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Preface

For more than a decade, complex network analysis has evolved as a methodological
paradigm for a multitude of disciplines, including physics, chemistry, biology,
geography, sociology, computer science, statistics, media science, and linguistics.
Researchers in these fields share an interest in information processing subject to the
networking of their corresponding research object, for instance, genes, molecules,
individuals, semes, memes, etc. They start with the insight that any of these
research objects is extrinsically characterized, if not constituted, by its networking
with objects of the same provenance. In this way, networks, for example, gene
networks, food networks, city networks, networks of words, sentences, texts, or web
documents become important research objects in more and more disciplines.

This book, in line with these research developments, presents theoretical and
practical results of statistical models of complex networks in the formal sciences,
the natural sciences, and the humanities. One of its goals is to advocate and promote
combinations of graph-theoretic, information-theoretic, and statistical methods as a
way to better understand and characterize real-world networks.

On the one hand, networks appear as paradigmatic objects of approaches
throughout the natural and social sciences and the humanities. On the other hand,
networks are—irrespective of their disciplinary provenance—known for character-
istic distributions of graph-theoretic invariants which affect their robustness and
efficiency in information processing. The main goal of this book is to further develop
information-theoretic notions and to elaborate statistical models of information
processing in such complex networks. In this way, the book includes first steps
toward establishing a statistical information theory as a unified basis for complex
network analysis across a multitude of scientific disciplines.

The book presents work on the statistics of complex networks together with
applications of information theory in a range of disciplines such as quantitative
biology, quantitative chemistry, quantitative sociology, and quantitative linguistics.
It aims to integrate models of invariants of network topologies and dynamic
aspects of information processing in these networks or by means of these networks.

v



vi Preface

Thus, the book is in support of sharing and elaborating models and methods that may
help researchers get insights into complex problems emerging from interdisciplinary
reasoning.

The book is divided into two parts: Chaps. 1–4 deal with formal-theoretical issues
of network modeling, while Chaps. 5–13 further develop and apply these methods
to empirical networks from a wide range of areas. The book starts with a theoretical
contribution by Abbe Mowshowitz on the entropy of digraphs and infinite graphs.
The aim is to provide insights into more complex graph models that go beyond
the majority of network models based on finite undirected graphs. The chapter by
Nicolas Bonichon, Cyril Gavoille, and Nicolas Hanusse presents an information-
theoretic upper bound of planar graphs by means of the newly introduced notion of
well-orderly maps. Such a technique might be useful when studying properties of
the very important notion of planar graphs. Terence Chan and Raymond W. Yeung
study a statistical inference problem using network models. Richard Berkovits,
Lukas Jahnke, and Jan W. Kantelhardt examine phase transitions within complex
networks that help to examine their structural properties.

The remainder of the book combines the theoretical stance of the first section
with an empirical analysis of real networks. Elena Konstantinova provides a survey
on information-theoretic measures used in chemical graph theory. Prabhat K. Sahu
and Shyi-Long Lee develop a model of chemical graphs by example of molecular
networks. Exploring the spectral characteristics of these graphs, they provide a
successful classification of chemical graphs.

Biological or, more specifically, ecological networks are dealt with by Robert E.
Ulanowicz who describes a framework of quantifying patterns of the interaction
of networked trophic processes from the point of view of information theory.
Ecological networks are also the focus of the chapter of Linda J. Moniz, James D.
Nichols, Jonathan M. Nichols, Evan G. Cooch, and Louis M. Pecora, who provide
an approach to modeling the interaction dynamics of ecosystems and their change.
A comprehensive view of ontologically disparate networks is given by Cristian
R. Munteanu, J. Dorado, A. Pazos Sierra, F. Prado-Prado, L.G. Pérez-Montoto,
S. Vilar, F.M. Ubeira, A. Sanchez-Gonzaléz, M. Cruz-Monteagudo, S. Arrasate,
N. Sotomayor, E. Lete, A. Duardo-Sánchez, A. Dı́az-López, G. Patlewicz, and
H. González-Dı́az who use the notion of entropy centrality to compare various
systems such as chemical, biological, crime, and legislative networks, thereby
showing the interdisciplinary expressiveness of complex network theory.

The book continues with two contributions to linguistic networks: Alexander
Mehler develops a framework for analyzing the topology of social ontologies as
they evolve within Wikipedia and contrasts them with nonsocial, formal ontologies.
Olga Abramov and Tatjana Lokot present a comparative, classificatory study of
morphological networks by means of several measures of graph entropy.

Edward B. Allen discusses the measurement of the complexity and error prob-
ability of software systems represented as hypergraphs. Finally, in the chapter by
Philippe Blanchard and Dimitri Volchenkov, random walks are studied as a kind
of Markov process on graphs that allow insights into the dynamics of networks as
diverse as city and trade and exchange networks.
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With such a broad field, it is clear that the present book addresses an interdisci-
plinary readership. It does not simply promote transdisciplinary research. Rather, it
is about interdisciplinary research that may be the starting point of developing an
overarching network science.

Matthias Dehmer
Frank Emmert-Streib

Alexander Mehler
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Chapter 1
Entropy of Digraphs and Infinite Networks

A. Mowshowitz

Abstract The information content of a graph G is defined in Mowshowitz
(Bull Math Biophys 30:175–204, 1968) as the entropy of a finite probability scheme
associated with the vertex partition determined by the automorphism group of G.
This provides a quantitative measure of the symmetry structure of a graph that has
been applied to problems in such diverse fields as chemistry, biology, sociology, and
computer science (Mowshowitz and Mitsou, Entropy, orbits and spectra of graphs,
Wiley-VCH, 2009). The measure extends naturally to directed graphs (digraphs)
and can be defined for infinite graphs as well (Mowshowitz, Bull Math Biophys
30:225–240, 1968).This chapter focuses on the information content of digraphs
and infinite graphs. In particular, the information content of digraph products and
recursively defined infinite graphs is examined.

Keywords Digraphs • Entropy • Infinite graphs • Information content
• Networks

MSC2000 Primary 68R10; Secondary 05C20, 05C25, 05C75, 94C15, 90B10.

1 Introduction

1.1 Overview

This chapter investigates the information content of directed and infinite graphs.
The information content of a finite graph (directed or undirected) is a quantitative
measure based on the symmetry structure of the graph. As explained in detail

A. Mowshowitz (�)
Department of Computer Science, The City College of New York (CUNY),
138th Street at Convent Avenue, New York, NY 10031, USA
e-mail: abbe@cs.ccny.cuny.edu

M. Dehmer et al. (eds.), Towards an Information Theory of Complex Networks:
Statistical Methods and Applications, DOI 10.1007/978-0-8176-4904-3 1,
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2 A. Mowshowitz

below, the group of symmetries of a finite graph partitions the vertex set and thus
induces a unique finite probability scheme. The entropy of this scheme is taken to
be the information content of the graph. This “classical” notion differs from “graph
entropy” introduced in [16].

Development of the concept of entropy applied to finite graphs is discussed
in [17] and [20]. The application of entropy to graphs was introduced in the
1950s soon after the appearance of Shannon’s famous paper on information theory.
Entropy measurement has been used as a tool for characterizing molecules and
chemical structures. For example, measures characterizing the structural complexity
of chemical graphs have been developed and applied in [1, 3, 6]. Most of these
measures are based on graph invariants that generate an equivalence relation on
the vertices or edges of a graph. The resulting equivalence classes form a partition
to which a finite probability scheme [14] can be associated in a natural way. The
entropy of such a scheme provides a quantitative measure of structural complexity.

Various structural features of a graph have provided the basis for entropy
measures. The earliest centered on the symmetries of a graph [21]. Other features,
such as branching structure in molecular graphs, have been used to define entropy
measures [8]. Measures associated with graphs representing atoms and molecules
have been defined and applied to problems of discriminating chemical isomers and
to classifying atomic and chemical structures [7, 9, 15]. Such measures have also
been used for the analysis of biological networks [13]. Degree characteristics of a
graph have been used as basis for an entropy-based measure of disorder in complex
networks [23]. Interest in measuring the information content of graphs has also been
kindled in recent years by the growing importance of computer and social networks
in modern society [10, 24]. Relationships between graph entropy-based measures,
expressed as inequalities, have been demonstrated in [11].

The notion of information content can be extended to infinite graphs. The
approach adopted here is to consider an infinite graph as a sequence of finite graphs.
Each of the finite graphs in the sequence has a well-defined information content, and
if the corresponding sequence of information content values has an unambiguous
limit, that limit is defined to be the information content of the given infinite graph.

In Sect. 2, we will look into the existence of directed graphs with prescribed
information content and determine the information content of certain products of
directed graphs. Section 3 will focus on infinite graphs, investigating the information
content of some special classes of infinite graphs, and applying results from Sect. 2
to determine the information content of infinite graphs in general. Section 4 will
examine some applications of the information measure to problems in network
theory.

1.2 General Definitions

Definition 1. G D .V;E/; jV j < 1; E � �V
2

�
is called a finite undirected graph.

If G D .V;E/; jV j <1, and E � V � V , then G is called a finite directed graph.
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Definition 2. A digraph Ln D .V;E/ is called a (directed) path of length n (� 1),
if V D fv0; v1; � � � ; vng and E D f.v0; v1/; .v1; v2/; � � � ; .vn�1; vn/g. The number of
vertices in Ln is nC 1, one more than the number of edges.

Definition 3. A digraph Cn D .V;E/ is called a (directed) cycle of length n (� 2),
if V D fv1; v2; � � � ; vng and E D f.v1; v2/; .v2; v3/; � � � ; .vn; v1/g. Cn has the same
number (n) of vertices and edges.

Definition 4. The complete graphKn has n vertices and
�
n

2

�
(undirected) edges.

See [12] for additional definitions of basic concepts in graph theory.

2 Entropy of Digraphs

2.1 Definition and Examples

The automorphism group of a digraph and the measure of information content based
on the group are defined below.

Definition 5. Let G D .V;E/ be a (directed or undirected) graph with vertex set
V (with jV j D n), and edge set E . The automorphism group of G, denoted by
Aut.G/, is the set of all adjacency preserving bijections of V .

Definition 6. Let fVi j1 � i � kg be the collection of orbits ofAut.G/ and suppose
jVi j D ni for 1 � i � k. The entropy or information content of G is given by the
following formula [17]:

Ia.G/ D �
kX

iD1

ni

n
log

�ni
n

�
:

Figure 1.1 illustrates the computation of the information content of a digraph.

2.2 Entropy of Digraph Products

Many different binary operations on graphs and digraphs appear in the literature
[19]. We will examine four such operations in some detail, namely, the sum, join,
Cartesian product, and the composition. Our aim is to determine the information
content of a digraph operation in relation to the information contents of the
respective digraphs in the operation. Such products are useful in defining classes
of digraphs with properties of interest in different applications, especially those
pertaining to the analysis of networks.

Definition 7. The sum of G1 and G2 is the digraph G1 [ G2 defined by V.G1 [
G2/ D V.G1/ [ V.G2/ and E.G1 [G2/ D E.G1/ [E.G2/.
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Orbits: {1}, {2,5}, {3,6}, {4,7}
Ia (Y) = −(1/7) log (1/7)

−3(2/7) log (2/7)

Y Z

Orbits: {1}, {2}, {3}
Ia (Z) = log 3

Orbit: {1,2,3,4,5,6}
Ia (X) = 0

X

3

1

2

4

5

6

1

2

3

45

6

7
1

23

Fig. 1.1 Computation of information content

G H G + H G X HG HU G o H

Fig. 1.2 Binary operations on digraphs

Definition 8. The join of G1 and G2 is the digraph G1 C G2 defined by V.G1 C
G2/ D V.G1/[V.G2/ andE.G1CG2/ D E.G1/[E.G2/[fŒu; v�ju 2 V.G1/; v 2
V.G2/g where Œu; v� denotes the undirected edge joining u and v.

Definition 9. The Cartesian product of G1 and G2 is the digraph G1 � G2
given by V.G1 � G2/ D V.G1/ � V.G2/ and E.G1 � G2/ D f.u; v/ D
..u1; u2/; .v1; v2//ju1; v1 2 V.G1/; u2; v2 2 V.G2/, and either u1 D v1 and .u2; v2/ 2
E.G2/ or u2 D v2 and .u1; v1/ 2 E.G1/g
Definition 10. Two digraphs G and H are relatively prime with respect to the
Cartesian product if whenever G is isomorphic to G0 � D and H is isomorphic
to H 0 �D, thenD is the identity digraphK1.

Definition 11. The composition of G1 and G2 is the digraph G1 ı G2
given by V.G1 ı G2/ D V.G1/ � V.G2/ and E.G1 ı G2/ D f.u; v/ D
..u1; u2/; .v1; v2//ju1; v1 2 V.G1/; u2; v2 2 V.G2/, and either .u1; v1/ 2 E.G1/

or u1 D v1 and .u2; v2/ 2 E.G2/g
The foregoing operations are illustrated in Fig. 1.2.
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These binary operations will be discussed with a view to characterizing the
information content of digraphs resulting from their application.

2.3 Sum and Join

Theorem 1. Let G andH be digraphs.

(a) Suppose Aut.G/ has orbits V G
i with jV G

i j D mi for 1 � i � m, and Aut.H/
has orbits V H

i with jV H
i j D ni for 1 � i � n. If no component of G is

isomorphic to a component of H , then

Ia.G [H/ D Ia.G CH/

D log.nCm/C 1

nCmŒnIa.G/CmIa.H/

� n log.n/ �m log.m/�:

(b) If G and H are isomorphic, then Ia.G [H/ D Ia.G C H/ D Ia.G/. More
generally, if each Gi.1 � i � n/ is isomorphic to G, then

Ia.G1 [G2 � � � [Gn/ D Ia.G1 CG2 � � � CGn/ D Ia.G/:

Proof. Ia.G [ H/ D Ia.G C H/ since the orbits of Aut.G [ H/ are the same
as those of Aut.G C H/. This is a consequence of the fact that every vertex of
G is adjacent to every vertex of H in G C H . (a) Ia.G [ H/ D Ia.G C H/ D
�

kP

iD1
ni
nCm log. ni

nCm/�
kP

iD1
mi
nCm log. mi

nCm/ D 1
nCmŒ

kP

iD1
ni log.nCm/C

kP

iD1
mi log.nC

m/� C 1
nCmŒ

kP

iD1
ni log.ni / �

kP

iD1
mi log.mi /� D log.n C m/ C 1

nCmŒnIa.G/ C
mIa.H/� n log.n/ �m log.m/�, as required. (b) See [18]. ut

When the two digraphs are of equal size, the information content of their join is
just one more than their average information content.

Corollary 1. Let G and H be as in the Theorem. If n D m, then Ia.G [ H/ D
Ia.G CH/ D 1

2
ŒIa.G/C Ia.H/�C 1.

Proof. The result follows immediately from the Theorem by setting m D n in the
expression for Ia.G [H/ D Ia.G CH/. ut
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x

Y

Z

Fig. 1.3 Partial joins

Corollary 2. Let G and H be as in the Theorem and suppose Ia.G/ D Ia.H/.
Then (i) Ia.G [ H/ D Ia.G C H/ D Ia.G/ C log.n C m/ � 1

nCmŒn log.n/ C
m log.m/�, and (ii) if in addition n D m, Ia.G [ H/ D Ia.G C H/ D Ia.G/ D
Ia.G/C 1.

Of particular importance to the representation of real network growth is the
partial join operation.

Definition 12. A partial join of G1 and G2 for the set F is the digraph G1 ˚ G2
defined by V.G1˚G2/ D V.G1/[V.G2/ andE.G1˚G2/ D E.G1/[E.G2/[F ,
where F � fŒu; v�ju 2 V.G1/; v 2 V.G2/g.

Figure 1.3 illustrates partial join operations for different sets F .
The information content of a partial join depends on the set F . For example, if

both graphs G and H are isomorphic to the directed cycle of length n and G ˚H
is defined for set F consisting of a single undirected edge, Ia.G ˚ H/ D log.n/
since each orbit of Aut.G ˚H/ consists of two of the 2n vertices. If there are two
edges joining G and H , one of which does not join corresponding vertices of the
directed n-cycles, the information content is log.2n/ sinceAut.G˚H/ is the trivial
group in this case. Note that Ia.G/ D Ia.H/ D 0 since the automorphism group of
a directed cycle with n vertices is the cyclic group of order n. Thus, it appears that
Ia.G ˚H/ can be expressed in terms of Ia.G/ and Ia.H/ in special cases only.

Theorem 2. LetG1 andG2 be complete graphs withm and n vertices, respectively,
and suppose G D G1 ˚G2 is a partial join with jF j D 1.

(a) If m is different from n, Ia.G/ D m�1
mCn log

�
m�1
mCn

� C n�1
mCn log

�
m�1
mCn

� C
2

mCn log.mC n/
(b) If m D n, then

Ia.G/ D 1

n

h
.n � 1/ log

� n

n � 1
�
C log.n/

i
:

Proof. Let Œx; y� be the edge in F where x is in G1 and y is in G2. If m is different
from n, the partial join G has four orbits A, B , C , and D, where A consists of the
m � 1 vertices of G1 excluding x, B consists of the n � 1 vertices of G2 excluding
y, and C and D are singletons containing x and y, respectively. If m D n there are
two orbits with 2 and 2.n � 1/ vertices, respectively. ut
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2.4 Cartesian Product and Composition

Theorem 3 ([18]). (a) Ia.G�H/ � Ia.G/CIa.H/ for any digraphsG andH .
(b) Equality holds when G and H are weakly connected and relatively prime with

respect to the Cartesian product.

Proof. Part (a) follows from the fact that Aut.G � H/ is a subgroup Aut.G/ �
Aut.H/. Part (b) is a consequence of the fact that Aut.G � H/ is isomorphic to
Aut.G/�Aut.H/ if and only if digraphsG andH are relatively prime with respect
to the Cartesian product. Note that being relatively prime is a sufficient but not a
necessary condition for equality in the theorem. ut

The information content measure is also sub-additive for the composition
operation.

Theorem 4 ([18]). Ia.G �H/ � Ia.G/C Ia.H/ for any digraphsG andH .

Figure 1.4 provides examples of the information content of the Cartesian product
and composition.

2.5 Existence Theorem

The join and Cartesian product can be used to construct digraphs with given
information content. More precisely, for any finite probability scheme there exists a
digraph with information content equal to the entropy of the scheme. This result is
stated in the following theorem originally presented in [18].

Theorem 5. Let n be any positive integer, and suppose P D fnij g is a partition of
n where nij D ni (1 � j � ri /, ni1 ¤ ni2 (i1 ¤ i2), and i D 1; 2; � � � ; k. Then there
exists a weakly connected digraph G with n vertices such that Aut.G/ has exactly

r D
kP

iD1
ri orbits, and for each nij there is an orbit A with jAj D nij ; and, hence,

Ia.G/ D H.P/ D �
kX

iD1
ri
ni

n
log

�ni
n

�
:

Proof. The proof is based on a simple construction. Let Gi D Lri�1 � Cni where
Lri�1 is a directed path of length ri � 1 and Cni is a directed cycle of length ni .
Since the path and cycle are relatively prime with respect to the Cartesian product,
the orbits of Aut.Gi / are the respective products of the orbits of Aut.Lri�1/ and
Aut.Cni /. Hence, Aut.Gi / has exactly ri orbits, each consisting of ni elements.
The digraph G formed by taking the join of the k non-isomorphic Gi has an
automorphism group with orbits corresponding to the partition specified in the
hypothesis of the theorem, and thus has the required information content. ut

Figure 1.5 illustrates the Theorem for n D 25; P D f13; 24; 32; 42g.
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G
Ia (G) = 0;

H
Ia (H) = log 3

G’ H’
Ia (G’) = Ia (H’)
  = log 3 − 2/3

H
Ia (H) = log 3;

G
Ia (G) = 0;

Ia (G X H)
= Ia (G) + Ia(H)
= log 3 

G X H G’ X H’

Ia (G’ X H’)
= 2 log 3 − 16/9
< Ia (G’) + Ia (H’)
= 2 log 3 − 12/9

Ia (G o H)
= Ia (H) + Ia (G)
= log 3

H o G

Fig. 1.4 Information content of Cartesian product and composition

+ + +

L2  X C1 L3  X C2 L1  X C3 L1  X C4

Fig. 1.5 Construction of digraph with prescribed information content



1 Entropy of Digraphs and Infinite Networks 9

3 Entropy of Infinite Graphs

3.1 Preliminaries

Definition 13. A graph G D .V;E/ is countable if jV [ Ej is countable. G is
locally finite if the degree of every vertex of G is finite.

In what follows, we will restrict attention to countable graphs that may or may
not be locally finite.

Definition 14 ([18]). Let G D .V;E/ be a countable graph. A sequence fGng1nD1
of finite graphsGn with Vn D V.Gn/ andEn D E.Gn/ is said to converge toG as a
limit (written limn!1Gn D G) if limn!1 Vn D V.G/ and limn!1En D E.G/.
Note that both V and E are simply the limits of sequences of sets.

Definition 15 ([18]). A sequence fGng1nD1 of finite graphs Gn is a defining
sequence for a countable graphG if Gn � GnC1 for every n, and limn!1Gn D G.
Since the limit of any monotonically increasing sequence fAng1nD1 of sets An exists

and is equal to
1S
nD1

An, every countable graph G has a defining sequence.

A defining sequence for a countable graph G with V.G/ D fv1; v2; v3; � � � g can
be constructed as follows:

V.G1 D fv1g and E.G1/ D ;,
V.GnC1/ D V.Gn/ [ fvnC1g and E.GnC1/ D E.Gn/ [ fŒvnC1; u� 2 E.G/ju 2
V.Gn/g.
Definition 16 ([18]). Let fGng1nD1 be a defining sequence for a countable graph
G. The information content OI .GIGn/ of G with respect to the sequence fGng1nD1 is
given by OI .GIGn// D limn!1 Ia.Gn/ if the limit exists.

Figure 1.6 shows a countable graph with defining sequences that give rise to
different information content values.

G1

, ,,

,
...

G2 G3

G4

Fig. 1.6 A countable graph with more than one defining sequence
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ia.Gn/ D
n
0 if n is odd
log.5/� 35 log.3/� 25 if n is even

Thus, for the subsequence Sn consisting

of the odd terms, OI .GISn/ D 0; and for the subsequence Tn consisting of the even
terms, OI .GITn/ D log.5/ � 3

5
log.3/ � 2

5
. The difference in this case is finite,

but it could be infinite as shown in [18]. Using a measure that depends on the
graph’s defining sequence is not necessarily a disadvantage. An infinite graph can
be viewed as an idealization of a growth process. Including the defining sequence
in the definition allows for capturing different principles of growth in practice.

3.2 Classes of Infinite Graphs

Infinite graphs can be built up recursively with the aid of graph products. The
following result makes use of the Cartesian product.

Lemma 1. Let G be a graph with n vertices. Ia.G �K2/ D Ia.G/.
Proof. Corresponding vertices of the two copies of G are in the same orbit of G �
K2, so G and G � K2 have the same number of orbits, and each orbit of G � K2

has exactly double the number of vertices as the corresponding orbit of G. Thus, if
Aut.G/ has orbits A1;A2; � � � ; Ar with jA.i /j D ki ; 1 � i � r , then Ia.G �K2/ D
�

rP

iD1
2ki
2n

log
�
2ki
2n

�
D IaG. ut

Suppose G is a graph with n vertices. If Aut.G/ is the identity group, then
Ia.G/ D log.n/, and Ia.G �K2/ D log.n/. The sequence

H1 D G;
HnC1 D Hn �K2; for n � 1

serves as a defining sequence of an infinite graph. Since Ia.Hn/ D log.n/,
limn!1 Ia.Hn/ D 1.

At the other extreme is the hypercube Hn, which can be defined recursively as
follows:

H1 D K2;

HnC1 D Hn �K2; for n � 1:

Since the limit of the (defining) sequence fHng1nD1 exists, we can set H1 D
limn!1Hn. Now, Ia.Hn/ D 0 for all n � 1 which implies by the lemma
that OI .H IHn/ = 0, i.e., the sequence of finite hypercubes yields a limit whose
information content is zero. The hypercube serves as a useful model in parallel
computation. A key feature in this context is the favorable maximum distance
between any two vertices in the graph. This allows for placing computational
units so as to minimize communication costs. The zero information content of the
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S3 X K2 W3  X K2

Fig. 1.7 Star and wheel products

hypercube reflects the high degree of symmetry of this graph, which allows for
simultaneous placement of elements at optimal distance from each other.

Other graphs of interest, with information content between the two extremes, can
be substituted for G in G �K2.

Let Sk denote the star of order k, a connected graph with one vertex of degree
k � 1 and k � 1 vertices of degree 1; and let W k denote the wheel of order k, a
connected graph obtained from the star by joining the degree 1 vertices in a cycle of
length k�1. Once again using the Cartesian product, we can build infinite sequences
based on these simple graphs.

Sk1 D Sk;
SknC1 D Skn �K2; for n � 1:

A sequence of graphsW k
n can be defined similarly.

Ia.S
k/ D Ia.W

k/ D � k�1
k

log
�
k�1
k

� � 1
k

�
log 1

k

� D log.k/ � k�1
k

log.k � 1/.
Denoting by S1 and W1, respectively, the infinite graphs with defining sequences
fSkn g1nD1 and fW k

n g1nD1, we have OI .S1ISkn / D OI .W1IW k
n / D log.k/ � k�1

k

log.k � 1/.
As k increases, almost all the vertices fall into one orbit and the information

content tends to zero.
Figure 1.7 shows the Cartesian products, respectively, of the star and the wheel

with K2.
The information content of the line graph of order k is given by:

Ia.L
k/ D

(
log

�
k
2

�
if n is even

k�1
k

log
�
k
2
C 1

k
log k

�
if n is odd:

The information content of the line graph increases without bound, so the informa-
tion content of the limit graph is infinite.

The cycle graph of order k has information content Ia.C k/ D 0, so the limit
graph in this case has information content zero.
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More complex graphs could be constructed by substituting for K2 in the
Cartesian products defining the terms in the infinite sequences considered above.

4 Applications

Preferential attachment has been studied extensively as a protocol for the growth of
large-scale networks like the Internet [5]. According to this protocol, a vertex added
to a network will be more likely to become attached to existing vertices of higher
rather than of lower degree. The “preference” of a vertex v as a target of attachment
might be expressed as the probability given by the degree of v divided by the sum of
the degrees in the graph. This introduces a random element in the growth process.
Perhaps the simplest way to realize a (relatively deterministic) version of growth by
preferential attachment is to add a single new vertex at each iteration, connecting the
new vertex to an existing one whose degree is maximal in the current graph. Call
this a type-0 preferential attachment protocol. If the starting graph is K1, the result
is clearly a star. After the nth new vertex has been added, a star of order nC 1 has
been formed. This graph SnC1 has information content log.nC1/� n

nC1 log.n/, and
as noted above, this value tends to zero as n increases without bound.

A variation on this simple protocol is to add k new vertices at each iteration and
attach each one of them to a different existing vertex, choosing the existing vertices
in nonincreasing order of degree, beginning with one of maximal degree.

Figure 1.8 illustrates the construction process according to this protocol, and the
following theorem gives the information content in the case where k equals the
number of vertices in the initial graph of the sequence.

Theorem 6. Let fGk
ng11 be a sequence of graphs defined as follows:

Gk
1 D Sk

Gk
nC1 is obtained from Gk

n by adding k new vertices and joining each one to a
different vertex of maximal degree in Gk

n .

G4
1  = S5 G4

2 G4
3

Fig. 1.8 A graph constructed with preferential attachment protocol type-0
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H2
1  = K2 H2

2 H2
3

Fig. 1.9 A graph constructed with preferential attachment protocol type-1

The information content of Gk
n is given by:

Ia.G
k
n / D

.k � 1/.n� 1/
nk C 1 log

�
nk C 1

.k � 1/.n � 1/
�
C k

nk C 1 log

�
nk C 1
k

�

C n � 1
nk C 1 log

�
nk C 1
n � 1

�
C 1

nk C 1 log.nk C 1/:

Proof. Since k vertices are added for each iteration, Gk
n , the nth graph in the

sequence has nk C 1 vertices. Let v be the vertex of highest degree in Gk
n . The

orbits of Aut.Gk
n / consist of the vertex v alone, the vertices of degree 1 adjacent to

v, the vertices of degree > 1 adjacent to v, and the vertices of degree 1 at distance 2
from v. Thus, the orbits of Aut.Gk

n / have 1, n � 1, k, and .k � 1/.n � 1/ vertices
from which the result follows. ut
Corollary 3. Let Gk

n be defined as in the theorem. Then OI .GIGk
n/ D log k.

Proof. Simplifying the expression in the theorem gives Ia.Gk
n / D log.nk C 1/ �

1
nkC1 Œ.k � 1/.n� 1/ log.k � 1/.n� 1/C .n� 1/ log.n� 1/C k log k�. Taking the

limit as n!1 yields OI .GIGk
n / D log k as required. ut

Greater connectivity in a network that grows by preferential attachment can
be achieved by allowing the newly added vertices to be joined to more than one
existing vertex [2]. Call this a type-1 preferential attachment protocol. This protocol
is illustrated in Fig. 1.9. The following theorem gives the information content of an
infinite graph that grows according to a type-1 protocol with k D 2.

Theorem 7. Let fH2
n g11 be a sequence of graphs defined as follows:

H2
1 D K2

H2
nC1 is obtained fromH2

n by adding 2 new vertices and joining each one to exactly
two different vertex of maximal degree in H2

n .


