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Preface

Systems dependability

assessment
Systems dependability assessment! Many excellent books

deal with this subject and describe its evolution from its

beginning, at the end of World War II. We can recall the

ability of the first computers that were occasionally in an

operating state. From this time, a lot of robust methods and

tools made the analysis and the assessment of their failures

possible, in order for the potential users of these new

technologies to rely on them. The word “reliability” was

born. The safe development of electronics and then of

computing, aerospace and nuclear technologies became

possible. So it is logical to ask the question of the relevancy

of a new book. In fact, it was found that the simplifying

hypotheses commonly used to access the predictive

measures of reliability are sometimes difficult to justify and

that they can produce pessimistic values compared to the

feedback experience or optimistic forecasting of rare

dangerous events. This induced a lot of research in the

specialized community, for example in the Automatic

Control Research Center (Centre de Recherche en

Automatique de Nancy – CRAN) of the University of Lorraine,

France.

These are some of the works that we will modestly report

in this book. They constituted significant contributions to

recent approaches of predictive dependability due to

resorting to concepts developed in automatic control but not

yet turned to account of dependability. We can cite, for

example, graph theory, finite-state automata, Petri nets,

Bayesian approach and fuzzy sets.



These developments spanned over approximately the last

two decades and gave some original advances in the field,

and it is difficult for us not to make a connection with the

Nancy School of Art Nouveau one century ago. In fact,

perhaps we could have called this book Systems

Dependability Assessment; Beyond traditional approaches,

the Nancy School!

Let us enter now into more technical and scientific

considerations to give the clarifications that the title of this

book deserves.

Dependability

The CEI 50 (191) standard [IEC 90] defines dependability as

the ability of an entity to assume one or more requested

functions in given conditions. This very general and non-

quantitative notion may be further specified by its generally

associated attributes which are [LAP 95]: hindering or

barriers, achievement means, validation means and

measures. Our contribution rightly takes a place within the

latter, and especially in quantitative measures.

Nevertheless, it is difficult to give a single value for this

measure as the dependability is actually a concept including

three components [IEC 90]: reliability, maintainability and

availability. These three components, as well as their

measures which are probabilities, are formally defined in the

CEI 50 (191) standard. The lifetime (or time before failure)

and the repair time of an entity are considered as random

time variables whose distribution functions define,

respectively, the reliability and the maintainability of the

entity. The availability is the probability for the entity of

being in operation at a given time instant, knowing that the

entity could have been alternatively in operation or in repair

states. Its asymptotic value is generally an interesting

measure. In the Appendix, the basic mathematical

definitions are recalled.



However, the CEI 50 (191) standard does not consider

safety as a component of dependability. Safety is the ability

of an entity to avoid the appearance of critical or

catastrophic events that may affect equipment or staff. The

measure of the safety may be defined as a probability;

however, it is also important to assess it with regard to the

consequence of the occurrence of these critical or

catastrophic events. This leads to the concept of risk, a risk

being evaluated by the association of the occurrence

frequency (or probability) of a dangerous event and the

damage it induces on goods, people and environment. It is

not the main purpose for this book to deal with risk

management; nevertheless, it may be considered that a

system may be in a dangerous state as well as in an

availability state, both being sometimes compatible. As we

will see later, it is possible to assess the probability for a

system of being in any subset of its possible states and, for

example, the subset of safe states. We can find in the CEI

61508 [IEC 98] a probabilistic approach of the functional

safety that we can qualify as the reliability of systems

responsible for safety loops in industrial plants. That is why

it is difficult not to consider safety as a fourth element of

dependability, especially when it is a matter of probabilistic

assessment. Many authors and agencies prefer the RAMS

acronym for reliability, availability, maintainability and

safety instead of dependability. However, RAMS has a wider

extension, covering all the attributes of dependability and

safety: hindering, achievement means, validation means,

and quantitative as well as qualitative measures.

System

By the term “system”, we mean a set of components

interacting together to perform one or more predefined

functions. Components and system are included in the

definitions of “dependability” under the generic term



“entity”; however, their measures are issued from different

approaches. For the components, they are based, for

example, on known probabilistic laws whose parameters are

adjusted from statistical data. For a system, the

dependability measure is a prediction obtained by a

dedicated model starting from the knowledge of the

dependability measures of its components.

This definition of system does not evoke the complexity

level of the system. The complexity may be expressed in

terms of number of components, but it must be more

particularly understood in terms of interactions between

them. As we will see, many types of models may be

combined to describe these interactions and the solving

method may be a matter of analytical calculus or simulation

process. For large systems, it is usual to build hierarchical

models with several levels of subentities, etc. It is not our

purpose to discuss system engineering and we will only

consider a sole decomposition level with the objective of

finding a relationship model between one dependability

measure of a system and that of its components.

Assessment

In the dependability or RAMS domain, two types of

assessment are predominantly performed: qualitative and

quantitative. Qualitative assessment is generally performed

as a preliminary study to identify and qualify the

components, events, interactions and limits of the system in

order to eventually be able to start the quantitative

assessment which must be understood as the set of means,

methods and tools to give a quantitative measure of the

systems dependability. As said previously, this measure is

predictive and is based on models. These models are very

large in number and more or less known for a long time, and

it is not our goal to give an exhaustive description.



Jean-François AUBRY

December, 2014



Introduction

In this book, we are interested in the problem of

characterizing the probabilistic indicators of the

dependability of a complex system knowing a priori the

dysfunctional characteristics of their components. These

components may be material (machines, hardware, devices,

structures, subsystems, etc.), immaterial (software,

strategies, etc.) or people (designers, operators, repairers,

etc.). It is supposed that the definition, the modeling and

the assessment of the dysfunction of these components are

well known as an issue of the application of probabilities and

statistics theories. The reader may refer to so many books

and publications on the subject that it is impossible to

mention them all. We will only cite, for example, the

following authors: Meeker [MEE 98], Modarres [MOD 93] and

Cocozza [COC 97].

It may be thought that all, or almost all, has been written

on the dependability of systems and that the electronics,

aeronautic, space, chemical, transportation or nuclear

industries practice this activity with expertise. Nevertheless,

the interest developed in the past 20 years by many

research experts on the so-called “dynamic reliability”

shows that this is not exactly the case. A community of

specialists is engaged in reconsidering a lot of simplifying

hypotheses requested for the elaboration of analytical

models but leading to the risk of impasses relative, for

example, to insidious conditions, rare event sequences or

complex interactions between functional and dysfunctional

behaviors.

More extensively considering all the problems impacting a

dependability assessment process today becomes possible

due to the borrowing of concepts developed in other



scientific domains and due to the power improvement of

engineering tools (computers, network, languages, software,

etc.).

From such a perspective, we propose in Part 1 to revisit

the traditional approach of systems reliability modeling by

the means of the monotone structure function concept and

its representation by a graph, the concept that we will

progressively transform in Part 2 into that of stochastic

hybrid automaton. So, we will take advantages of concepts

developed in the fields of graph and finite-state automata

theories in which probabilistic aspects have been

introduced.

We will present some simple examples and the associated

tools to illustrate the pedagogical approach as well as

results obtained with more complex case studies in the

context of research programs. We thank Dr G.-A. Perez

Castaneda and Dr G. Babykina for their important

contribution to the research partially reported in the final

part.



PART 1

Predicted Reliability of Static

Systems; a Graph-Theory

Based Approach



1

Static and Time Invariant

Systems with Boolean

Representation

A system whose outputs are only dependent at any time on

its variables states is generally called a time invariant

system or stationary system. Furthermore, a static system is

a system whose outputs do not depend on the past of its

inputs; it has no memory. Translated in the context of

reliability, these definitions become: at any time, the same

combination of components states induces the same state

of the system and, at a given time, the knowledge of the

reliability of each component is sufficient to access the

reliability of the system. In addition, we will only consider in

this section systems and components with Boolean

behaviour (“ON or Operating” and “FAIL” states that will be

represented by the Boolean variables “1” and “0”).

1.1. Notations
Let us suppose that a system S with Boolean states is

composed of r components ci. The state of a component ci

is defined by the Boolean variable ui. We will use the

following notation:

– C = {c1, c2,..., cr} the set of the r components,



–  = (u1, u2, … ur) the Boolean word representing the

states of the components with , so 

can take at most 2r different values (the system’s state

number is generally lower than 2r because some

degradation states are inaccessible, the system being

stopped beforehand).

1.2. Order relation on 
Let us recall that a relation R on a variable set is an order

relation if it is reflexive (aRa), antisymmetric (aRb and 

) and transitive (aRb and ). A set

provided with such a relation is an ordered set. In the

Boolean set , two operations establish an order: the

identity operation noted  and the implication operations

sometimes noted  and , (analog of the operations defined

on the integers with the same symbols).

Let us now consider two distinct values of 

(a1, a2,..., ar) and  = (b1, b2, …, br). We will say that:

–  if and only if ;

–  (read  upper bounds ) if and only if  (0,

1, ... r), ai ≥ bi;

–  (read  lower bounds ) if and only if  (0,

1, ... r), ai ≤ bi.

It is really a matter of order relations on  because it is

reflexive (  and ), transitive (

and ) and antisymmetric (

 and ).

For example we can write: (1, 1, 0, 1, 1)  (1, 1, 0, 1, 0) 

(1, 1, 0, 1, 1)

But (1, 0, 1, 1, 0) is not in relation with (1, 1, 0, 1, 0).

A drawing of this order relation is given by its Hasse

diagram [VEL 05], that is to say, a graph in which the nodes



are the possible values of  and the arcs are the

representations of the order relation. It is a subset of the

sagittal diagram of the relation where the loops and the arcs

representing respectively the reflexivity and the transitivity

properties are removed. Such a structure is sometimes

called r-cube [ARN 97].

For example, Figure 1.1 gives a representation of the order

relation in . This example shows that the values (101) and

(010) are not in relation illustrating that the order relation is

not total but only partial (all the elements are not in relation

with each other).

Theoretically, the diagram would be oriented according to

the chosen relation (  or ). Practically both relations are

represented as they are symmetrical and the placement

top/down of the nodes, according to the number of zero

they contain, means that the arcs are oriented top-down for

the relation  and bottom-up for the other one.

Figure 1.1. Hasse diagram of the set 

An interpretation of this diagram as a state graph of the

system is interesting considering that an arc is associated

with a component failure when oriented top-down and to a

component repair when oriented bottom-up. With the

physically admissible hypothesis of non-simultaneity of

events, two failures, two repairs or a failure and a repair, the

paths of this graph are associated with all possible



sequences of these events. This will be widely exploited in

the second part.

A. Kaufmann et al. [KAU 75] introduced this concept in the

field of reliability but not in the Boolean context. He

considered a set reduced to the two integers 0 and 1 and

defined the concept of an analytical structure function on

this set using operators on integers. We think however that

the Boolean context is naturally suitable.

1.3. Structure of a system
Let us consider Y, the Boolean variable representing the

state of the system S.

The structure function (notated as SF from here on) of the

system S is the Boolean function associating a value to 

 for each value of . It will be noted .

For the study of the dysfunctional behavior of a static

system, the structure function is not an ordinary Boolean

function. Practically, the coverage (union of all  values

assuming Y = 1) of this function is reduced with regard to its

definition domain containing 2r values. For example, for a

serial system, the coverage contains a sole value. The

coverage of the structure function increase with the

components’ redundancy level in the system. In addition, as

we will see, each minterm of the function is adjacent (see

the Appendix, section A.2.6) to another one at least. This

property allows us to completely define the system by the

knowledge of its minimal cut-sets or its minimal tie-sets (see

section 1.4). According to [KAU 75], the concepts of tie-set

and path-set are distinguished, a tie-set is a subset of the

components set while a path-set is a sub-graph of a

representative reliability graph.


