], the equality 6 = 1 + 2 + 3 can be found in Plato’s Theaetetus,
which may be the first occurrence of a perfect number.
2Marin Mersenne (1588–1648), French monk, friend of Descartes.
3Frank Nelson Cole (1861–1926), professor at Columbia University. See [2009].
4Derrick Henry Lehmer (1905–1991), son of D.N. Lehmer, student of J. Tamarkin, professor at
Berkeley. See [729].
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They were provided much later by D.H. Lehmer [3773, 3779] and A.E. Western5

[6639]. The second test, which later has been widely used, runs as follows.

Define a sequence Sn by putting S1 = 4 and Sk+1 = S2
k − 2 for k ≥ 1. If p �= 2 is

prime, then Mp is prime if and only if Sp−1 is divisible by Mp .

A simple proof was later provided by M.I. Rosen [5288], and an extremely simple proof
of the sufficiency part was given by J.W. Bruce [763]. For a description of the extension of
Lucas’ ideas see the book [6673] by H.C. Williams.

The number M61 was asserted to be prime by I.P. Pervušin6 (see [4711, p. 277]),
J. Hudelot (see [4029]) and P. Seelhoff7 [5597]. Seelhoff’s argument was later
shown to be incomplete by F.N. Cole [1174] (cf. D.H. Lehmer [3771]). The primal-
ity of M89 and M107 was proved by R.E. Powers [5003, 5004] in 1911 and 1914,
respectively.

The results of the first use of computers in the study of Mersenne primes were presented by
R.M. Robinson8 [5243] in 1954. With the advent of computers the Lucas–Lehmer test led to
the discovery of several new Mersenne primes, and a special program, called GIMPS (Great
Internet Mersenne Prime Search9), was created to find them. At the moment of writing, 47
Mersenne primes are known, the largest being Mp with p = 43 112 609 comprising almost
13 million digits, found in August 2008. This is actually the largest known prime number. In
fact, after 1951 every largest known prime has been a Mersenne prime, the last other record
being 189 ·M2

127 + 1 found by J.C.P. Miller10 and D.J. Wheeler [4309] in 1951.
The problem of the existence of infinitely many even perfect numbers can be stated in

group-theoretical terms. It was shown in 1997 by M.P.F. du Sautoy [5417] that there are only
finitely many such numbers if and only if the sum of the series

∞∑

n=1

a(2n)

2ns

is a rational function, a(m) denoting the number subgroups of the product
∏
p PSL2(Fp)

having index m.

2. It is still unknown whether an odd perfect number exists and there is a strong
belief that this is not the case. It seems that R. Descartes11 was unique in his belief
in its existence when he wrote to B. Frénicle de Bessy12 on December, 20th 1638:
“. . . je13 juge qu’on peut trouver des nombres impairs véritablement parfaits.”

5Alfred Edward Western (1873–1961), worked as a solicitor. See [4308].
6Ivan Mikheevich Pervušin (1827–1900), orthodox priest. He spent forty years preparing a table
of all primes below 107.
7Paul Peter Heinrich Seelhoff (1829–1896), teacher in Mannheim.
8Raphael Mitchell Robinson (1911–1995), professor at Berkeley. See [2728].
9Homepage: http://www.mersenne.org.
10Jeffrey Charles Percy Miller (1906–1981), worked at Cambridge University.
11René Descartes (1596–1650).
12Bernard Frénicle de Bessy (1605–1675).
13“I believe that one can find truly perfect odd numbers.”

http://www.mersenne.org
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Certain necessary conditions for odd N to be perfect had already been given by
Euler, and in 1832 B. Peirce14 [4764] showed that an odd perfect number has at
least four distinct prime divisors. J.J. Sylvester [6012] stated later that it must have
at least five such divisors. The first correct proof of this assertion was provided in
1913 by L.E. Dickson [1543].

It was later shown that an odd perfect number N must have at least 6 (I.S. Gradštein
[2297], U. Kühnel [3566]), 7 (C. Pomerance [4966]), 8 (E.Z. Chein [1009], P. Hagis, Jr.
[2435]) and 9 (P. Nielsen [4613]) distinct prime divisors. If N is not divisible by 3, then it
must have at least eleven prime divisors (M. Kishore [3343], P. Hagis, Jr. [2436]), and one of
them must exceed 108 (T. Goto, Y. Ohno [2286]). Previous lower bounds for the largest prime
divisor were 60 (H.-J. Kanold [3239]), 11 200 and 105 (P. Hagis, Jr., W.L. McDaniel [2439,
2440]), 106 (P. Hagis, Jr., G.L. Cohen [2438]) and 107 (P.M. Jenkins [3120]). MoreoverN has

to exceed 10300 (R.P. Brent, G.L. Cohen, H.J.J. te Riele [711]), and must satisfy Ω(N)≥ 75
(K.G. Hare [2547]). Previous lower bounds were 29 (M. Sayers [5418]), 37 (D.E. Iannucci,
M. Sorli [2999]) and 47 (K.G. Hare [2546]). The maximal prime-power divisor ofN must ex-
ceed 1030 (G.L. Cohen [1135]). Several congruences which odd perfect numbers must satisfy
were found by J.A. Ewell [1945], L.H. Gallardo [2186] and L.H. Gallardo, O. Rahavandrainy
[2187].

Let A(x) be the number of odd perfect numbers ≤ x. In a letter to Mersenne in
1638 Descartes observed that an odd perfect number must have the form pa2 with
prime p, and this leads, with the use of Čebyšev’s bound π(x)=O(x/ logx), to

A(x)=O

(
x

logx

)
.

In 1955 B. Hornfeck15 [2906] established A(x) = O(
√
x), and this bound was later re-

duced to A(x)= o(
√
x) and O(x1/4 logx/ log logx) (H.-J. Kanold [3240, 3242]), and

A(x)=O

(
exp

(
c

logx log log logx

log logx

))

with certain c > 0 (B. Hornfeck, E. Wirsing [2908]). In 1959 E. Wirsing [6692] eliminated
the triple logarithm in the last formula.

L.E. Dickson proved in [1543] that there can be at most finitely many odd perfect
numbers with a given number of prime divisors, and in fact he established the same
assertion for odd numbers N which satisfy the inequality σ(N)≥ 2N and for every
proper factor M > 1 of N one has σ(M) < 2M (cf. [1544]).

Dickson’s proof utilized algebraic tools and a simple elementary proof was much later
found by H.N. Shapiro [5676]. In 1977 an effective proof was provided by C. Pomerance
[4967], leading to the exorbitant bound

log logN � 2k
2

log k

for odd perfect N with k prime divisors, improved later by D.R. Heath-Brown [2651] to
logN < 4k log 4 and by P. Nielsen [4612] to logN < 4k log 2.

14Benjamin Peirce (1809–1880), professor at Harvard. See [1146].
15Bernhard Hornfeck (1929–2006), professor in Clausthal-Zellerfeld.
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3. A number N is called multi-perfect if it divides its sum of divisors but is not
perfect i.e., σ(N) = kN holds with an integer k ≥ 3. Several such numbers had
already been found in the 17th century by Descartes, P. Fermat16 and A. Jumeau
(see [1545]), the first few being 120, 672, 30 240, 32 760, 523 776, 23 569 920,
33 550 336 and 45 532 800. In 1901 D.N. Lehmer17 [3801] noted that also 2 178 540
is multi-perfect, and R.D. Carmichael18 [910] showed that this list exhausts all such
numbers below 109. He also extended an earlier result of J. Westlund [6641] by
proving that 120 and 672 are the only multi-perfect numbers having three prime
divisors [908], and later [911, 912] listed all those with four and five prime divisors
(in the last case restricting himself to even numbers).

Now more than 5000 multi-perfect numbers are known, all even, and this leads to the
conjecture that there are no odd multi-perfect numbers. It was proved by E.A. Bugulov [825]
in 1966 that such a number must have at least 11 distinct prime divisors. Later G.L. Cohen
and M.D. Hendy [1138] showed that if k = σ(n)/n ≥ 3 and n is odd, then n has at least
(k5 + 387)/70 prime divisors, hence ω(n) ≥ 20 holds for k ≥ 4 (for k = 3, H. Reidlinger
[5153] proved ω(n)≥ 12 for odd n).

In 1985 G.L. Cohen and P. Hagis, Jr. [1137] proved that an odd multi-perfect number has
to exceed 1070 and to have a prime factor > 105. Dickson’s result in [1543], quoted above,
has been extended by H.-J. Kanold [3240] to multi-perfect numbers with fixed ratio σ(n)/n,
which are not multiples of an even perfect number, and an effective proof has been provided
by C. Pomerance [4967].

2.1.2 Pseudoprimes and Carmichael Numbers

1. Fermat’s theorem states that if p is a prime and p � a, then the number ap−1 −1
is divisible by p. In particular p divides 2p−1 − 1. This necessary condition for pri-
mality is not sufficient as there exist composite numbers n satisfying the congruence

2n−1 ≡ 1 (mod n).

Such composites are called pseudoprimes. It seems that the first pseudoprime ap-
peared in a paper by F. Sarrus19 [5408] in 1819, who observed that 341 = 11 · 31
divides 2170 − 1. This answered a question posed anonymously in [5022] asking if
one can test an integer n for primality by checking whether the congruence

2n ≡ ±1 (mod 2n+ 1)

16Pierre Fermat (1601–1665), lawyer in Toulouse and Bordeaux. See [3035, 4096].
17Derrick Norman Lehmer (1867–1938), student of E. Moore, father of D.H. Lehmer, professor at
Berkeley.
18Robert Daniel Carmichael (1879–1967), professor at the University of Illinois. He wrote two
textbooks on number theory: [917, 918].
19Pierre Frédéric Sarrus (1798–1861), professor in Strasbourg.
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holds. In view of the fact that 2170 − 1|2340 − 1 this was also a counterexample to
the converse of Fermat’s theorem, but this fact had not been noted by Sarrus.

It is not difficult to see that there are infinitely many pseudoprimes and, more
generally, it was shown in 1904 by M. Cipolla20 [1114] that for every a ≥ 2 there
exist infinitely many composite n with an−1 ≡ 1 (mod n).

Denoting by P(x) the number of pseudoprimes below x, P. Erdős21 [1802] showed first

P(x)≤ x exp

(
−1

3
4
√

logx

)
,

and then [1815]

P(x)≤ x exp
(−c√logx log logx

)

with some c > 0. This was later improved to

P(x)≤ x exp

(
−1

2
logx

log log logx

log logx

)

for large x by C. Pomerance [4974], who also obtained in [4975] the lower bound

P(x)� exp
(
log5/14 x

)
.

This was improved in 1994 to P(x) � xα with α = 2/7 by W.R. Alford, A. Granville
and C. Pomerance [53], and consecutive improvements were obtained by R.C. Baker and
G. Harman [266] (α = 0.2932> 2/7) and G. Harman (α = 0.3322 [2564], α = 1/3 [2566]).

All pseudoprimes below 1013 have been computed (R.G.E. Pinch [4878]). Earlier this had
been done up to 2.5 · 1010 (C. Pomerance, J.L. Selfridge, S.S. Wagstaff, Jr. [4981]).

It was proved by A. Rotkiewicz [5317–5319] in 1963 that every progression aX + b

with co-prime a, b contains infinitely many pseudoprimes. A bound for the distance between
consecutive pseudoprimes in a progression was given by H. Halberstam and A. Rotkiewicz
[2458] in 1968. It is also known that every primitive binary quadratic form in the principal
genus having a fundamental discriminant22 and not negative definite represents infinitely
many pseudoprimes (A. Rotkiewicz, A. Schinzel [5321]).

A survey of the theory of pseudoprimes was given in 1972 by A. Rotkiewicz [5320].

2. It was observed in 1899 by A. Korselt23 [3491] that there exist composite
integers n, e.g., n= 561 = 3 · 11 · 17, satisfying an−1 ≡ 1 (mod n) for all a prime
to n. He showed also that this happens if and only if n= p1p2 · · ·pr is square-free
and n − 1 is divisible by the least common multiple of the numbers p1 − 1, . . . ,
pr − 1. Numbers having this property were later studied by R.D. Carmichael [914,
915] and are now called Carmichael numbers.

20Michele Cipolla (1880–1947), professor in Catania and Palermo. See [4290].
21Paul Erdős (1913–1996), student of L. Fejér, professor in Budapest, published more than 1200
papers. See [188, 189, 2446, 5351].
22An integer d is called a fundamental discriminant if it is either square-free and congruent to
unity mod 4, or is of the form d = 4D, where D is square-free and congruent to 2 or 3 mod 4.
23Alwin Reinhold Korselt (1864–1947), schoolteacher, got his Ph.D. in 1902 in Leipzig.
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Denote by C(x) the number of Carmichael numbers less than x. The first upper bound for
C(x) was given by W. Knödel in 1953, who first got [3411]

C(x)� x exp
(− log 2

√
logx

)
,

and then [3412]

C(x)� x exp
(−c√logx log logx

)

for every c < 1/
√

2. This was improved three years later by P. Erdős [1815] who proved

C(x)≤ x exp

(
−c logx log log logx

log logx

)

with some c > 0 and conjectured C(x) � x1−ε for every ε > 0. Some arguments against
Erdős’s conjecture were given by A. Granville and C. Pomerance [2321].

Much later, in 1994, W.R. Alford, A. Granville and C. Pomerance [53] proved that there
are infinitely many Carmichael numbers; more precisely, one has

C(x)� cx2/7

with a certain c > 0. The exponent 2/7 = 0.2857 . . . was replaced four years later by
0.2932 . . . (R.C. Baker, G. Harman [266]), and later G. Harman increased it first to 0.3322
[2564] and then to 1/3 [2566]. It was conjectured by C. Pomerance [4980] that for k ≥ 3 there
are x1/k+o(1) Carmichael numbers ≤ x having exactly k prime factors. In 1980 C. Pomer-
ance, J.L. Selfridge24 and S.S. Wagstaff, Jr. [4981] gave in the case k = 3 the boundO(xc+ε)
with c = 2/3 and any ε > 0. This was later improved to c = 1/2 (I.B. Damgård, P. Lan-
drock, C. Pomerance [1319]), to c = 5/14 (R. Balasubramanian, S.V. Nagaraj [280]), and to
c= 7/20 (D.R. Heath-Brown [2660]).

2.1.3 Primality

1. Testing of the primality of Fermat numbers Fn = 22n + 1 goes back to Fermat,
who in several letters (listed in Dickson’s History [1545, p. 375]) asserted that all
numbers Fn are prime. This is true for 1 ≤ n≤ 4 but fails already for n= 5 in view
of the factorization F5 = 641 · 6 700 417 found by Euler [1897]. In 1877 T. Pépin
[4772] stated the following test.

The number Fn (n≥ 1) is prime if and only if it divides a(Fn−1)/2 + 1, where a is a
quadratic non-residue of Fn.

In the last quarter of the 19th century, using this test and other elementary tools,
it was possible to show that Fn is composite for n= 6,11,12,23,32, and 36. In the
new century this list has been quickly enhanced due to the efforts of A. Cunningham,
J.C. Morehead and A.E. Western who showed that also for n= 7,8,9,38 and 73 one
gets composite Fn [1298, 4418, 4419, 4421].

24John Selfridge (1927–2010), professor at Northern Illinois University.
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The factorization of Fermat numbers forms a difficult task which for F7 was done success-
fully only in 1971 by M.A. Morrison and J. Brillhart [4436, 4437]. Now one knows factoriza-
tions of Fn for n ≤ 11 (R.P. Brent [709, 710], R.P. Brent, J.M. Pollard [712], A.K. Lenstra,
H.W. Lenstra, Jr., M.S. Manasse, J.M. Pollard [3820]).

There is a polynomial in seven variables, whose positive values at non-negative integers
coincide with Fermat primes, but its practical importance is minimal. The same applies also
to Mersenne primes. This was established in 1979 by J.P. Jones [3154].

Now over 200 composite Fermat numbers are known and the smallest Fermat numbers
of unknown status are F33,F34 and F35. A wealth of information about Fermat numbers is
contained in a recent book by M. Křižek, F. Luca and L. Somer [3523]. The actual status is
given on the web page http://www.prothsearch.net/fermat.htm.

2. Various elementary methods of primality testing were developed by A. Cun-
ningham and H.J. Woodall (see, e.g., [1299]), who were able to find several large
primes, the largest lying in some neighborhood of 315. They initiated the Cun-
ningham Project25 [1301], consisting of factoring numbers of the form an ± 1.
D.N. Lehmer also dealt with factorizations, and published lists of the smallest fac-
tors of integers up to 107 [3803, 3804].

These simple methods could not be used to test very large numbers for primality. The first
real progress in this matter was made by D.H. Lehmer [3771, 3772] who in 1927 modified
the Lucas test so that it could be applied to numbers like (1024 + 1)/(108 + 1) of 16 dec-
imal digits (cf. J. Brillhart [730]). Later D.H. Lehmer [3773] formulated a test which used
Lucas sequences, and which, in particular, leads to the modern form of the test for Mersenne
primes.

In 1983 a new primality test, based on Gauss and Jacobi sums, was found by L.M. Adle-
man, C. Pomerance and R.S. Rumely [21]. It needed

O(exp(c log logn log log logn))

steps to test an integer n. This test has been simplified by H. Cohen and H.W. Lenstra, Jr.
[1143], who also provided an implementation [1144].

A test based on the theory of elliptic curves was invented in 1993 by A.O.L. Atkin26 and
F. Morain [165].

The question of the existence of a polynomial time algorithm for primality testing obtained
a positive answer due to the work of M. Agrawal, N. Kayal and N. Saxena [24]. The new
algorithm uses the elementary fact that an integer n is a prime if and only if for some a not
divisible by n the polynomial

(X− a)n −Xn + a

has all its coefficients divisible by n. The original algorithm was later modified by
H.W. Lenstra, Jr. and C. Pomerance [3825], and this modification uses O(log6 n) operations

25See S.S. Wagstaff, Jr. [6490] for the current standing of this project.
26Arthur Oliver Lonsdale Atkin (1925–2008), professor at the University of Illinois in Chicago.
See [6101].

http://www.prothsearch.net/fermat.htm

