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Editorial

Multiphase flow in porous media is an extremely important process in
a number of industrial and environmental applications, at various spatial
and temporal scales. Thus, it is necessary to identify and understand
multiphase flow and reactive transport processes at microscopic scale and
to describe their manifestation at the macroscopic level (core or field
scale). Current description of macroscopic multiphase flow behavior is
based on an empirical extension of Darcy’s law supplemented with capil-
lary pressure-saturation-relative permeability relationships. However, these
empirical models are not always sufficient to account fully for the physics
of the flow, especially at scales larger than laboratory and in heterogeneous
porous media. An improved description of physical processes and math-
ematical modeling of multiphase flow in porous media at various scales
was the scope a workshop held at the Delft University of Technology,
Delft, The Netherlands, 23–25 June, 2003. The workshop was sponsored
by the European Science Foundation (ESF). This book contains a selec-
tion of papers presented at the workshop. They were all subject to a full
peer-review process. A subset of these papers has been published in a spe-
cial issue of the journal Transport in Porous Media (2005, Vol. 58, nos.
1–2).

The focus of this book is on the study of multiphase flow processes as
they are manifested at various scales and on how the physical description
at one scale can be used to obtain a physical description at a higher scale.
Thus, some papers start at the pore scale and, mostly through pore-scale
network modeling, obtain an average description of multiphase flow at
the (laboratory or) core scale. It is found that, as a result of this upscal-
ing, local-equilibrium processes may require a non-equilibrium description
at higher scales. Some other papers start at the core scale where the
medium is highly heterogeneous. Then, by means of upscaling techniques,
an equivalent homogeneous description of the medium is obtained. A short
description of the papers is given below.

Dahle, Celia, and Hassanizadeh present the simplest form of a pore-scale
model, namely a bundle of tubes model. Despite their extremely simple
nature, these models are able to mimic the major features of a porous
medium. In fact, due to their simple construction, it is possible to reveal
subscale mechanisms that are often obscured in more complex models.
They use their model to demonstrate the pore-scale process that underlies
dynamic capillary pressure effects.
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Valvatne, Piri, Lopez and Blunt employ static pore-scale network models
to obtain hydraulic properties relevant to single, two- and three-phase flow
for a variety of rocks. The pore space is represented by a topologically
disordered lattice of pores connected by throats that have angular cross
sections. They consider single-phase flow of non-Newtonian as well as
Newtonian fluids. They show that it is possible to use easily acquired data
to estimate difficult-to-measure properties and to predict trends in data for
different rock types or displacement sequences.

The choice of the geometry of the pore space in a pore-scale net-
work model is very critical to the outcome of the model. In the paper
by Kainourgiakis, Kikkinides, Galani, Charlambopolous, and Stubos, a pro-
cedure is developed for the reconstruction of the porous structure and the
study of transport properties of the porous medium. The disordered struc-
ture of porous media, such as random sphere packing, Vycor glass, and
North Sea chalk, is represented by three-dimensional binary images. Trans-
port properties such as Kadusen diffusivity, molecular diffusivity, and per-
meability are determined through virtual (computational) experiments.

The pore-scale network model of Kainourgiakis et al. is employed by
Yiotis, Stubos, Boudouvis, Tsimpanogiannis, and Yortsos to study drying
processes in porous media. These include mass transfer by advection and
diffusion in the gas phase, viscous flow in the liquid and gas phases, and
capillary effects. Effects of films on the drying rates and phase distribution
patterns are studied and it is shown that film flow is a major transport
mechanism in the drying of porous materials.

Panfilov and Panfilova also start with a pore-scale description of two-
phase flow, based on Washburn equation for flow in a tube. Subsequently,
through a conceptual upscaling of the pore-scale equation, they develop a
new continuum description of two-phase. In this formulation, in addition
to the two fluid phases, a third continuum, representing the meniscus and
called the M-continuum, is introduced. The properties of the M-continuum
and its governing equations are obtained from the pore-scale description.
The new model is analyzed for the case of one-dimensional flow. The
remaining papers in this book regard upscaling from core scale and higher.

A procedure for upscaling dynamic two-phase flow in porous media
is discussed by Manthey, Hassanizadeh, and Helmig. Starting with the
Darcian description of two-phase flow in a (heterogeneous) porous medium,
they perform fine-scale simulations and obtain macro-scale effective prop-
erties through averaging of numerical results. They focus on the study
of an extended capillary pressure-saturation relationship that accounts for
dynamic effects. They determine the value of the dynamic capillary pressure
coefficient at various scales. They investigate the influence of averaging
domain size, boundary conditions, and soil parameters on the dynamic
coefficient.



EDITORIAL 3

The dynamic capillary pressure effect is also the focus of the paper by
Nieber, Dautov, Egorov, and Sheshukov. They analyze a few alternative for-
mulations of unsaturated flow that account for dynamic capillary pressure.
Each of the alternative models is analyzed for flow characteristics under
gravity-dominated conditions by using a traveling wave transformation for
the model equations. It is shown that finger flow that has been observed
during infiltration of water into a (partially) dry zone cannot be modeled
by the classical Richard’s equation. The introduction of dynamic effects,
however, may result in unstable finger flow under certain conditions.

Nonequilibrium (dynamic) effects are also investigated in the paper by
Tavassoli, Zimmerman, and, Blunt. They study counter-current imbibition,
where the flow of a strongly wetting phase causes spontaneous flow of the
nonwetting phase in the opposite direction. They employ an approximate
analytical approach to derive an expression for a saturation profile for the
case of non-negligible viscosity of the nonwetting phase. Their approach is
particularly applicable to waterflooding of hydrocarbon reservoirs, or the
displacement of NAPL by water.

In the paper by Pickup, Stephen, Ma, Zhang and Clark, a multistage
upscaling approach is pursued. They recognize the fact that reservoirs are
composed of a variety of rock types with heterogeneities at a number
of distinct length scales. Thus, in order to upscale the effects of these
heterogeneities, one may require a series of stages of upscaling, to go
from small-scales (mm or cm) to field scale. They focus on the effects of
steady-state upscaling for viscosity-dominated (water) flooding operations.

Gielen, Hassanizadeh, Leijnse, and Nordhaug present a dynamic pore-scale
network model of two-phase flow, consisting of a three-dimensional net-
work of tubes (pore throats) and spheres (pore bodies). The flow of two
immiscible phases and displacement of fluid–fluid interface in the network
is determined as a function of time using the Poiseuille flow equation.
They employ their model to study dynamic effects in capillary pressure-
saturation relationships and determine the value of the dynamic capillary
pressure coefficient. As expected, they find a value that is one to two orders
of magnitude larger than the value determined by Dahle et al. for a much
simpler network model.

Eichel, Helmig, Neuweiler, and Cirpka present an upscaling method for
two-phase in a heterogeneous porous medium. The approach is based on
a percolation model and volume averaging method. Classical equations
of two-phase flow are assumed to hold at the small (grid) scale. As a
result of upscaling, the medium is replaced by an equivalent homogeneous
porous medium. Effective properties are obtained through averaging results
of fine-scale numerical simulations of the heterogeneous porous medium.
They apply their upscaling technique to experimental data of a DNAPL
infiltration experiment in a sand box with artificial sand lenses.
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Bundle-of-Tubes Model for Calculating
Dynamic Effects in the Capillary-Pressure-
Saturation Relationship
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Abstract. Traditional two-phase flow models use an algebraic relationship between cap-
illary pressure and saturation. This relationship is based on measurements made under
static conditions. However, this static relationship is then used to model dynamic condi-
tions, and evidence suggests that the assumption of equilibrium between capillary pressure
and saturation may not be be justified. Extended capillary pressure–saturation relation-
ships have been proposed that include an additional term accounting for dynamic effects.
In the present work we study some of the underlying pore-scale physical mechanisms that
give rise to this so-called dynamic effect. The study is carried out with the aid of a sim-
ple bundle-of-tubes model wherein the pore space of a porous medium is represented by
a set of parallel tubes. We perform virtual two-phase flow experiments in which a wetting
fluid is displaced by a non-wetting fluid. The dynamics of fluid–fluid interfaces are taken
into account. From these experiments, we extract information about the overall system
dynamics, and determine coefficients that are relevant to the dynamic capillary pressure
description. We find dynamic coefficients in the range of 102 −103 kg m−1 s−1, which is in
the lower range of experimental observations. We then analyze certain behavior of the sys-
tem in terms of dimensionless groups, and we observe scale dependency in the dynamic
coefficient. Based on these results, we then speculate about possible scale effects and the
significance of the dynamic term.

Key words: two-phase flow in porous media, dynamic capillary pressure, pore-scale net-
work models, bundle-of-tubes, volume averaging

1. Introduction

Traditional equations that describe two-phase flow in porous media are
based on conservation equations which are coupled to material-dependent

∗Author for correspondence: e-mail: reshd@mi.uib.no
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constitutive equations. One of the traditional constitutive equations is an
algebraic relationship between capillary pressure, PcPP (the difference between
equilibrium phase pressures) and fluid phase saturation, SαSS (the fraction
of void space occupied by the fluid phase α). While this constitutive rela-
tionship is typically highly complex, including nonlinearity and hysteresis
as well as residual phase saturations, it is nonetheless algebraic. The alge-
braic nature means that a change in one of the variables implies an instan-
taneous change in the other, such that the relationship between PcPP and S

is an equilibrium relationship. For an equilibrium relationship to be appro-
priate, the time scale of any dynamics associated with the processes that
govern the relationship must be fast relative to the dynamics associated
with other system processes. Time scales to reach equilibrium in laboratory
experiments (Stephens, 1995) make this assumption questionable.

Recently, the relationship between PcPP and S has been generalized,
based on thermodynamic arguments by Gray and Hassanizadeh (see Has-
sanizadeh and Gray, 1990, 1993a , b; Gray and Hassanizadeh, 1991a , b).
The extended relationship reads:

(pnw −pw)−PcPP (Sw)=f

(
Sw,

∂Sw

∂t

)
, (1)

where f denotes an unspecified function depending on saturation and its
rate of change. Their contention is that this condition includes dynamic
effects and is valid under unsteady state and nonequilibrium conditions.
This kind of relationship has previously been considered by Stauffer (1978),
and similar results occur in the classic book by Barenblatt et al. (1990), see
also Silin and Patzek (2004). Dynamic effects may also occur as a conse-
quence of upscaling of effective parameters in two-phase flow, see Bourgeat
and Panfilov (1998). Recently, Hassanizadeh et al. (2002) analyzed experi-
mental data sets from the literature and showed that dynamic effects are
present in standard laboratory experiments to determine PcPP as a function
of S, although most laboratory experiments are designed to avoid dynamic
effects by using small pressure increments. Hassanizadeh et al. (2002) and
Dahle et al. (2002) also showed that this new relationship can easily be
included in numerical simulations, and that effects on problems involving
infiltrating fluid fronts could be significant, if the dynamic coefficient exhib-
its scale dependence.

In the present work, we consider some of the underlying physical mech-
anisms that give rise to this so-called dynamic effect. To do this, we ana-
lyze a simple bundle-of-tubes model that represents the pore space of a
porous medium. This model is analogous to the recent model of Bart-
ley and Ruth (1999, 2001), who used a bundle-of-tubes model to analyze
dynamic effects in relative permeability, Bartley and Ruth (2001) also pre-
sented initial calculations on dynamic effects on the PcPP − S relationship.
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Figure 1. Bundle-of-tubes model.

In the model we present herein, we use a bundle-of-tubes model to ana-
lyze system behavior in the context of Figure 1. We perform virtual two-
phase displacement experiments and mathematically track the dynamics of
each fluid–fluid interface in two-fluid displacement experiments. From this
we extract information about the overall system dynamics, and determine
coefficients that are relevant to the dynamic description. We analyze certain
behavior of the system in terms of dimensionless groups. Based on those
results, we then speculate about possible scale effects and the significance
of the dynamic term.

The paper is organized as follows. In the next section, we present back-
ground equations that are relevant to the derivations and calculations that
follow. In the following section, we present the bundle-of-tubes model that
is used to calculate system dynamics. We then describe the numerical exper-
iments performed, and proceed to investigate certain scaling dependencies
on the dynamic term. We end with a summary of the main findings and a
discussion section.

2. Background Equations

The new relationship between PcPP and S introduces a so-called dynamic cap-
illary pressure, and hypothesizes that the rate of change of saturation is a
function of the difference between the dynamic capillary pressure and the
static, or equilibrium, capillary pressure. Assuming that a linear relation-
ship holds, one will have, (Hassanizadeh and Gray, 1990):

−τ
∂Sw

∂t
=P dyn

cP −P stat
cP (Sw). (2)

In Equation (2), P stat
cP is the static or equilibrium capillary pressure, taken

to be the capillary pressure that is traditionally measured in equilibrium
pressure cell tests, see for example Stephens (1995); τ is a coefficient that



8 HELGE K. DAHLE ET AL.

we will call the ‘dynamic coefficient’; and P
dyn
cPP is the dynamic capillary

pressure, defined as the difference between the volume-averaged pressure in
the nonwetting phase and that in the wetting phase, viz.

P dyn
cP =〈pnw〉−〈pw〉, (3)

where the angular brackets imply volume averaging. Notice that the aver-
aging procedure introduces a length (and time) scale, so that the definition
of (3) will be linked to these scales of averaging. The dynamic coefficient
may still be a function of saturation as well as fluids and solid properties.
Stauffer (1978) has suggested the following scaling of the dynamic coeffi-
cient:

τ = φµ

k

α

λ

(pe

ρg

)2
, (4)

where k is the intrinsic permeability, µ and ρ are the viscosity and density
of the (wetting) fluid, g is the gravity constant, α=0.1 and λ, pe are coeffi-
cients in the Brook–Corey formula.

Ideally, in order to investigate the validity of Equations (2) and (4), one
should perform a large number of experiments, in which fluid pressures
and saturation should be measured under a number of different conditions
and for a variety of soil and fluid combinations. That, however, would be
extremely costly and time consuming. At these early stages of research on
dynamic capillary effects, it would be useful to carry out some theoretical
work in order to gain insight into the various aspects of this phenomenon.
Thus, in this paper, we try to gain insight into the underlying physics of
Equation (2) and the effect of various soil and fluid properties on the value
of τ . We carry out this work by studying fluid–fluid displacement at the
pore scale within a simple pore-scale network model, composed of a bun-
dle of capillary tubes. A schematic of the system is shown in Figure 1.

Consider a single capillary tube, with one end of the tube connected to
a non-wetting-phase reservoir and the other end connected to a wetting-
phase reservoir. The corresponding reservoir pressures are denoted by P nw

resPP

and P w
resPP , respectively. Assume that both reservoir pressures may be con-

trolled, and are set so that their difference is given by �P =P nw
resPP −P w

resPP . If
the tube has radius r, and is initially filled with wetting fluid, then non-
wetting fluid will invade the tube if the pressure difference exceeds the dis-
placement pressure given by the Young-Laplace criterion (Dullien, 1992)
�P >2σwn cos θ/r, where σwn denotes interfacial tension between the wet-
ting and non-wetting fluids, and θ is contact angle. Once this occurs, the
fluid movement may be approximated by the Washburn equation (Wash-
burn, 1921):

q =dl/dt =− r2

8µ(l)L¯ (−�P +ρ(l)Lg¯ sin 
+pc(r)). (5)
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In Equation (5), µ̄ and ρ̄ are length-averaged viscosity and density,
respectively, of the fluids within the tube, l = l(t) is the position of the
interface in the tube of length L, 
 is the angle the tube makes with the
vertical, and pc is the local capillary pressure, taken to be equal to the dis-
placement pressure,

pc(r)= 2σwncosθ

r
, (6)

To motivate the use of a bundle-of-tubes model, and to show the con-
nection to the larger (continuum–porous-medium) scale, consider the fol-
lowing simple scaling argument. Assume Equations (5) and (6), applied to
a large collection of pore tubes of different radii, govern the fluid flow
through some portion of a porous medium. Then the analogies between
the small-scale quantities in Equations (5) and (6), and those defined at the
continuum-porous-medium scale, may be identified, under both static and
dynamic conditions, as:

PS :
dl

dt
= − r2

8µ(l)L¯ (−�P +ρ(l)Lg¯ sin 
︸ ︷︷ ︸ + pc)

↓ ↓ ↓
CS : −dSw

dt
= −1

τ
( −P

dyn
cPP + P stat

cP )

Here PS denotes ‘pore scale’ and CS denotes ‘continuum scale’. We see
the direct correspondence between the dynamic displacement and the inter-
face movement, and the associated upscaled versions of average phase pres-
sure evolution and phase saturation changes. In particular, both dl/dt =
0 and dSw/dt = 0 at equilibrium, although the units are different due
to volume averaging. This provides motivation to use a bundle-of-tubes
model to investigate more complex aspects of dynamic phase pressures,
the associated dynamic capillary pressure, and its relationship to saturation
dynamics. For more details on the use of these ideas in conjunction with
pore-scale network models, we refer to Dahle and Celia (1999) and Has-
sanizadeh et al. (2002).

3. Bundle-of-Tubes Model

3.1. volume averaging

One of the main advantages of pore-scale network models is that variables
that are difficult or impossible to measure physically can be computed
directly from the network model. In the present case, we are interested
in calculation of volume-averaged phase pressures, local and averaged cap-
illary pressure, averaged phase saturations, and local interfacial velocities
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and associated changes in average phase saturations. To perform these cal-
culations, we let V denote an averaging volume within the domain of the
pore-scale network model, and introduce the indicator function γ defined
by

γαγγ (x, t)=
{

1 if phase α at (x, t),

0 otherwise. (7)

We then define

VpV =
∫ ∫ ∫

V

∫∫
(γnwγγ +γwγγ )dx, VwVV (t)=

∫ ∫ ∫
V

∫∫
γwγγ (x, t)dx, (8)

and

VnwVV (t)=VpV −VwVV (t). (9)

Here VpV is the total pore space of the averaging volume, φ =VpV /V is the
porosity, and VαVV (t) is the pore space occupied by phase α, with α =w for
the wetting phase and α=nw for the non-wetting phase. Average state vari-
ables like saturation and phase pressures can now be defined as follows:

Sw(t)= VwVV (t)

VpV
=1−SnwS (t), (10)

〈pα〉=
∫∫∫

V

∫∫
pα(x, t)γαγγ (x, t)dx∫∫∫

V

∫∫
γαγγ (x, t)dx

, α =w, nw. (11)

The bracket notation 〈〉 is used to denote average.

3.2. geometry of the bundle-of-tubes model

The bundle-of-tubes pore-scale model represents the pore space by a num-
ber, N , of non-intersecting capillary tubes. Each tube has length L, with
one end of the tube connected to a reservoir of nonwetting fluid and the
other end connected to a reservoir of wetting fluid (see Figure 1). Each
tube is assigned a different radius r, with the radii drawn from a cut-off
log-normal distribution

f (r;σndσ )=

√
2 exp

[
− 1

2

( ln r
rch

σndσ

)2
]

√
πσ 2

ndσσ r

[
erf
(

ln rmax
rch√

2
√√

σ 2
ndσσ

)
− erf

(
ln rmin

rch√
2

√√
σ 2

ndσ

)] . (12)

Here rch and σndσσ are the mean and variance of the parent distribution.
We have conveniently fixed the maximum and minimum radius to be
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rmax =102rch and rmin =10−3rch. Following Dullien (1992), let V =L3 be the
averaging volume of the bundle, and define the average of the pth power of
rk by:

〈rp〉=
N∑

k=1

r
p

k /N. (13)

Then the porosity is given by

φ = VpV

L3
= πN〈r2〉

L2
, or L=

(
πN〈r2〉

φ

)1/2

, (14)

In our computations we will specify the porosity φ and calculate the length
of the tubes L from this formula. From the parallel tubes model, we may
calculate an intrinsic permeability, k, for the bundle as

Q=∑k

πr4
k

8µ
�P
L

= πN〈r4〉
8µ

�P
L

Q= kL2

µ
�P
L

⎫⎬⎫⎫
⎭
⎬⎬

⇒k = φ〈r4〉
8〈r2〉 , (15)

where we have used Equation (14).

3.3. computational algorithm

Assume that the tubes are ordered by decreasing radius such that rk � rk+1,
k = 1,2, . . . ,N − 1, and that they are initially filled by wetting fluid. The
bundle is then drained by gradually increasing the non-wetting reservoir
pressure P nw

resPP , while the wetting reservoir pressure, P w
resPP , is kept fixed, say

equal to zero. The dynamics of each interface is assumed to be governed
by Equation (5). However, in order to save on algebra, the gravity will be
neglected in the following analysis and the two fluids are assumed to have
the same viscosity µ, leading to a pressure distribution within the tube as
shown in Figure 2. Thus, once the non-wetting reservoir pressure exceeds
the displacement pressure of tube k, the location of that interface at any
time t , l = lk(t), is given by,

lk(t)=qk · (t − t0)+ l0
k , (16)

where

qk =− r2
k

8µL
(−�P +pc(rk)), (17)

and l0
k is the position of the interface at time t0. When the interface reaches

the wetting reservoir, lk =L, that interface will be considered to be trapped,
with qk = 0, and the pressure in the corresponding drained tubes is kept
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p
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c (r  )
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l  (t)
k
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Figure 2. Pressure distribution in a single tube containing two fluids of equal vis-
cosity separated by an interface located at l = lk(t).

constant at P nw
resPP . By averaging we obtain the following expression for the

saturation of the wetting phase at any given time t :

Sw(t)= VwVV (t)

VpV
=1−

∑
k πr2

k lk

VpV
. (18)

The time derivative of this saturation is

dSw

dt
=− 1

VpV

∑
k

πr2
k

dlk

dt
=− 1

VpV

∑
k

πr2
k qk. (19)

By using Equation (11) we obtain the average phase pressures (α =w,nw):

<pα >= 1
VαVV (t)

∑
k

πr2
k lαk (±1

2
�pα

k +P α
resPP ), (20)

where

�pα
k =
{

lαk
L
(−�P +pc(rk)), 0<lαk <L;

0 lαk =L.
(21)

Here lnw
k = lk(t), lwk =L− lk(t) and the plus sign is chosen if α =nw. These

phase pressures are then used in Equation (3) to define the dynamic capil-
lary pressure. At equilibrium the capillary pressure over an interface has to
exactly balance the boundary pressures. This leads to the following defini-
tion of a static capillary pressure:

P stat
cP (Sw)=pc(rk), Sk−1

w ≤Sw ≤Sk
w with Sk

w =1−
∑k−1

i πr2
i L

VpV
. (22)

Note that P stat
cP is defined stepwise as the displacement pressure of suc-

cessive tubes. In Figure 3 dynamic and static capillary-pressure–saturation
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Figure 3. Dynamic and static capillary-pressures–saturation curves.

relationships are compared for two different drainage experiments. The
only difference between these experiments is that different pressure incre-
ments, �pstep, are used to update the nonwetting reservoir pressure P nw

resPP .
Observe that the dynamic capillary-pressure curves in Figure 3 are always

above the static curve, which is consistent with the theory leading to Equa-
tion (2). Another interesting feature of this Figure is the non monotonicity
of the dynamic PcPP -curve for large saturation. Similar behavior has also been
observed in dynamic network simulations, e.g. Hassanizadeh et al. (2002).
To explain the behavior in Figure 3, consider a single tube, k, with a moving
interface at l = lk(t). Since the viscosities of the fluids are equal, the pressure
gradient has to be equal within each fluid phase of the tube, see Figure 2,
and the average phase pressures in that tube are given by:

p̄nw
k =P nw

resPP − lk

2L
(P nw

resPP −pc(rk)), p̄w
k = L− lk

2L
(P nw

resPP −pc(rk)). (23)

Thus, the average phase pressures in a single tube will decrease at the same
rate, whereas the difference is constant in time:

p̄nw
k − p̄w

k = 1
2
(P nw

resPP +pc(rk)). (24)

If we consider the ensemble of tubes, the average phase pressures, Equation
(20), may alternatively be written:
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〈pα〉= 1
VαVV (t)

∑
k

p̄α
k V k

αVV , (25)

where V k
αVV is the volume occupied by phase α in tube k, p̄nw

k =P nw
resPP if the interface

in tube k is trapped at lk =L, and p̄w
k =0 if the interface is trapped at lk =0. At

high saturations we may assume that all the non-wetting fluid is associated with
moving interfaces. Since the flow rate in each tube is constant, all the volumes
associated with the non-wetting fluids are then changing proportional to time
t . It follows that 〈pnw〉 has to be decreasing function of time (i.e. decreasing
saturation), since all the weights, p̄nw

k , are decreasing. At the point in time when
interfaces starts to get trapped at the outflow boundary, the associated weights
will increase, and 〈pnw〉 may start to increase in time. On the other hand, for
high saturations, the volumes occupied by the wetting fluid is mainly associ-
ated with interfaces that are immobile at the inflow boundary giving weights
p̄w

k = 0, so that 〈pw〉 ≈ 0. Thus, P
dyn
cPP ≈〈pnw〉 has to be a decreasing function

with time in this case. By looking at Figure 3, this behavior is clearly apparent
for 0.9<Sw <1 and �pstep =5000Pa. For Sw ≈0.9 a sufficient number of inter-
faces become trapped at the outflow boundary, leading to a change of slope in
the dynamic PcPP −S curve.

4. Numerical Experiments

In the numerical tests reported herein, a set of radii are generated based
on the log-normal distribution, and these radii define one realization of the
pore-scale geometry. For a given realization, the tubes are drained by impo-
sition of step-wise changes in pressure in the nonwetting reservoir. Initially
we choose P nw

resPP = pc(r1) + �pstep and then increase P nw
resPP subsequently by

�pstep each time an equilibrium is reached (meaning that no further inter-
faces will move). In this way the entire bundle is drained, and we can com-
pute P stat

cP − P
dyn
)

cPP and dSw/dt at a given set of target saturations StargetSS ∈
{0.1,0.2, . . . ,0.9}. To obtain a sufficiently large number of data points at
each target saturation we vary the pressure step according to

�pstep =n · δp, n=1,2, . . . ,NstepNN , with δp = (1.1pc(rN)−pc(r1))/NstepNN .

Observe that the largest pressure increment is chosen such that the bundle
will drain in a single step. We have chosen NstepNN =50, and if nothing else is
specified other parameters for the bundle are chosen as listed in Table I.

In Figure 4, P stat
cP −P

dyn
cPP is plotted against dSw/dt at target saturations

0.2, 0.5 and 0.8. Observe that the data points appear to behave linearly
somewhat away from the origin, while close to the origin we have that
P

dyn
cPP → P stat

cP as dSw/dt → 0 in a nonlinear fashion. We may fit a straight
line through the linear portion of the curve, with parameters τ and β

defined as slope and intercept,
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Table I. Parameters for bundle of tube model. Length L of tubes and intrinsic perme-
ability k are calculated from one realization of the bundle using Equations (14) and (15)

Parameter Description Value

N Number of tubes 1000
NstepNN Number of pressure increments 50
rch Mean value pore-size distribution 10−5 [m]
rmin Lower cut-off radius 10−3rch

rmax Upper cut-off radius 102rch

σndσσ Variance of pore-size distribution 0.2
µ Viscosity 0.5×10−2 [kg m−1 s−1]
σwn Surface tension 7.2×10−2 [kg s−2]
θ Contact angle 0 (radians)
φ Porosity 0.3
L Length ∼10−3 [m]
k Permeability ∼4.8×10−12 [m2]
τ Dynamic coefficient ∼274 [kg m−1 s−1]
β Intercept ∼1.5×103 [kg m−1 s−2]

Similarly, the dynamic coefficient τ and the intercept β is calculated from the same real-
ization at saturation Sw =0.5

−τ∂Sw/∂t +β =P dyn
cP −P stat

cP , (26)

where τ >0, β >0 may be functions of Sw and other parameters. Based on
Stauffer’s formula (4) we may conjecture that

τk/φµL2 =�τ(Sw, σndσ ). (27)

Here L should be interpreted as a characteristic length scale associated
with the averaging volume. We also conjecture that

β/σndσ P ch
cP =�β(Sw), (28)

where P ch
cP =2σwncosθ/rch and rch is the mean of the pore size distribution.

To determine values of the parameters τ and β, and to test the
conjectures put forth in Equations (27) and (28), we run a series of numer-
ical experiments and analyze the results. As part of this analysis, we deter-
mine a regression line through the linear part of the plots (see for example
Figure 4). To compute the regression line in a systematic manner, the data
points are first normalized to fall within the interval [−1,0]. A regression
line is then calculated for all data points associated with dSw/dt <−0.3 on
the normalized plot. The regression line is then transformed back to the
original coordinate system. The slope of the line gives the estimate for τ

while the intercept gives β. Note that β �= 0 corresponds to existence of a
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Figure 4. P stat
cP −P dyn

cP versus dSw/dt at saturations Sw =0.2, 0.5, 0.8.

nonlinear region near the origin. The magnitude of β reflects the degree of
this nonlinearity. In all our simulations, the slope of the regression line has
been positive and the curvature of the data points have been such that the
vertical axis intersection has been below the origin.

The proposed conjectures can now be tested by systematically varying
the parameters associated with our bundle-of-tubes model. For each new
value of a specified parameter, a new realization of the bundle is generated
and this bundle is then drained using the NstepNN different pressure steps to
obtain regression lines as in Figure 4. The parameters that are varied are N

(number of tubes), φ (porosity), µ (viscosity), rch (mean pore-size distribu-
tion), σndσ (variance of pore-size distribution), and θ (contact angle). Note
that varying θ is equivalent to varying the surface tension σwn. It is also

Table II. Results from varying different parameters, keeping the others fixed as in Table I

Parameter Range k L τ β

N 200–10,000 4.77×10−12 N 1/2 N indep.

φ 0.05–0.45 φ φ−1/2 φ−1/2 indep.

rch 10−6 −10−4 r2
ch rch indep. r−1

ch

µ 10−4 −10−1 4.79×10−12 0.11×10−2 µ indep.

θ 0−1.5608 4.79×10−12 0.11×10−2 indep. cos θ

σndσσ 0.1−0.6 * * * σndσ

The symbol * means that no obvious power law was found.
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possible to vary the lower- and upper-cut-off radius rmin and rmax indepen-
dently. However, for this study they are kept constant with values as given
in Table I. The findings of our numerical simulations are summarized in
Table II. For example, the number of tubes is increased from N = 200 to
N = 10000 with step size 200 tubes. As expected, we observe that the per-
meability k ∼ 4.77 × 10−12[m2] is essentially constant, i.e: k varies randomly
around a mean value of 4.77×10−12[m2] for various realizations of the bun-
dle. Furthermore, L∼N1/2, and τ ∼N , whereas β is essentially independent
of N as N =200,400, . . . ,10,000. Similar results are tabulated when varying
the other parameters, see Table II. However, it turns out that the variance of
the pore-size distribution σndσ , is a special parameter. We let σndσ vary linearly
between σndσ = 0.1 and σndσ = 0.6 using 50 steps. Both k and L increase with
σndσ but no obvious power law dependency is found. Similarly, we find no
obvious dependency with respect to τ and σndσ . In fact, τ -values for smaller
saturations increase with respect to σndσ whereas they decrease at the larger
saturation values. On the other hand it appears that β ∼ σndσ , although the
fluctuations in the data points are fairly large for the larger values of σndσ .

For each parameter that is varied, we have plotted the mean value for
the dimensional groupings �τ and �β at the specified target saturations,
see Figures 5–7. The error bars in these plots give the variance of the
fluctuations around the mean value, due to different realizations of the
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Figure 5. Dimensional grouping �τ(Sw, σndσ )= τk/φµL2 as a function of saturation
is fixed at σndσ =0.2. Variance of the pore-size distribution is fixed at σndσσ =0.2.
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Figure 8. Dimensional grouping �τ(Sw, σndσ )= τk/φµL2 as a function of saturation
and variance of the pore-size distribution.

bundle for each update of the a specific parameter. We observe that Fig-
ures 5 and 7 reconcile the parameter dependencies of �τ and �β fairly
well. In Figure 8, we do not include the data related to varying the var-
iance of the pore-size distribution, simply because we are not able to make
this parameter fit into the dimensional grouping of �τ . In Figure 6, we
have plotted the dimensional grouping �τ when the number of tubes N is
varied from N = 200 to N = 10,000, and for three different values of σndσ .
This Figure illustrates the difficulty associated with the parameter σndσσ . We
are simply not able to include σndσ into the dimensional grouping �τ to
make this independent of σndσ , because the dependency of this parameter
is coupled to the saturations. We therefore suggest that �τ = �τ(Sw, σndσ ).
This surface is plotted in Figure 8. A possible explanation for the more
complicated dependency on σndσ is related to the observation that τ ∼ k−1.
When σndσ is increased we get more tubes with smaller and larger radius.
This means that when we estimate τ for larger saturations the ‘local’ per-
meability over that section of the bundle must increase with σndσσ . Since τ

is inversely proportional to permeability we should therefor expect τ to
decrease for larger saturations when σndσ is increased. On the other hand for
smaller saturations the ‘local’ permeability should decrease with σndσσ result-
ing in an increase in τ .

Finally, by Equation (27), we have that
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τ(Sw)= φµL2

k
=�τ(Sw), (29)

for a fixed variance of the pore-size distribution σndσ . Hence, from Figure 5,
it follows that the dynamic coefficient τ is a decreasing function of satura-
tion except for larger values of Sw, where τ is an increasing function.

5. Summary and Discussion

In this paper we have investigated dynamic effects in the capillary pressure–
saturation relationship using a bundle-of-tubes model. At the pore-scale,
fluid–fluid interfaces will always move to produce an equilibrium between
external forces and internal forces created by surface tension over the
interfaces. Because of viscosity, interfaces require a finite relaxation time
to achieve such an equilibrium. This dynamics of interfaces at the pore-
scale may for example be described by the Washburn Equation (5). This
is a simple model and the corresponding dynamic effect is expected to be
small. The calculated value of τ (∼ 274 kg m−1 s−1) is indeed very small.
For a more complicated pore-scale network model, larger values for τ are
obtained. For example, for a three-dimensional pore-scale network model
Gielen et al. (2004) obtained values of order 104 − 105 kg m−1 s−1. When
micro-scale soil heterogeneities are taken into account, even larger values
for τ are found. For example, experimental results reported by Manthey
et al. (2004) on a 6-cm long homogeneous soil sample yield a τ -value of
about 105 kg m−1 s−1. At even larger scales, dynamics of interfaces must be
associated with the time scale of changes in phase saturations.

Our analysis of the bundle-of-tubes model leads to the relationship (26)
involving a dynamic coefficient τ and an intercept of the vertical axis β.
We have investigated dimensionless groupings (27) and (28) containing τ

and β, respectively. The dimensionless grouping involving τ shows a clear
dependency on saturation, in particular for larger values of the variance
of the pore-size distribution. It also shows that the dynamic coefficient τ

increases as the square of the length scale L associated with the averag-
ing volume. This suggest that the dynamic coefficient may become arbi-
trarily large as the averaging volume increases in size. However, we suspect
that the length scale has to be tied to typical length scales associated with
the problem under consideration, e.g. length scales associated with mov-
ing fronts, and not necessarily the length scale of the averaging volumes.
We will investigate the dependency of τ with respect to typical length
scales in future work. The dynamic effect observed in our bundle-of-tubes
model is only due to the motion of single interfaces. The effect would have
been larger if effects such as hysteresis in contact angle would have been
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included; e.g. a smaller contact angle during drainage compared to when
the interface is at rest.

The relationship (26) may not be valid for small temporal changes in
saturation due to the nonlinearity introduced by local capillary pressure.
The magnitude of this nonlinearity is reflected in the size of the vertical
axis intercept β. In fact, the dimensionless grouping involving β shows that
this intercept is proportional to surface tension and contact angle of the
fluid–fluid interface. On the other hand, the dimensionless grouping that
contains β does not show any clear dependency on the saturation. If this
turns out to be the case, the β-term may have no importance with respect
to continuum scale models.
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